
Expanding Pseudorandom Functions; or:
From Known-Plaintext Security
to Chosen-Plaintext Security

Ivan Damg̊ard and Jesper Buus Nielsen

BRICS� Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Arhus C, Denmark
{ivan,buus}@brics.dk

Abstract. Given any weak pseudorandom function, we present a gen-
eral and efficient technique transforming such a function to a new weak
pseudorandom function with an arbitrary length output. This implies,
among other things, an encryption mode for block ciphers. The mode is
as efficient as known (and widely used) encryption modes as CBC mode
and counter (CTR) mode, but is provably secure against chosen-plaintext
attack (CPA) already if the underlying symmetric cipher is secure against
known-plaintext attack (KPA). We prove that CBC, CTR and Jutla’s
integrity aware modes do not have this property. In particular, we prove
that when using a KPA secure block cipher, then: CBC mode is KPA
secure, but need not be CPA secure, Jutla’s modes need not be CPA
secure, and CTR mode need not be even KPA secure. The analysis is
done in a concrete security framework.

1 Introduction

A block cipher that is secure against known plaintext attacks (KPA) is a natural
example of a weak pseudorandom function: as long as the key is unknown, and an
adversary is given a set of random plaintext blocks and corresponding ciphertext
blocks (of length, say, k bits each), he cannot distinguish the encryption function
from a random function mapping k bits to k bits – or at least he can only do
so with a small advantage. In general, a weak pseudorandom function is just
a function F that maps a key K and input string x to a string y, we write
y ← F (K, x). It does not have to be invertible and y does not have to be the
same length as x. Weak pseudorandomness means that even if an adversary is
given (x1, FK(x1)), . . . , (xt, FK(xt)), for uniformly random K and xi, he cannot
distinguish this from (x1, R(x1)), . . . , (xt, R(xt)) where R is a random function.
Pseudorandomness means that distinguishing remains hard, even if the adversary
gets to pick the xi’s. An example of a weak pseudorandom function can be
� Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

M. Yung (Ed.): CRYPTO 2002, LNCS 2442, pp. 449–464, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

450 Ivan Damg̊ard and Jesper Buus Nielsen

derived in a natural way from the Decisional Diffie-Hellman Assumption (DDH).
Here there are some public parameters, a large prime P and an element g of large
prime order q such that the DDH assumption holds in the group generated by g.
A random element α ∈ Zq functions as the secret key, the domain is the group
generated by g, and the function maps h to hα mod P .

In this paper, we consider the case where we are given any weak pseudo-
random function F with output length k. We present a general construction
transforming F into a weak pseudorandom function G for which GK(x) is nk
bits long and where n is any positive integer. The construction is efficient in the
sense that to evaluate G, we need exactly n evaluations of F . We believe this is
the best we can expect, since if nk random looking bits could be generated with
fewer evaluations of F , it seems the construction would have to do some sort
of pseudorandom generation “on its own”. Whereas this construction requires
key size logarithmic is n, we give a way to modify the construction such that
variable output length can be handled using a constant amount of key material.

Note that G may also be used as a pseudorandom generator that expands K
and a randomly chosen input into a random looking string of nk bits. If we apply
our construction to the above function based on the DDH assumption, we obtain
a pseudorandom generator that outputs k bits for each exponentiation done,
where k is the security parameter. This is slightly faster than the generator that
follows from Naor and Reingolds DDH-based pseudorandom function [NR97].

Our construction also implies an encryption mode for block ciphers that
is secure against chosen plaintext attacks (CPA) already if the block cipher
is KPA secure. We call this Pseudorandom Tree (PRT) mode. While an en-
cryption scheme with such properties could be easily constructed using generic
methods [BM84,GL89], the result would be very inefficient. In contrast, to en-
crypt/decrypt a message, PRT requires exactly the same number of block encryp-
tions as the well known CBC and CTR modes and produces ciphertexts of the
same lengths as does CBC/CTR. The only overhead compared to CBC/CTR
is logarithmic in the length of the message, namely a key-schedule requiring
2 log2(n)) key expansions and block encryptions for a message containing n
blocks. This can be precomputed, so that the actual throughput can be ex-
actly the same as in the standard modes. Note that CBC and CTR also provide
CPA security, but here we have to assume that the block cipher is also CPA
secure. As in CTR mode, our mode allows easy random access decryption: To
decrypt an arbitrary block in an n block message, we need at most log2(n) block
encryptions. Also as in CTR mode, we only use the block cipher in the encryp-
tion direction, even when we decrypt – in implementations, this can sometimes
save code or chip area.

From a theoretical point of view, it is of course always better to prove security
under the weakest possible assumption. But we believe the result is also useful
from a more practical point of view: even though a block cipher was designed
to be CPA secure, there may always be surprises and hence relying only on the
KPA security of the block cipher gives extra protection. Moreover, we prove in
the concrete security framework a bound on how CPA security of PRT mode

Expanding Pseudorandom Functions 451

relates to KPA security of the block cipher, i.e., if we assume the block cipher can
be broken with at most a certain advantage under a KPA, we obtain a bound on
the advantage with which PRT can be broken under a CPA. This bound behaves
similarly to the bound that relates CPA security of CBC to CPA security of the
block cipher. Now, considering that it may well be reasonable to assume that
the block cipher performs better against KPA than against CPA, we see that
we may get a better concrete bound on the security of PRT than we can get for
CBC.

