Performance and Irregular Behavior of Adaptive
Task Partitioning *

Elise de Doncker, Rodger Zanny, Karlis Kaugars, and Laurentiu Cucos

Department of Computer Science
Western Michigan University
Kalamazoo, MI 49008, USA

{elise,rrzanny,kkaugars,lcucos }@cs.wmich.edu

Abstract. We study the effect of irregular function behavior and dy-
namic task partitioning on the parallel performance of the adaptive mul-
tivariate integration algorithm currently incorporated in PARINT. In view
of the implicit hot spots in the computations, load balancing is essential
to maintain parallel efficiency. A convergence model is given for a class
of singular functions. Results are included for the computation of the
cross section of a particle interaction. The adaptive meshes produced by
PARINT for these problems are represented using the PARVIS visualiza-
tion tool.

1 Introduction

We focus on the irregularity of adaptive multivariate integration, resulting from
irregular function behavior as well as the dynamic nature of the adaptive subdi-
vision process. The underlying problem is to obtain an approximation @ to the
multivariate integral I = [, f(x)dx and an absolute error bound E, such that
E=|I-Q| < E, <e=max{eq,er|I|}, for given absolute and relative error
tolerances €, and ¢,., respectively. The integration domain D is a d—dimensional
hyper-rectangular region.

For cases where the number of dimensions is relatively low, our software pack-
age PARINT (available at [2]) provides a parallel adaptive subdivision algorithm.
Particularly for functions with singularities, necessarily leading to hot-spots in
the computations, load balancing is crucial in keeping high error subregions dis-
tributed over the processors, and henceforth avoiding work anomalies caused by
unnecessary subdivisions or idle times. We examine the effects of irregular be-
havior on algorithm convergence and scalability (using an isoefficiency model)
for several types of centralized and decentralized load balancing. Furthermore
we use a tool, PARVIS [3], for visualizing these effects by displaying properties
of the domain decomposition performed during the computations.

In Section Bl we describe the adaptive algorithm; load balancing strategies
are outlined in Section Bl In Section Hl we examine scalability and algorithm
convergence. Results (in Section) include execution times and the visualization
of region subdivision patterns for an application in particle physics.

* Supported in part by the National Science Foundation under grant ACR-0000442

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 118-{127 2001.
© Springer-Verlag Berlin Heidelberg 2001

Performance and Irregular Behavior of Adaptive Task Partitioning 119

2 Adaptive Task Partitioning

Adaptive task partitioning is a general technique for dynamically subdividing
a problem domain into smaller pieces, automatically focusing on the more diffi-
cult parts of the domain. Adaptive task partitioning is used here in the context of
region partitioning for multivariate integration. The ideas also apply to problems
in areas such as adaptive optimization, branch and bound strategies, progressive
(hierarchical) radiosity for image rendering, adaptive mesh refinement and finite
element strategies.

The adaptive algorithm for numerical integration tends to concentrate the
integration points in areas of the domain D where the integrand is the least
well-behaved. The bulk of the computational work is in the calculation of the
function f at the integration points. The granularity of the problem primarily
depends on the time needed to evaluate f and on the dimension; an expensive
f generally results in a problem of large granularity, and in higher dimensions
we evaluate more points per integration rule (i.e., per subregion or task).

Initially the integration rules are applied over the entire region, and the region
is placed on a priority queue ordered by the estimated error of the regions. The
regular loop iteration consists of: removing the region with the highest estimated
error from the priority queue; splitting this region in half; evaluating the two new
subregions; updating the overall result and error estimate; and inserting the new
subregions into the queue. This process continues until the estimated error drops
below the user’s desired threshold, or, a user-specified limit on the number of
function evaluations is reached.

In the PARINT distributed, asynchronous implementation of the adaptive par-
titioning algorithm, all processes act as integration worker processes; one process
additionally assumes the role of integration controller. The initial region is di-
vided up among the workers. Each executes the adaptive integration algorithm
on their own portion of the initial region, largely independent of the other work-
ers, while maintaining a local priority queue of regions (stored as a heap). All
workers periodically send updates of their results to the controller; in turn, the
controller provides the workers with updated values of the estimated tolerated
error 7, calculated as 7 = max{e,,e,|Q|}. A worker becomes idle if the ratio
RpE of its total local error to the total tolerated error 7 falls below its fraction
Ry of the total volume (of the original domain D). We define the error ratio
as the ratio Rg/Ry; thus a worker becomes idle when its error ratio reaches 1.
To maintain efficiency, a dynamic load balancing technique is employed to move
work to the idle workers, and to generally keep the load distributed over all the
workers.

