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Abstract: The past few years have witnessed a growing recognition of soft
computing technologies that underlie the conception, design and utilization of
intelligent systems. According to Zadeh [1], soft computing consists of artificial
neural networks, fuzzy inference system, approximate reasoning and derivative
free optimization techniques. In this paper, we report a performance analysis
among Multivariate Adaptive Regression Splines (MARS), neural networks and
neuro-fuzzy systems. The MARS procedure builds flexible regression models
by fitting separate splines to distinct intervals of the predictor variables. For
performance evaluation purposes, we consider the famous Box and Jenkins gas
furnace time series benchmark. Simulation results show that MARS is a
promising regression technique compared to other soft computing techniques.

1. Introduction

Soft Computing is an innovative approach to construct computationally intelligent
systems that are supposed to possess humanlike expertise within a specific domain,
adapt themselves and learn to do better in changing environments, and explain how
they make decisions. Neurocomputing and neuro-fuzzy computing are well-
established soft computing techniques for function approximation problems. MARS is
a fully automated method, based on a divide and conquer strategy, partitions the
training data into separate regions, each with its own regression line or hyperplane
[2]. MARS strengths are its flexible framework capable of tracking the most complex
relationships, combined with speed and the summarizing capabilities of local
regression. This paper investigates the performance of neural networks, neuro-fuzzy
systems and MARS for predicting the well-known Box and Jenkins time series, a
benchmark problem used by several connectionist researchers. We begin with some
theoretical background about MARS, artificial neural networks and neuro-fuzzy
systems. In Section 6 we present experimentation setup using MARS and soft
computing models followed by results and conclusions.

2. What Are Splines?

Splines can be considered as an innovative mathematical process for complicated
curve drawings and function approximation. Splines find ever-increasing application
in the numerical methods, computer-aided design, and computer graphics areas.
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Mathematical formulae for circles, parabolas, or sine waves are easy to construct, but
how does one develop a formula to trace the shape of share value fluctuations or any
time series prediction problems? The answer is to break the complex shape into
simpler pieces, and then use a stock formula for each piece [4]. To develop a spline
the X-axis is broken into a convenient number of regions. The boundary between
regions is also known as a knot. With a sufficiently large number of knots virtually
any shape can be well approximated. While it is easy to draw a spline in 2-dimensions
by keying on knot locations (approximating using linear, quadratic or cubic
polynomial etc.), manipulating the mathematics in higher dimensions is best
accomplished using basis functions.

3. Multivariate Adaptive Regression Splines (MARS)

The MARS model is a spline regression model that uses a specific class of basis
functions as predictors in place of the original data. The MARS basis function
transform makes it possible to selectively blank out certain regions of a variable by
making them zero, allowing MARS to focus on specific sub-regions of the data.
MARS excels at finding optimal variable transformations and interactions, as well as
the complex data structure that often hides in high-dimensional data [3].
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Fig. 1. MARS data estimation using spines and knots (actual data on the right)

Given the number of predictors in most data mining applications, it is infeasible to
approximate the function y=f(x) in a generalization of splines by summarizing y in
each distinct region of x. Even if we could assume that each predictor x had only two
distinct regions, a database with just 35 predictors would contain more than 34 billion
regions. Given that neither the number of regions nor the knot locations can be
specified a priori, a procedure is needed that accomplishes the following:

e judicious selection of which regions to look at and their boundaries, and
e judicious determination of how many intervals are needed for each variable

A successful method of region selection will need to be adaptive to the characteristics
of the data. Such a solution will probably reject quite a few variables (accomplishing



MARS: Still an Alien Planet in Soft Computing? 237

variable selection) and will take into account only a few variables at a time (also
reducing the number of regions). Even if the method selects 30 variables for the
model, it will not look at all 30 simultaneously. Such simplification is accomplished
by a decision tree (e.g., at a single node, only ancestor splits are being considered;
thus, at a depth of six levels in the tree, only six variables are being used to define the
node).

MARS Smoothing, Splines, Knots Selection, and Basis Functions

A key concept underlying the spline is the knot. A knot marks the end of one region
of data and the beginning of another. Thus, the knot is where the behavior of the
function changes. Between knots, the model could be global (e.g., linear regression).
In a classical spline, the knots are predetermined and evenly spaced, whereas in
MARS, the knots are determined by a search procedure. Only as many knots as
needed are included in a MARS model. If a straight line is a good fit, there will be no
interior knots. In MARS, however, there is always at least one "pseudo" knot that
corresponds to the smallest observed value of the predictor. Figure 1 depicts a MARS
spline with three knots.
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Fig. 2. Variations of basis functions for ¢ = 10 to 80

Finding the one best knot in a simple regression is a straightforward search problem:
simply examine a large number of potential knots and choose the one with the best R%.
However, finding the best pair of knots requires far more computation, and finding
the best set of knots when the actual number needed is unknown is an even more
challenging task. MARS finds the location and number of needed knots in a
forward/backward stepwise fashion. A model which is clearly overfit with too many
knots is generated first, then, those knots that contribute least to the overall fit are
removed. Thus, the forward knot selection will include many incorrect knot locations,
but these erroneous knots will eventually, be deleted from the model in the backwards
pruning step (although this is not guaranteed).