We mentioned that PRT introduces a slight overhead compared to using CBC
or CTR. One might wonder whether it is possible to obtain the “amplification”
from KPA to CPA with no overhead at all. As a partial answer, in Section 4,
we analyse CBC mode, CTR mode and Jutla’s integrity aware modes [Jut01]
and show that none of these schemes can guarantee CPA security unless the
underlying block cipher is CPA secure itself. Indeed, we prove that when using
a KPA secure block cipher, CBC mode and Jutla’s modes are KPA secure, but
need not be CPA secure and counter mode need not even be KPA secure. The
same simple techniques applied there can be applied to most other known modes
of operations to demonstrate that they also do not guarantee CPA security unless
the underlying block cipher is CPA secure itself (to our knowledge they can be
applied to all efficient such modes). We therefore leave it as an interesting open
question to investigate whether one can amplify from KPA to CPA and make
do with a constant amount of overhead.

Finally, we discuss the problem of achieving chosen ciphertext (CCA) security
(in addition to CPA). While we can argue that this is possible based only on a
KPA secure block cipher, some overhead is introduced, and we do not know how
to provide CCA security as efficiently as the CPA secure construction.

Related Work. The first work to relate the security of modes of operations to
the underlying block cipher is [BDJR97]. In [BDJR97] notions of CPA security
and CCA security of block ciphers and symmetric encryption are developed in
a concrete security framework, and the security of three well-known encryption
modes, CBC mode and CTR mode (in its deterministic and probabilistic vari-
ants), are analysed. In [BDJR97] the modes of operations are analysed under
the assumption that the underlying block cipher is CPA secure. In Section 2
we review their framework and make a straightforward extension to cover KPA
security.

The first, and to our knowledge only, other paper to consider security enhanc-
ing modes of operations is [HN00]. What is investigated there is the possibility
to generate a key stream given a one-way function, after which encryption is
just Xoring the message and key stream. To be able to base their construc-
tion on block-ciphers, they consider the function f : K �→ EK(P) mapping a
key to the encryption of a fixed plaintext under that key and assume that it is
one-way. This assumption is of course well-motivated: If the encryption function
should be secure in any reasonable sense, one should not be able to find the key
given a plaintext/ciphertext pair. However, this assumption alone is not enough:
The scheme, called Key Feedback Mode (KFB) is a variant of the technique

452 Ivan Damg̊ard and Jesper Buus Nielsen

of [BM84,Lev85,GL89], and works by iterating the one-way function, i.e., we
compute f(K), f(f(K)), . . . and extract some number of bits from each value
computed. For this to work, one must assume that f stays one-way even when
iterated, i.e., from f i(K) it is hard to find f i−1(K). We believe that this assump-
tion is closely related to our assumption on KPA security, but the assumptions
do not seem to be directly comparable. In any case, KFB is significantly less ef-
ficient than PRT: in KFB, a key expansion is needed for every block encryption
performed, and each block encryption can only contribute significantly less than
k bits to the output stream (where k is block size) – from an asymptotic point
of view, only a logarithmic number of bits can be produced. In contrast, PRT
can use all k bits produced by each block encryption, and needs a logarithmic
number of key expansions.

An Intuitive Introduction to the Main Idea. Assume that we have access
to a length-preserving and weak pseudorandom function F·(·), where FK could
be, e.g., the encryption function of a KPA secure block cipher. From this we can
build a length doubling weak pseudorandom function GK by letting the key be a
pair of keys K = (K1, K2) for F , letting the input domain be that of F , and let-
ting the output be GK1,K2(R) = FK1(R)‖FK2(R). We can repeat this operation
as follows. Let C1‖C2 = GK1,K2(R) and assume we have another key (K ′

1, K
′
2)

for G. We can then compute C3‖C4 = GK′
1,K′

2
(C1) and C5‖C6 = GK′

1,K′
2
(C2)

and let the output (generated from input R) be C1‖C2‖C3‖C4‖C5‖C6. We then
have a function six-doubling its input using six applications of F . Continuing
this we will soon have a pseudorandom function with a very large output length.
Using essentially the fact that a new key is used for each ’level’ in this con-
struction, it can be shown to be weak pseudorandom if F has this property.
This construction can also handle variable-length output, if we can find a secure
way to produce produce a key for each level in the construction (to an arbitrary
depth) from a constant number of keys for F . How to do this using only weak
pseudorandomness of F is shown in detail in Section 3. Finally, to use this con-
struction to encrypt a message M , we can simply choose R at random, and let
the ciphertext be R, GK(R)⊕M , where G is the function we construct from the
encryption function of the block cipher. Clearly, a CPA attack on this scheme
will allow the adversary to get the value of GK on random inputs – and noth-
ing more than that. Hence weak pseudorandomness of G is sufficient for CPA
security.