A useful model for analyzing the behavior of an adaptive partitioning algo-
rithm is the region subdivision tree. Each node in the tree corresponds to a region
that was evaluated during the execution of the algorithm. The root represents
the initial region D; each other node has a parent node corresponding to the
region from which it was formed and either zero or two children. The leaf nodes
correspond to the regions on the priority queue(s) at the end of execution, and
the number of nodes in the tree is equivalent to the number of region evaluations

120 E. de Doncker et al.

during execution [1]. Note that, as any adaptive partitioning algorithm will have
methods for prioritizing, selecting, and partitioning work, the notion of a domain
subdivision tree exists in any problem domain for which some sort of dynamic,
progressive partitioning can be utilized.

3 Load Balancing

3.1 Scheduler Based (SB)

Consider a receiver initiated, scheduler based technique where the controller acts
as the scheduler and keeps an IDLE-STATUS list of the workers.

The controller is kept aware of the idle status of the workers via the workers’
update messages. When a worker i informs the controller via a regular update
message of its non-idle status, the controller selects (in a round-robin fashion)
an idle worker j and sends i a message containing the id of j. Worker ¢ will then
send a work message to j containing either new work or an indication that it has
no work available. Worker j receives this message and either resumes working
or informs the controller that it is still idle. This strategy was implemented in
PARINT1.0.

Apart from the disadvantage of a possible bottleneck at the controller, the
amount of load balancing performed by the implementation appears limited for
certain test cases. In order to tailor the strategy to increase the amount of
load balancing, we consider sending larger amounts of work in individual load
balancing steps. The controller could furthermore select multiple idle workers
to be matched up with busy workers within a single load balancing step. As
described subsequently, we will also investigate decentralizations of the strategy.

3.2 Controller Info, Decentralized (CID)

In addition to the updated tolerated error 7, in this technique the controller
provides the workers with its current IDLE-STATUS information. Once workers
have this information, they can perform load balancing independently of the
controller.

An idle worker j issues a work request to a busy worker i (selected round-
robin from the list). Upon receiving the request, i either sends j work, while
setting the status of j locally to non-idle, or informs j that it has no work
available. In the latter case, j will change its status of ¢ to idle. If as a result of
the load balancing step, j transfers from idle to non-idle status, it informs the
controller (in a regular update message), and the latter updates its IDLE-STATUS
list. Note this is a receiver-initiated strategy.

3.3 Random Polling (RP) / Allocation (RA)

RP and RA are potentially simpler decentralized strategies. In RA, a busy
processor periodically sends off work to a randomly selected processor. This

Performance and Irregular Behavior of Adaptive Task Partitioning 121

results in a random distributing of the load and has the advantage that each
load balancing step requires only one communication. As a disadvantage, no idle-
status information of the target processor is used. The latter could be remedied
by providing the workers with an IDLE-STATUS list (resulting in a sender-initiated
version of CID), however, this may result in a large number of collisions of work
allocations to potentially few idle targets.

In RP, an idle processor requests work from a randomly selected processor.
Compared to RA, two communications are needed per load balancing step. How-
ever, the first is a small request message. Compared to RA, work gets transferred
only if warranted according to the target processor’s (non-)idle status.

4 Simple Scalability Analysis

We will use the isoefficiency model of [4] to address scalability issues, particularly
with respect to load balancing. In this model, all of the load W is initially in one
processor; the analysis focuses on the work needed to distribute the load over
all the processors. Note that, for our application, this may be thought of as the
type of situation in the case of a point singularity, where one processor contains
the singularity.

For our application, the work W can be characterized as an initial amount
of error of the problem (or total estimated error in the adaptive algorithm). In a
load balancing step, a fraction of a worker’s error w will be transferred to another
worker. The model assumes that when work w is partitioned in two parts, Yw
and (1 — ¢)w, there is a constant & > 0 (which may be arbitrarily small) such
that 1 —a > 1 > a; a < 0.5, so that the load balancing step leaves both workers
with a portion bounded by (1 — a)w.