Thinking in terms of knot selection works very well to illustrate splines in one
dimension; however, this context is unwieldy for working with a large number of



238 A. Abraham and D. Steinberg

variables simultaneously. Both concise notation and easy to manipulate programming
expressions are required. It is also not clear how to construct or represent interactions
using knot locations. In MARS, Basis Functions (BFs) are the machinery used for
generalizing the search for knots. BFs are a set of functions used to represent the
information contained in one or more variables. Much like principal components, BFs
essentially re-express the relationship of the predictor variables with the target
variable. The hockey stick BF, the core building block of the MARS model is often
applied to a single variable multiple times. The hockey stick function maps variable X
to new variable X*:

max (0, X -¢), or
max (0, ¢ - X)

where X* is set to O for all values of X up to some threshold value ¢ and X* is equal to
X for all values of X greater than c. (Actually X* is equal to the amount by which X
exceeds threshold c¢). The second form generates a mirror image of the first. Figure 2
illustrates the variation in BFs for changes of ¢ values (in steps of 10) for predictor
variable X, ranging from O to 100.

MARS generates basis functions by searching in a stepwise manner. It starts with just
a constant in the model and then begins the search for a variable-knot combination
that improves the model the most (or, alternatively, worsens the model the least). The
improvement is measured in part by the change in Mean Squared Error (MSE).
Adding a basis function always reduces the MSE. MARS searches for a pair of
hockey stick basis functions, the primary and mirror image, even though only one
might be linearly independent of the other terms. This search is then repeated, with
MARS searching for the best variable to add given the basis functions already in the
model. The brute search process theoretically continues until every possible basis
function has been added to the model.

In practice, the user specifies an upper limit for the number of knots to be generated in
the forward stage. The limit should be large enough to ensure that the true model can
be captured. A good rule of thumb for determining the minimum number is three to
four times the number of basis functions in the optimal model. This limit may have to
be set by trial and error.

4. Artificial Neural Network (ANN)

ANN is an information-processing paradigm inspired by the way the densely
interconnected, parallel structure of the mammalian brain processes information.
Learning in biological systems involves adjustments to the synaptic connections that
exist between the neurons [7]. Learning typically occurs by example through training,
where the training algorithm iteratively adjusts the connection weights (synapses).
These connection weights store the knowledge necessary to solve specific problems.
A typical three-layer feedforward neural network is illustrated in Figure 3.
Backpropagation (BP) is one of the most famous training algorithms for multilayer
perceptrons. BP is a gradient descent technique to minimize the error E for a
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particular training pattern. For adjusting the weight (w;; ) from the i-th input unit to

the j-th output, in the batched mode variant the descent is based on the gradient [1E

E
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) for the total training set:
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The gradient gives the direction of error E. The parameters £ and « are the learning

rate and momentum respectively.
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Fig. 3. Typical three-layer feedforward network architecture
5. Neuro-fuzzy (NF) System

We define a NF [6] system as a combination of ANN and Fuzzy Inference System
(FIS) [9] in such a way that neural network learning algorithms are used to determine
the parameters of FIS. As shown in Table 1, to a large extent, the drawbacks
pertaining to these two approaches seem largely complementary.

Table 1. Complementary features of ANN and FIS
ANN ' FIS

Black box Interpretable

Learning from scratch Making use of linguistic knowledge

In our simulation, we used ANFIS: Adaptive Network Based Fuzzy Inference System
[5] as shown in Figure 5, which implements a Takagi Sugeno Kang (TSK) fuzzy
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inference system (Figure 4) in which the conclusion of a fuzzy rule is constituted by a
weighted linear combination of the crisp inputs rather than a fuzzy set.
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Fig. 4. TSK type fuzzy inference system
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Fig. 5. Architecture of the ANFIS

Architecture of ANFIS and the functionality of each layer is as follows:
Layer-1 Every node in this layer has a node function

1 — _
Oi O ;Ai(x),forl—l,Z
or

ol 0 g5 (y) . fori=34,....
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0! is the membership grade of a fuzzy set A ( = A;, A,, B, or B,), specifies the

degree to which the given input x (or y) satisfies the quantifier A. Usually the node
function can be any parameterized function.. A gaussian membership function is
specified by two parameters ¢ (membership function center) and ¢ (membership
function width)

2
1
X u c
guassian (X, ¢, 0) = e 2000
Parameters in this layer are referred to premise parameters.