2 Notions of Security

The following definitions are straightforward extensions of definitions from
[BDJR97,Des00] to consider also KPA security. Of the four notions of security
considered in [BDJR97] we have chosen real-or-random (ROR) indistinguishabil-
ity. A symmetric encryption scheme SE = (K, E ,D) consists of three randomized
algorithms. The key generation algorithm K returns a key K; we write K ← K.
The encryption algorithm E takes as input the key K and a plaintext M and

Expanding Pseudorandom Functions 453

returns a ciphertext C; we write C ← EK(M). The decryption algorithm D takes
as input the key K and a string C and returns a unique plaintext M or ⊥; we
write x← DK(C). We require that DK(EK(M)) = M for all M ∈ {0, 1}∗.
Definition 1 (ROR-KPA, ROR-CPA). Let SE = (K, E ,D) be a symmetric
encryption scheme. Let b ∈ {0, 1}. Let A be an adversary that has access to an
oracle. Let RK,b be the oracle which on input l ∈N , if b = 1, outputs (x, EK(x))
for uniformly random x ∈ {0, 1}l, and, if b = 0, outputs (x, EK(r)) for uniformly
random x, r ∈ {0, 1}l. Let OK,b be the oracle which on input x ∈ {0, 1}∗, if b = 1,
outputs EK(x), and, if b = 0, outputs EK(r) for uniformly random r of the same
length as x. Now consider the following experiments:

proc Expror-kpa- b
SE,A ≡

K ← K
d← ARK,b

return d

proc Expror-cpa- b
SE,A ≡

K ← K
d← AOK,b

return d

We define the advantage of the adversary via

Advror-kpa
SE,A = Pr[Expror-kpa- 1

SE,A = 1]− Pr[Expror-kpa- 0
SE,A = 1]

Advror-cpa
SE,A = Pr[Expror-cpa- 1

SE,A = 1]− Pr[Expror-cpa- 0
SE,A = 1] .

We define the advantage function of the scheme as follows. For any integers
t, q, µ,

Advror-kpa
SE (t, q, µ) = max

A

{
Advror-kpa

SE,A

}

Advror-cpa
SE (t, q, µ) = max

A

{
Advror-cpa

SE,A

}

where the maximum is over all A with “time complexity” t, making at most q
queries to the oracle, these totaling at most µ bits.

By the “time complexity” we mean the worst case total running time of
the experiment with b = 1, plus the size of the code of the adversary, in some
fixed RAM model of computation. We stress that the total execution time of the
experiment includes the time of all operations in the experiment, including the
time for key generation and the encryptions done by the oracle. For a discussion
of this time complexity, see [Des00].

A function family with key-space K, input-length l, and output-length L is a
map F : K × {0, 1}l → {0, 1}L. For each key K ∈ K we define a map FK :
{0, 1}l → {0, 1}L by FK(x) = F (K, x). We write f

R← F for the operation
K

R← K; f ← FK . We call F a family of permutations if for all K ∈ K,
FK is a permutation. We use Randl→L to denote the family of all functions
{0, 1}l → {0, 1}L.

If a random function from the function family looks like a random function
from Randl→L, we call the family a pseudorandom function family. Below we

454 Ivan Damg̊ard and Jesper Buus Nielsen

define this notion formally for KPAs. The definitions for CPAs and CCAs can
be found in [BDJR97], but will not be used in the present paper.

A variable-length output function family with key-space K and input-length l
is a map F : K × N × {0, 1}l → {0, 1}∗. For each key K ∈ K we define a
map FK : N × {0, 1}l → {0, 1}∗ by FK(L, x) = F (K, L, x). We require that
|F (K, L, x)| = L for all inputs. We use VO-Randl to denote the probabilistic
function generated as follows: On input (L, r) check if a string or is defined, if
not define it to be the empty string. Then check whether or has length at least
L, if not append to or a uniformly random string from {0, 1}L−|or|. Then output
the L first bits of or. We define what it means for at variable-length output
function family to be KPA secure.

Definition 2 (VO-PRF-KPA). Let F be a variable-length output function
family with input-length l. Let D be a distinguisher that has access to an oracle.
Let Rf be the oracle which on input L ∈ N generates a uniformly random
r ∈ {0, 1}l and outputs (r, f(L, r)). Now consider the following experiments:

proc Expvo-prf-kpa- 0
F,D ≡

d← DRVO-Randl

return d

proc Expvo-prf-kpa- 1
F,D ≡

f
R← F

d← DRf

return d

We define the advantage of the distinguisher via

Advvo-prf-kpa
F,D = Pr[Expvo-prf-kpa- 1

F,D = 1]− Pr[Expvo-prf-kpa- 0
F,D = 1] .

We define the advantage function of the function family as follows. For any t, q, l,

Advvo-prf-kpa
F (t, q, µ) = max

D

{
Advvo-prf-kpa

F,D

}
.

where the maximum is over all D with time complexity t, making at most q
queries to the oracle, these totaling at most µ bits..

The notion of KPA security of a fixed output function family with input-
length l can easily be derived from the above definition, giving rise to the notions
Advprf-kpa

F,D and Advprf-kpa
F (t, q) – we skip the explicit mentioning of µ as it is

given by q.

3 PRT Mode

PRT mode is a construction of a VO-PRF-KPA secure variable-length output
function family from a PRF-KPA secure function family. The encryption will
then be done using the variable-length output function family F as

VO-PRF-ENC[F]K(M) = (r, FK(|M |, r)⊕M) ,

where r is uniformly random in {0, 1}l. The following theorem relates the ROR-
CPA security of VO-PRF-ENC[F] to the VO-PRF-KPA security of F .

Expanding Pseudorandom Functions 455

Theorem 1. Suppose F is a variable-length output function family. If F is VO-
PRF-KPA secure, then VO-PRF-ENC[F] is ROR-CPA secure1. Specifically, for
any t, q, µ,

Advror-cpa
VO-PRF-ENC[F](t, q, µ) ≤ Advvo-prf-kpa

F (t, q, µ) +
q(q − 1)

2l+1 .