With respect to receiver-initiated load balancing, let V(p) denote the number
of requests needed for each worker to receive at least one request, as in [4]. If
we suppose that the total error would remain constant, then as a result of load
balancing, the amount of error at any processor does not exceed (1 —)W after
V(p) load balancing steps; this is used in [4] to estimate the number of steps
needed to attain a certain threshold, since under the given assumptions the work
at any processor does not exceed ¢ after (log o W)V (p) steps. Note that this
only models spreading out the work, while the total work remains constant.

In order to allow taking numerical convergence into account, let us assume
that during a load balancing cycle (of V' (p) steps), the total error has decreased
by an amount of SW as a result of improved approximations. For the sake of
simplicity consider that we can treat the effect of load balancing separately from
that of the corresponding integration computations, by first replacing W by
W — W = (1 — B)W, then as a result of load balancing the amount of error
at any processor does not exceed (1 — «)(1 —)W at the end of the cycle. This
characterizes a load balancing phase (until the load has settled) in the course of
which the total load decreases. Realistically speaking, it is fair to assume that
the global error will decrease monotonically (although not always accurate, for
example when a narrow peak is “discovered”).

122 E. de Doncker et al.

Our current implementations do not send a fraction of the error in a load
balancing step, but rather one or more regions (which account for a certain
amount of error). In the case of a local singularity, the affected processor’s net
decrease in error greatly depends on whether it sends off its singular region.
Furthermore our scheme is driven more by the attempt to supply idle or nearly
idle processors with new work, rather than achieving a balanced load.

In the next subsection we study the numerical rate of convergence for the
case of a singular function class.

4.1 Algorithm Convergence Ratio for Radial Singularities

Consider an integrand function f, which is homogeneous of degree p around the
origin [5], characterized by the property f,(Ax) = A\ f,(x) (for A > 0 and all

x). For example, f(x) = r? where r represents the radius 1/2521 % is of this

form, as well as f(x) = (Z;l:l x;)?. Note that an integrand function of the form
f(x) = rPg(x), where g(x) is a smooth function, can be handled via a Taylor
expansion of g(x) around the origin.

Let us focus on the representative function f(x) = r”, integrated over the
d—dimensional unit hypercube. Our objective is to estimate the factor (1 —)
by which the error decreases due to algorithm convergence. We assume that the
error is dominated by that of the region containing the singularity at the origin.
Since our adaptive algorithm uses region bisection, it takes at least d bisections
to decrease the size of the subregion containing the origin by a factor of two
in each coordinate direction. We will refer to this sequence of subdivisions as a
stage.

The error associated with this type of region is given by

* ‘
E(k,p):/2 / rPdx — Y wirf,
0 0 i=1

where ¢ is the number of points in the cubature formula and r; is the value of r
at the i-th cubature point. Then E(k + 1, p) = 2-@+P) E(k, p).

Recall that a load balancing step corresponds to an update, which is done
every n, subdivisions (n, is a parameter in our implementation). On the average
O(p) load balancing steps are needed for each processor to do an update, i.e.,
get a chance to either be put on the IDLE-STATUS list as idle, or act as a donor.
Note that ~ p updates corresponds to ~ np bisections. At the processor with
the singularity this corresponds to ~ =# stages (assuming that it continually
subdivides toward the singularity). Since each stage changes the error by a factor
of 54 and there are ~ ™ stages, we estimate 1 — 3 ~ (ﬁ)u

Note that d + p > 0 for the integral to exist. For a very singular problem,
d 4+ p may only be slightly larger than zero, thus zd%p only slightly smaller than
1 (i.e., there will be slow convergence).

Performance and Irregular Behavior of Adaptive Task Partitioning 123

4.2 Isoefficiency of SB

In our SB strategy, the work requests are driven by the worker updates (at the
controller). An update from a busy processor will result in an idle processor re-
questing work from the busy processor (if there are idle processors). So, ignoring
communication delays, we consider an update by a processor, done when there
are idle processors, as a request for work to that processor (via the controller).
This assumes that the computation time in between a worker’s successive up-
dates are large compared to the communication times. If we assume that each
worker sends an update after a fixed number (ny) of subdivisions (and the system
is considered homogeneous), the update from a specific worker will be received
within O(p) updates on the average. Therefore, V(p) = O(p).