Layer-2 Every node in this layer multiplies the incoming signals and sends the
product out. Each node output represents the firing strength of a rule.

2 - - .
Oi Howy U ;Al.(x) _Bl.(y),l 0 12....
In general any T-norm operators that perform fuzzy AND can be used as the node

function in this layer.

Layer-3 Every i-th node in this layer calculates the ratio of the i-th rule’s firing
strength to the sum of all rules firing strength.

o nw 1 —Y— 2.,
wy L wo

Layer-4 Every node i in this layer has a node function
4 — —
O; Uwifi Uwilpix gy ll),

where w_l is the output of layer3, and [lvi, qi riDis the parameter set. Parameters in
this layer will be referred to as consequent parameters.

Layer-5 The single node in this layer labeled 2 computes the overall output as the

summation of all incoming signals: 0]5 [ Overall output [ [0 wif; [J DuLlfl
i ivi

ANFIS makes use of a mixture of backpropagation to learn the premise parameters
and least mean square estimation to determine the consequent parameters. A step in
the learning procedure has two parts: In the first part the input patterns are
propagated, and the optimal conclusion parameters are estimated by an iterative least
mean square procedure, while the antecedent parameters (membership functions) are
assumed to be fixed for the current cycle through the training set. In the second part
the patterns are propagated again, and in this epoch, backpropagation is used to
modify the antecedent parameters, while the conclusion parameters remain fixed. This
procedure is then iterated.
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Fig. 6. 3D view of Gas furnace time series training data (I/O relationship)

Experimental Setup Using Soft Computing Models and MARS

Gas Furnace Time Series Data: This time series was used to predict the CO,
(carbon dioxide) concentration y(t+1) [10]. In a gas furnace system, air and methane
are combined to form a mixture of gases containing CO,. Air fed into the gas furnace
is kept constant, while the methane feed rate u(7) can be varied in any desired manner.
After that, the resulting CO, concentration y(t) is measured in the exhaust gases at the
outlet of the furnace. Data is represented as [u(?), y(¢), y(t+1)]. The time series
consists of 292 pairs of observation and 50% was used for training and remaining for
testing purposes. Figure 6 shows the complexity of the input / output relationship in
two different angles. Our experiments were carried out on a PII, 450MHz Machine
and the codes were executed using MATLAB and C++.

ANN training

We used a feedforward neural network with 1 hidden layer consisting of 24
neurons (tanh-sigmoidal node transfer function). The training was terminated
after 6000 epochs. Initial learning rate was set at 0.05.

ANFIS training

In the ANFIS network, we used 4 Gaussian membership functions for each input
parameter variable. Sixteen rules were learned based on the training data. The
training was terminated after 60 epochs.

MARS

We used 5 basis functions and selected 1 as the setting of minimum observation
between knots. To obtain the best possible prediction results (lowest RMSE), we
sacrificed the speed (minimum completion time).
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Fig. 7. Gas furnace series prediction using soft computing models and MARS

e Performance and results achieved

Figure 7 illustrates the test results achieved for the gas furnace time series. Table
2 summarizes the comparative performances of the different soft computing
models and MARS in terms of performance time, training error and testing error
obtained.

Table 2. Results showing performance comparison between MARS and soft computing models
for gas furnace series prediction

Model Root Mean Squared Error BFlops | Epochs Training time
Training Set | Test Set (seconds)
MARS 0.0185 0.0413 - - 1
ANN 0.0565 0.0897 0.5802 6000 250
NF 0.0137 0.0570 0.0005 60 40

*Computational load in billion flops (BFlops)

7. Conclusion

In this paper we have investigated the performance of MARS and compared the
performance with artificial neural networks and neuro-fuzzy systems (ANFIS), which
are well-established function approximators. Our experiments to predict the
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benchmark time series reveal the efficiency of MARS. In terms of both RMSE (test
set) and performance time, MARS outperformed the soft computing models
considered.

MARS can no longer be considered an alien planet considering the performance
depicted in Table 2. It will be interesting to study the robustness of MARS compared
to neural networks and neuro-fuzzy systems. Choosing suitable parameters for a
MARS network is more or less a trial and error approach where optimal results will
depend on the selection of parameters. Selection of optimal parameters may be
formulated as an evolutionary search [8] to make MARS fully adaptable and optimal
according to the problem.
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