Proof: We prove the specific bound. Consider an ROR-CPA distinguisher D
expecting access to an oracle OK,b for the VO-PRF-ENC[F] scheme. We con-
struct a distinguisher D having access to a VO-PRF-KPA oracle Rf for the
variable-length output function family F as follows. The distinguisher D runs
the code of D. Each time D request an encryption of message M , request a pair
(r, R), where r is uniformly random in {0, 1}l and R = f(|M |, r). Then return
c = (r, M ⊕R). When D returns with some value d, return d.

If b = 1, then f is a random function from F and the values c are distributed
as values from OK,1. If on the other hand b = 0, then f is VO-Randl, and in that
case the values c are distributed as values from OK,0, as long as there are no
collisions among the r-values returned by Rf . Since the r values are uniformly
random l-bit values and q of them are drawn, the probability of collision are
well-known to be upper bounded by q(q − 1)/2l+1, which proves the theorem.

�

Security Preserving Operations on KPA Secure PRFs. Before presenting
the actual construction, we present some operations on PRFs which preserves
KPA security. Assume that we are given PRFs

F : {0, 1}m1 → {0, 1}n1 , G : {0, 1}m2 → {0, 1}n2

with key-length k1 resp. k2. For operations only involving F , we use the notation
m = m1, n = n1, k = k1. Our first operation makes the output domain larger. It
gives the function family

F→β : {0, 1}m → {0, 1}βn, F→β
K1,...,Kβ

(R) = FK1(R)‖ · · · ‖FKβ
(R) ,

where we generate a key for F→β by generating β independent keys K1, . . . , Kβ

for F . Our second operation is similar, but has shorter key-length. Assume that
k ≤ m, so that an output-block can be used as key, and consider the following
function family
1 Actually, we have not assigned a meaning to the claim that VO-PRF-ENC[F] is

ROR-CPA secure if F is VO-PRF-KPA secure, as we have no definition of security: In
this paper we consider a concrete security framework without a security parameter.
If, however, we introduced a security parameter k, then in the asymptotic security
framework, all of t, q, µ, l, and L would be polynomial in k and typically l = Θ(k).
We would then define security by requiring that the advantage of all probabilistic
polynomial time (in k) adversaries is negligible (in k). The claim would then follow
from the specific bound on Advror-cpa

VO-PRF-ENC[F](t, q, µ) given by the theorem. In the
following we will use the term “secure” with this meaning.

456 Ivan Damg̊ard and Jesper Buus Nielsen

F→β : {0, 1}m → {0, 1}βn, F→β
K,R1

(R2) = FK1(R2)‖ · · · ‖FKβ
(R2) ,

where K1 = K and inductively Ki+1 = FKi
(R1). Now consider the operation

making both the input and the output domain larger

Fα→α : {0, 1}αm → {0, 1}αn, Fα→α
K (R) = FK(R1)‖ · · · ‖FK(Rα) ,

where R = (R1, . . . , Rα). For completeness we name the following operation

Fα→αβ : {0, 1}αm → {0, 1}αβn, Fα→β = (F→β)α→α .

Finally assume that n1 ≥ m2 and consider the following composition operation

G◦F : {0, 1}m1 → {0, 1}n1+n2 , (G◦F)K1,K2(R) = FK1(R)‖GK2(FK1(R)) .

We give a short example of the use of these operations. Assume that we
are given any KPA secure PRF F : {0, 1}m → {0, 1}m. From this family, we
can using the → 2 operation and construct a KPA secure PRF G : {0, 1}m →
{0, 1}2m. From G we can then construct the KPA secure PRF G2→2 : {0, 1}2m →
{0, 1}4m, and can using the composition operation construct the KPA secure
PRF G2→2 ◦ G : {0, 1}m → {0, 1}6m. This can be iterated. In Fig. 1 the PRF
G8→8 ◦ G4→4 ◦ G2→2 ◦ G : {0, 1}m → {0, 1}30m is depicted. This construction
works even if F is not length preserving. We can always define G by computing
F→β for appropriate choice of β and use the first 2m bits of the output.

S0

S1

S2

S3

GK1

GK2 GK2

GK3GK3GK3

GK4GK4GK4GK4GK4

GK3

GK4GK4GK4

S4

Fig. 1. The structure of the PRF G8→8 ◦ G4→4 ◦ G2→2 ◦ G. Note that the output
of the function is all levels except the root level, which is the input. The key K =
K1‖K2‖K3‖K4 consists of four keys for the PRF G.

Expanding Pseudorandom Functions 457

Lemma 1. If F is PRF-KPA secure, then F→β and F→β are PRF-KPA secure.
Specifically, for any t, q,

Advprf-kpa
F →β (t, q) ≤ βAdvprf-kpa

F (t, q)

Advprf-kpa
F →β

(t, q) ≤ βAdvprf-kpa
F (t, q + 1) +

q

2m
.