Under the above conditions, this scheme behaves like the DONOR based SB
and GRR in [4]. Consequently, the isoefficiencies for communication and con-
tention on a network of workstations (Now) are O(plogp) and O(p?logp), re-
spectively (dominated by O(p?logp)).

4.3 Isoefficiency of CID

Without the IDLE-STATUS list at each worker, this scheme would be as Asyn-
chronous Round Robin (ARR) in [4]). However, with (current) versions of the
IDLE-STATUS list available at the workers, it inherits properties of SB, but avoid-
ing algorithm contention, and attempting to avoid network contention. Further
analysis is required to determine the isoefficiency of this load balancing tech-
nique.

4.4 TIsoefficiency of RP

The isoefficiencies for communication and network contention on a NOW
are known to be O(plog?p) and O(p?log?p), respectively (dominated by
O(p*log® p)).

5 PARVIS and Results

PARVIs [3] is an interactive graphical tool for analyzing region subdivision
trees for adaptive partitioning algorithms. Point singularities give rise to typical
subdivision structures which can be recognized using PARVIS, by displays of
the subdivision tree or projections of the subdivisions on coordinate planes. The
data within the nodes of the tree further indicate the location of the singularity.
Non-localized singularities generally span large portions of the tree, but can
often be detected in the region view projections on the coordinate planes. Error
ratios between a node and its descendants provide information on asymptotic
error behavior and possible conformity to established error models [I].

Figure [shows the subdivision tree and the projection of the subdivisions on
the xg, x1—plane for the function

1
(25 + 2% + 23 + 23)* (2§ + 27 + (1 — 22)2 + (1 — 23)?)#

flx) =

b

124 E. de Doncker et al.

with a = .9, f = .7, over the 4—dimensional unit cube, to a relative error toler-
ance of 1076, The two pruned subtrees and the clustered subdivisions correspond
to the integrand singularities at the origin and at (0,0, 1,1).

PARVIS can color the tree nodes by the range of the error estimate. With
regard to performance characteristics, nodes can also be colored according to
the time of generation or by the processor that owns the region. The latter gives
information on the efficacy of load balancing.

ERgi
P::L

+ H

i
I
I

=

Fig.1. Left: Subdivision tree for f(x); Right: Region projection on xg, x1—plane

When the adaptive partitioning technique encounters a narrow peak in a
function, the estimated error can momentarily increase as the peak is discovered,
before being reduced again as the peak is adequately subdivided. We tested this
behavior by creating a parameterized integrand function, where the parameters
can be varied randomly to define a “family” of similar integrand functions. Each
function is over a certain dimension, and contains a number of random peaks,
each of some varying height and width. The function definition is

n—1 d—1 1

Fx) = (D (g = i) + —)

i=0 =0 Hi

where n is the number of peaks and d is the dimension. The values ~;, p;, and,
p; determine the height and “width” of peak i, and the j** coordinate of the i*"
peak is given by p; ;. Figure @ shows the log of the error ratio as a function of
the current number of iterations. The fluctuations illustrate the temporary error
increases incurred as the algorithm subdivides around the peak.

Figure Bl displays the subregions produced when one of these functions is in-
tegrated; the function parameters used specify 100 peaks for d = 2. The clusters
of smaller subdivisions indicate the locations of the peaks. Figure [gives the
obtained speedup vs. the number of processors, from the adaptive PARINT al-
gorithm using our SB load balancing scheme. These runs were done on Athena,
our Beowulf cluster, which consists of 32 (800MHz) Athlon processors connected
via a fast ethernet switch.