Proof: We do the proof for F→β . The proof for F→β is equivalent.
Let S = S1‖ · · · ‖Sβ be a random function from {0, 1}m to {0, 1}βn. Let

K be a random key for F , let R1 be uniformly random in {0, 1}m and for
i = 1, . . . , β + 1 let

Hi
S,K,R1

(R2) = S1(R2)‖ · · · ‖Si−1(R2)‖FKi
(R2)‖ · · · ‖FKβ

(R2) ,

where Ki = K and inductively Kj+1 = FKj
(R1). Let D be any distinguisher

running in time t using q queries. We want to prove that D cannot distinguish
F→β and S with advantage better than βAdvprf-kpa

F (t, q + 1) + q
2m . Since the

event that R1 occurs as one of the uniformly random R2 values is at most
q

2m it is enough to prove that D cannot distinguish F→β and S with advan-
tage better than βAdvprf-kpa

F (t, q + 1) when this event does not occur. So, since

H1
S,K,R1

= F→β
K,R1

(R2) and Hβ+1
S,K,R1

= S it is in turn enough to prove that for
i = 1, . . . , β, D cannot distinguish Hi

S,K,R1
from Hi+1

S,K,R1
with better advantage

than Advprf-kpa
F (t, q + 1).

To prove this assume we have access to an oracle Rf where f is a random
function from F or a random function {0, 1}m → {0, 1}n. We simulate an oracle
to D as follows: First request a generation from Rf and obtain (R1, T1). Let
Ki+1 = T1 and inductively Kj+1 = FKj

(R1). Further more maintain a random
function S = S1‖ · · · ‖Si−1 using a dictionary. When D request a generation,
request a generation from Rf to obtain (R2, T2), and return to D the value
(R2, HS,f,R1(R2)), where

HS,f,R1(R2) = S1(R2)‖ · · · ‖Si−1(R2)‖T2‖FKi+1(R2)‖ · · · ‖FKβ
(R2) .

If f = FK , then using the renaming Ki = K we have that Ki+1 = FKi(R1)
and T2(R2) = FKi(R2) and thus HS,f,R1(R2) = Hi

S,K,R1
(R2). If f is a random

function R : {0, 1}m → {0, 1}n, then Ki+1 = R(R1) and

HS,f,R1(R2) = S1(R2)‖ · · · ‖Si−1(R2)‖R(R2)‖FKi+1(R2)‖ · · · ‖FKβ
(R2)

= Hi+1
S,Ki+1,R1

(R2) .

Since Ki+1 is uniformly random and independent of all the other values as long
as no R2 equals R1, the theorem follows. �
Lemma 2. If F : {0, 1}m → {0, 1}n is PRF-KPA secure, then Fα→α is PRF-
KPA secure. Specifically, for any t, q,

Advprf-kpa
F α→α (t, q) ≤ Advprf-kpa

F (t, αq) +
qα(qα− 1)

2m+1 .

458 Ivan Damg̊ard and Jesper Buus Nielsen

Proof: Assume that D can distinguish D1 = (R1, . . . , Rα, FK(R1), . . . , FK(Rα))
from D0 = (R1, . . . , Rα, S1, . . . , Sα) with probability δ when the Si are uniformly
random values. We use D to distinguish values of the form (Ri, Ti) where Ti =
FK(Ri) if b = 1 and Ti = Si if b = 1. When D asks for a value, get α values
(R1, T1), . . . , (Rα, Tα) and hand V = (R1, · · · , Rα, T1, · · · , Tα) to D. If b = 1,
then V = D1 and if b = 0, then V = D0 unless there are identical Ri values – if
there are identical Ri values, the corresponding Si values will also be identical,
which would typically not occur if S = S1‖ · · · ‖Sα was a uniformly random αn-
bit-string. Since the Ri values are m-bit values and there is generated a total of
qα of them, the probability of collisions is bounded by qα(qα−1)

2m+1 , which proves
the theorem. �

Lemma 3. If F and G are PRF-KPA secure, then G ◦ F is PRF-KPA secure.
Specifically, for any t, q,

Advprf-kpa
G◦F (t, q) ≤ Advprf-kpa

F (t, q) + Advprf-kpa
G (t, q) +

q(q − 1)
2m1+1 .

Proof: We must show that one cannot distinguish D0 and D1, where D1 =
(R, FK1(R), GK2(FK1(R))), where R is random, and D0 = (R, R1(R), R2(R)),
where R is random and R1 and R2 are random functions. We consider two
hybrids: H1 = (R, R1(R), GK2(R1(R))), where R is random and R1 is a random
function and H2 = (R, R1(R), R2(R1(R))), where R is random and R1 and R2
are random functions. It is easy to see that H2 = D0 unless identical R1 values
occur. To prove the lemma it is therefore enough to prove that D1 cannot be
distinguished from H1 with better advantage than Advprf-kpa

F (t, q), and that H1

cannot be distinguished from H2 with better advantage than Advprf-kpa
G (t, q).

Both claims follows using trivial reductions. �

The PRT Family. As the basic primitive in our PRT construction, we will
need a KPA secure PRF G : {0, 1}m → {0, 1}n with key length k, where n ≥
max(2m, k). Using Lemmas 1 and 2 such a function can be constructed from
any KPA secure PRF F with k-bit keys.

If we use Rijndael with 128 bit keys and 128-bit blocks (call this function
family Rin), we can let G = Rin→2. Then G has 256-bit keys, 128-bit input, and
256-bit output. Keys will simply consist of two Rijndael keys, and the function
will be Rin→2

K1,K2
(R) = RinK1(R)‖RinK2(R). If DES is used, then we can let

G = DES→2. Then G has 112-bit keys, 64-bit input, and 128-bit output. Since
for all families which one would use in practice, the loss of security in going
from F to G is minimal, we will in the following express the security of our
construction in that of G.

Starting with a random input S0 for G and keys K = (K1, . . . , Kd), we
can compute a pseudorandom output of length exponential in d by computing
(G2d−1→2d−1 ◦ · · · ◦G2→2 ◦G)K(S0). However, we are after a VO-PRF which the
construction will not provide for any fixed number of key. This is the reason for

Expanding Pseudorandom Functions 459

proc PRTK(R, l) ≡
T0 = K[1..k]
R1 = K[(k + 1)..(k + m)]
R2 = K[(k + m + 1)..(k + 2m)]
S0 = R
O = ε
i = 1
while |O| < l do

Ki = (GTi−1(R1))[1..k]
Ti = (GTi−1(R2))[1..k]
Si+1 = ε
j = 1
while j ≤ |Si−1| −m + 1 do

Si = Si‖GKi(Si−1[j..(j + m− 1)])
j = j + m od

O = O‖Si

i = i + 1 od
return O[1..l]

Fig. 2. The VO-PRF PRTK(R, l) obtained from a PRF G : {0, 1}m → {0, 1}n with
key-length k where n ≥ max(2m, k). The domains of the inputs are K ∈ {0, 1}k+2m

and R ∈ {0, 1}m. The first two lines of the outer loop constitutes the key scheduling
and can be preprocessed to prepare the functions GK1 , . . . , GKl to some appropriate
depth.

the second requirement that the output of G is at least as long as the key. This
allows to schedule an arbitrary number of keys from one key K using Lemma
1: Pick R ∈ {0, 1}2m at random and to schedule d keys, compute G→d(R). This
gives a random string of length dn ≥ dk and allows to define d random keys.
The entire construction is given in more detail in Fig. 2 using pseudo-code.

Theorem 2. If G : {0, 1}m → {0, 1}n is PRF-KPA secure, then PRT[G] is
VO-PRF-KPA secure. Specifically, for any t, q, µ,

Advprf-kpa
PRT[G](t, q, µ) ≤ d(Advprf-kpa

G (t, ql) + Advprf-kpa
G (t, q + 1)) +

ql(ql − 1) + q

2m

where L is the maximal length of a query in bits, l = �L/m
, and d = log2(l+1)
is the maximal depth of any PRT used. Using L ≤ µ this easily translates into a
bound depending only on t, q and µ.

Proof: A pseudorandom tree of depth d is used to generate between 2d− 1 and
2d+1 − 2 blocks. Thus the maximal depth of the pseudorandom trees used in
each evaluation is upper bounded by d.

Note that a pseudorandom tree, PRT[F]K(R, l), of depth d can be computed
by first computing K = G→d

K[1..(k+m)](K[(k + m + 1)..(k + 2m)]) and then com-

puting O = (◦di=1G
2i−1→2i−1

)K(R) and outputting O[1..l].

460 Ivan Damg̊ard and Jesper Buus Nielsen

If K was uniformly random, then by the above observations and Lemmas 2
and 3

Advprf-kpa
PRT[F](t, q, µ) ≤

d−1∑
i=0

Advprf-kpa
G2i→2i (t, q) +

d−2∑
i=0

(q(q − 1)
2m+1

≤
d−1∑
i=0

(
Advprf-kpa

G (t, 2iq) +
q2i(q2i − 1)

2m+1 +
q(q − 1)
2m+1

)

≤
d−1∑
i=0

Advprf-kpa
G (t, 2iq) +

q2d−1(q2d−1 − 1)
2m

.

The theorem then follows using that 2d−1 ≤ ql and using Lemma 1 in a hybrids
argument. �

The theorem tells us that even if G was a perfect PRF, i.e. Advprf-kpa
G (t, q) =

0, the PRF that we build out of it will not necessarily be perfect. Intuitively it
is easy to see that this imperfectness is not by failure of our analysis. It is
the birthday attack, to which almost all encryption modes must surrender. The
intuition is that if at some level in a pseudorandom tree as that in Fig. 1 a
collision occurs, then because the next levels are build using functions, sub-trees
under collisions will be identical. On the other hand, identical sub-tree will occur
very seldom if each bit in the tree is chosen uniformly at random and independent
of the other bits. A careful analysis of the probability of find such collisions will
allow to prove that the bound in the theorem is fairly sharp.

To see why it is essential to the construction that different keys are used at
each level, we refer the reader to Theorem 4 and the discussion following it.

4 Analysis and Comparison
of CBC, CTR, Jutla’s Modes, and PRT

We will now compare the security of our new encryption mode to that of the well-
known encryption modes CBC and CTR, and also the integrity aware modes of
Jutla[Jut01] – he proposed two modes, namely IACBC and IAPM, both of which
provide both integrity and confidentiality – we will only consider confidentiality
in this section, however. We are going to prove the results given by the table
below, which gives the “maximal” security that holds in general for various
combinations of encryption and attack modes. For instance the entry CBC \
PRF-KPA being equal to ROR-KPA means that CBC-encryption using a KPA-
secure PRF family is ROR-KPA secure, and there exists a KPA-secure PRF
family G such that CBC[G] is not CPA-secure.