Performance and Irregular Behavior of Adaptive Task Partitioning 125

Sequential Log Error Ratio Curve; fcn50

6.00

5.50

5.00
4.50

4.00 \‘
3.50
3.00

2.50 \\L* t

boo Ty |

1.50 gt 111

Log Error Ratio

1.00 Ly

0.50

0.00

[1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

Fig. 2. Estimated error ratio log curve

Fig. 3. Plot of subregions produced during integration of parameterized peak function

126 E. de Doncker et al.

Total Time Speedup; Peaked Function

30
28 { | —e— Function: #50
26 1 Ideal

22 /
20 4

18 ead

16 M—o’(

14 T

12 —

8 /

Time Speedup

o N A~ O

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Processors

Fig. 4. Speedup graph for 2D parameterized peak function

We now consider a high energy physics problem [6]) concerned with the
et e” — u' p~ v interaction (1 electron and 1 positron collide to produce
2 muons and a photon), which leads to a 4-dimensional integration problem to
calculate the cross section of the interaction. Adding radiative correction leads to
a 6-dimensional problem. The problem dimension is increased further by adding
more particles.

The function has boundary singularities, as is apparent from concentrations
of region subdivisions along the boundaries of the integration domain. For the
4-dimensional problem, Figure Bl (left) depicts a projection of the subregions
onto the x1, zo—plane, which also reveals a ridged integrand behavior occurring
along the diagonals of that plane as well as along the region boundaries. Figure Bl
(right) shows a time graph vs. the number of processors, from the adaptive
PARINT algorithm using our SB load balancing scheme, for a requested relative
accuracy of 0.05 (which results in fairly small runs).

From this figure it appears that the run-time does not further improve above
10 processors. More detailed investigation has revealed that work redundancy is
a major cause of this behavior.

6 Conclusions

We studied the effect of irregular function behavior and dynamic task parti-
tioning on the parallel performance of an adaptive multivariate integration algo-
rithm. In view of the singular/peaked behavior of the integrands, cross sections
for collisions such as et e~ — p* p~ « in high energy physics are very com-
putational intensive and require supercomputing to obtain reasonable accuracy.

Performance and Irregular Behavior of Adaptive Task Partitioning 127

| Run-Time v.s. #processors
=

800

a
T

700 |

600 [

500 |

A

400 - \w

run-time (seconds)

300

200 |

100 L L L L)
0 5 10 15 20 25

number of processors

Fig. 5. Left: Region projection on z1,x2—plane; Right: Time graph on Athena

Adaptive subdivision methods hold promise on distributed computing systems,
providing that the load generated by the singularities can be balanced effectively.
We use the adaptive subdivision technique in PARINT to manage the singulari-
ties, in combination with the PARVIS visualization tool for a graphical integrand
analysis.

Further work is needed for a detailed analysis of the interactions of particular
aspects of the parallel adaptive strategy (e.g., of the balancing method) with
the singular problem behavior.

Acknowledgement. The authors thank Denis Perret-Gallix (CERN) (CNRS
Bureau Director, Japan) for his cooperation.

References

1. E. de Doncker and A. Gupta. Multivariate integration on hypercubic and mesh
networks. Parallel Computing, 24:1223-1244, 1998.

2. Elise de Doncker, Ajay Gupta, Alan Genz, and Rodger Zanny.
http://www.cs.wmich.edu/ parint, PARINT Web Site.

3. K. Kaugars, E. de Doncker, and R. Zanny. PARVIS: Visualizing distributed dynamic
partitioning algorithms. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’00), pages 1215
1221, 2000.

4. V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable load balancing techniques
for parallel computers. Journal of Parallel and Distributed Computing, 22(1):60-79,
1994.

5. J. N. Lyness. Applications of extrapolation techniques to multidimensional quadra-
ture of some integrand functions with a singularity. Journal of Computational
Physics, 20:346-364, 1976.

6. K. Tobimatsu and S. Kawabata. Multi-dimensional integration routine DICE. Tech-
nical Report 85, Kogakuin University, 1998.

	Performance and Irregular Behavior of Adaptive Task Partitioning
	Introduction
	Adaptive Task Partitioning
	Load Balancing
	Scheduler Based ({sc SB})
	Controller Info, Decentralized ({sc CID})
	Random Polling ({sc RP}) / Allocation ({sc RA})

	Simple Scalability Analysis
	Algorithm Convergence Ratio for Radial Singularities
	Isoefficiency of {sc SB}
	Isoefficiency of {sc CID}
	Isoefficiency of {sc RP}

	{sc ParVis} and Results
	Conclusions
	References