MODE \ATKimpl PRF-KPA PRF-CPA
CBC ROR-KPA ROR-CPA
CTR insecure ROR-CPA
Jutla ROR-KPA ROR-CPA
PRT ROR-CPA ROR-CPA

Expanding Pseudorandom Functions 461

The bottom row and the right-most column follows from known results from
[BDJR97,Jut01] and Section 3. We now prove the remaining claims in the fol-
lowing theorems. The CBC and CTR encryption modes are given in Fig. 3.

proc CBC[P]K(M) ≡
m← 	|M |/l

n← ml − |M |
r

R← {0, 1}n
M ←M‖r
c0

R← {0, 1}l
for i = 0 to m− 1 do

ci+1 ← PK(M [il..(il + l − 1)]⊕ ci)
od
return (n, c0‖c1‖ . . . ‖cm)

proc CTR[F]K(M) ≡
m← 	|M |/L

n← |M | − (m− 1)L
r

R← {0, 1}l
for i = 1 to m do

ri ← FK(r + i mod 2l)
od
return (r, M ⊕ (r1‖ . . . ‖rm−1‖rm[1..n]))

Fig. 3. CBC[P] mode and CTR[F] mode.

Jutla’s IACBC mode is essentially CBC encryption, but where the sequence
of blocks coming from the CBC encryption is Xor’ed by a sequence of pseudo-
random blocks generated using an independent key. The IAPM mode first Xor’s
the sequence of plaintext blocks by a pseudorandom sequence of blocks, then
encrypts in ECB mode, and finally Xor’s the result by the same pseudorandom
sequence. Both IACBC and IAPM also generate a checksum that receives special
treatment, but this is not relevant for our discussion.

Theorem 3. Suppose P is a permutation family with length l. If P is PRF-
KPA secure, then CBC[P], IACBC[P], and IAPM[P] are ROR-KPA secure.
Specifically, for any t, q,

Advror-kpa
CBC[P](t, q, µ),Advror-kpa

IACBC[P](t, q, µ),Advror-kpa
IAPM[P](t, q, µ)

≤ Advprf-kpa
P (t, ν) +

ν(ν − 1)
2l+1 ,

where ν = �µ/l�+ q.

Proof: Consider an ROR-KPA distinguisher D expecting access to an oracle
RK,b for the CBC[P] scheme. We construct a distinguisher D having access to a
PRF-KPA oracle Rf for the permutation family P as follows. The distinguisher
D runs the code of D. Each time D requests an encryption of length m′, request
m = �m′/l
 pairs (xi, f(xi)) from Rf . Then generate a random l-bit string
c0 and for i = 1, . . . , m let ci = f(xi) and let pi = xi ⊕ ci−1. Then output
(M, C) = (p1‖ . . . ‖pm, (ml −m′, c0‖c1‖ . . . ‖cm)).

In all cases M is uniformly random and C is distributed exactly as a CBC
encryption of p using f . So, if f = PK is a random permutation from P , then
(M, C) is distributed exactly as values from RK,1, and if f is a random function,

462 Ivan Damg̊ard and Jesper Buus Nielsen

then C is uniformly random and independent of M , unless M has collisions
among the blocks, which proves the theorem for CBC.

Since IACBC is clearly no weaker than CBC under any notion of security the
result also covers IACBC, and the result for IAPM follows from Lemma 2. �
Theorem 4. For any permutation family P with length l, there exists a permu-
tation family P such that P is PRF-KPA secure if P is PRF-KPA secure, but
neither CBC[P] nor IACBC[P] are ROR-CPA secure.

Proof: Given some permutation family P , consider the permutation family P
given by PK(x1, x2) = (P−1

K (x2), PK(x1)). A random evaluation of P just con-
sists of two random evaluations of P , and so P is PRF-KPA secure if P is
PRF-KPA secure. To see that P is not PRF-CPA secure in CBC mode, ask for
an encryption of the all-zero-string of length 4l and use that permutations from
P are their own inverses.

This can be generalized to IACBC mode: In one version of this mode, the
pseudorandom sequence S that is Xor’ed to the result of CBC encryption is
of form si = e(i)W , where e() is a public injective map from the integers mod
2l−1 to GF (2l)∗, l is the block length of the cipher, and W is a pseudorandomly
generated block. The multiplication is in GF (2l). Now, it is easy to see that if
we request the IACBC encryption of a message with 4 zero-blocks, the first and
third block output from the CBC part will be equal. Hence, the Xor of the
corresponding blocks in the IACBC encryption will equal (e(1) + e(3))W . Since
e() is public and e(1) + e(3) �= 0 we can compute W and hence all of S, Xor
with the ciphertext and obtain the output from the CBC part. Now we are in
a situation equivalent to what we had for CBC. Similar arguments apply to the
other suggested variants of IACBC. �

Note that the function P constructed in the above proof demonstrates that it
is essential to the PRT construction that different keys are used at each level. The
function family P is KPA-PRF secure, but if it was used in a PRT construction
with the same key at each level, the tree would be scattered with repeating
blocks.

Theorem 5. For any permutation family P with length l, there exists a permu-
tation family P such that P is PRF-KPA secure if P is PRF-KPA secure, but
CTR[P] is not ROR-KPA secure.

Proof: Given some permutation family P , consider the permutation family P
given by PK(x1, x2) = (PK(x1), PK(x2)). By Lemma 2, P is PRF-KPA se-
cure if P is PRF-KPA secure. To see that P is not PRF-KPA secure in CTR
mode, note that if a permutation from P is evaluated on two consecutive ele-
ments x, x + 1, where x = x1x2, then the result will typically be of the form
(PK(x1), PK(x2)), (PK(x1), PK(x2 + 1)), which will not look random. �
Theorem 6. There exists a function family P such that P is PRF-KPA secure,
but IAPM [P] is not ROR-CPA secure.

Proof: In IAPM mode, a ciphertext block is of form si⊕PK(pi⊕si) where si is a
pseudorandom block and pi is the i’th plaintext block. Suppose that si = e(i)W

Expanding Pseudorandom Functions 463

for a random block W as described in the proof of Theorem 4. Then si, sj for
i �= j are related by sj = e(j)e(i)−1si. Since e() ranges over all non-zero values in
GF (2l), we can choose i, j such that α := e(j)e(i)−1 is a generator of GF (2l)∗.
Now, a function PK in our family is constructed as follows: we will think of it as
a mapping from GF (2l) to itself. We choose two random values as the images
of 0 and 1. For every element αm, where 1 ≤ m < 2l − 1 is odd we choose
a random value as image, whereas we set PK(αm+1) = αPK(αm). Now, P is
PRF-KPA secure, because a set of random inputs has to be exponentially large
in l in order to contain both of αm, αm+1 for odd m with significant probability.
But in a CPA on IAPM, an attacker can choose all pi = 0, which means that PK

receives the sequence of si’s as inputs. If W is random, then with probability 1/2,
si = αm for an odd m. Hence sj = αm+1, and so we have for ciphertext blocks
Ci and Cj that Cj = sj + PK(sj) = αsi + αPK(si) = α(si + PK(si)) = αCi.
This correlation allows to distinguish from a random encryption. Other ways to
generate the si’s can be handled in a similar way. �

5 CCA Security

Having constructed CPA secure encryption, we can construct CCA secure en-
cryption using a number of known techniques. One can e.g. do with a KPA
secure VO-PRF G : {0, 1}k → {0, 1}∗ acting as key-stream generator and a
CPA secure variable-length input PRF (VI-PRF) MAC : {0, 1}∗ → {0, 1}k act-
ing as a MAC. Given a message M one generates a uniformly random input
R for G and computes C = R‖(GK1(|M |, R) ⊕M) and lets the encryption be
EK1,K2(M) = (C, MACK2(C)). This scheme can be proven CCA secure using
standard techniques, see e.g. [Des00].

We can construct a CPA secure VI-PRF from a KPA secure PRF using
known techniques. From any KPA secure PRF F one can build a pseudorandom
generator by mapping key K and input R for the PRF to FK(R). Using the
technique in Section 3 the PRF can be modified to give this pseudorandom
generator expansion factor two. Using the technique in [GGM86] this then allows
to build a CPA secure VI-PRF using in the order of l applications of F per
evaluation, where l is the length of the message.

To do a CCA secure encryption using PRT mode, one will then need l/k +
log2(l/k) applications of F for the key-stream, where k is the block-size, and l
applications of F for the MACing. This is too large a overhead for the solution
to be practical and leaves the open problem of finding an efficient CCA secure
encryption scheme relying only on the KPA security of the underlying block
cipher.

If one is willing to make the extra assumption that a collision resistant hash-
function H : {0, 1}∗ → {0, 1}h is given the above scheme can be made practical.
By first hashing the message and then MACing the hash, the result is still a CPA
secure VI-PRF. However, now the price for encrypting is (neglecting the price
for hashing) l/k + log2(l/k) + h applications of F , where h in current practice
could be 160.

464 Ivan Damg̊ard and Jesper Buus Nielsen

6 Conclusion

We have shown how to efficiently enlarge the output-length of a weak pseudoran-
dom function and how to use this for constructing CPA secure encryption from
any weak pseudorandom function without essential loss of efficiency compared
to known modes as CBC and CTR. We showed that also CCA secure encryp-
tion can be based on a KPA secure PRF, and opened the problem of finding an
efficient CCA secure encryption scheme based on a KPA secure PRF.

References

BDJR97. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science [IEE97].

BM84. Manuel Blum and Silvio Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13(4):850–
864, November 1984.

Des00. Anand Desai. New paradigms for constructing symmetric encryption
schemes secure against chosen-ciphertext attack. In Mihir Bellare, edi-
tor, Advances in Cryptology - Crypto 2000, pages 394–412, Berlin, 2000.
Springer-Verlag. Lecture Notes in Computer Science Volume 1880.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, 1986.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty First Annual ACM Symposium on
Theory of Computing, pages 25–32, Seattle, Washington, 15–17 May 1989.

HN00. Johan H̊astad and Mats Näslund. Key feedback mode: a keystream gener-
ator with provable security. 2000.

IEE97. IEEE. 38th Annual Symposium on Foundations of Computer Science, Mi-
ami Beach, FL, 19–22 October 1997.

Jut01. Charanjit S. Jutla. Encryption modes with almost free message integrity.
In Advances in Cryptology - EuroCrypt 2001, pages 529–544, Berlin, 2001.
Springer-Verlag. Lecture Notes in Computer Science Volume 2045.

Lev85. Leonid A. Levin. One-way functions and pseudorandom generators. In Pro-
ceedings of the Seventeenth Annual ACM Symposium on Theory of Com-
puting, pages 363–365, Providence, Rhode Island, 6–8 May 1985.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions (extended abstract). In 38th Annual Symposium
on Foundations of Computer Science [IEE97], pages 458–467.

	1 Introduction
	2 Notions of Security
	3 PRT Mode
	4 Analysis and Comparison of CBC, CTR, Jutla's Modes, and PRT
	5 CCA Security
	6 Conclusion
	References

