Shared Memory Parallelization
of Decision Tree Construction
Using a General Data Mining Middleware

*

Ruoming Jin and Gagan Agrawal

Department of Computer and Information Sciences
Ohio State University, Columbus, OH 43210
{jinr,agrawal}@cis.ohio-state.edu

1 Introduction

Decision tree construction is a very well studied problem in data mining, machine
learning, and statistics communities [3|2|[78]9]. The input to a decision tree
construction algorithm is a database of training records. Each record has several
attributes. An attribute whose underlying domain is totally ordered is called
a numerical attribute. Other attributes are called categorical attributes. One
particular attribute is called class label, and typically can hold only two values,
true and false. All other attributes are referred to as predictor attributes.

A number of algorithms for decision tree construction have been proposed.
In recent years, particular attention has been given to developing algorithms
that can process datasets that do not fit in main memory [BJ6]10]. Another
development in recent years has been the emergence of more scalable shared
memory parallel machines. To the best of our knowledge, there is only one effort
on shared memory parallelization of decision tree construction on disk-resident
datasets, which is by Zaki et al. [I1].

In our previous work, we have developed a middleware for parallelization of
data mining tasks on large SMP machines and clusters of SMPs. This middle-
ware was used for apriori association mining, k-means clustering, and k-nearest
neighbor classifiers [4J5]. In this paper, we demonstrate the use of the same mid-
dleware for decision tree construction. We particularly focus on parallelizing the
RainForest framework for scalable decision tree construction [3].

The rest of the paper is organized as follows. We describe the original Rain-
Forest framework in Section Pl We review our middleware and parallelization
techniques in Section Bl Our parallel algorithms and implementation are pre-
sented in Section @l Section [f] presents the experimental results. We conclude in
Section

* This research was supported by NSF CAREER award ACI-9733520, NSF grant
ACR-9982087, and NSF grant ACR-0130437.

B. Monien and R. Feldmann (Eds.): Euro-Par 2002, LNCS 2400, pp. 346354
© Springer-Verlag Berlin Heidelberg 2002

Shared Memory Parallelization of Decision Tree Construction 347

2 Decision Tree Construction
Using RainForest Framework

Though a large number of decision tree construction approaches have been used
in the past, they are common in an important way. The decision tree is con-
structed in a top-down, recursive fashion. Initially, all training records are asso-
ciated with the root of the tree. A criteria for splitting the root is chosen, and two
or more children of this node are created. The training records are partitioned
(physically or logically) between these children. This procedure is recursively ap-
plied, till either all training records associated with a node have the same class
label, or the number of training records associated with a node is below a certain
threshold. The different approaches for decision tree construction differ in the
way criteria for splitting a node is selected, and the data-structures required for
supporting the partitioning of the training sets.

RainForest is a general approach for scaling decision tree construction to
larger datasets, while also effectively exploiting the available main memory. This
is done by isolating an AVC (Attribute-Value, Classlabel) set for a given attribute
and a node being processed. The size of the AVC-set for a given node and
attribute is proportional to the number of distinct values of the attribute and
the number of distinct class labels. For example, in a SPRINT like approach,
AV C-set for a categorical attribute will simply be the count of occurrence of each
distinct value the attribute can take. Therefore, the AVC-set can be constructed
by taking one pass through the training records associated with the node.

A number of algorithms have been proposed within the RainForest framework
to split decision tree nodes at lower levels. In this paper, we will mainly focus
on parallelizing the RF-read algorithm. In the algorithm RF-read, the dataset
is never partitioned. The algorithm progresses level by level. In the first step,
AVC-group for the root node is built and a splitting criteria is selected. At any
of the lower levels, all nodes at that level are processed in a single pass if the
AVC-group for all the nodes fit in main memory. If not, multiple passes over the
input dataset are made to split nodes at the same level of the tree. Because the
training dataset is not partitioned, this can mean reading each record multiple
times for one level of the tree.

3 Middleware and Parallelization Techniques

Our middleware is based upon the observation that a number of popular al-
gorithms for association mining, clustering, and classification have a common
structure. Specifically, the core of the computing in these algorithms follows a
canonical loop that is shown in Figure[Il In our earlier work, we have argued how
various association mining, clustering and classification algorithms have such a
structure [5].
We next describe the parallelization techniques we use.

Full Replication: One simple way of avoiding race conditions is to replicate
the reduction object and create one copy for every thread. The copy for each

348 R. Jin and G. Agrawal

{* Outer Sequential Loop *}
While() {
{* Reduction Loop *}
Foreach(element e) {
(i, val) = Compute(e) ;
RObj(i) = Reduc(RObj(i),val) ;
}
}

Fig. 1. Canonical Loop Depicting the Structure of Common Data Mining Algorithms

thread needs to be initialized in the beginning. Each thread simply updates its
own copy, thus avoiding any race conditions. After the local reduction has been
performed using all the data items on a particular node, the updates made in
all the copies are merged.

We next describe the locking schemes.

Full Locking: One obvious solution to avoiding race conditions is to associate
one lock with every element in the reduction object. After processing a data item,
a thread needs to acquire the lock associated with the element in the reduction
object it needs to update.

This scheme has overheads of three types, doubled memory requirements,
increased number of cache misses due to accessing locks and elements, and false
sharing.

Optimized Full Locking: Optimized full locking scheme overcomes the the
large number of cache misses associated with full locking scheme by allocating
a reduction element and the corresponding lock in consecutive memory loca-
tions. This results in at most one cache miss when a reduction element and the
corresponding lock is accessed.

Cache-Sensitive Locking: The final technique we describe is cache-sensitive
locking. Consider a 64 byte cache block and a 4 byte reduction element. We use
a single lock for all reduction elements in the same cache block. Moreover, this
lock is allocated in the same cache block as the elements. So, each cache block
will have 1 lock and 15 reduction elements.

Cache-sensitive locking reduces each of three types of overhead associated
with full locking. This scheme results in lower memory requirements than the
full locking and optimized full locking schemes. Each update operation results
in at most one cache miss, as long as there is no contention between the threads.
The problem of false sharing is also reduced because there is only one lock per
cache block.

4 Parallel RainForest Algorithm and Implementation

In this section, we will present the algorithm and implementation details for par-
allelizing RF-read using our middleware. The algorithm is presented in Figure

Shared Memory Parallelization of Decision Tree Construction 349

The algorithm takes several passes over the input dataset D. The dataset is
organized as a set of chunks. During every pass, there are a number of nodes that
are active or belong to the set AQ. These are the nodes for which AVC-group is
built and splitting criteria is selected.

This processing is performed over three consecutive loops. In the first loop,
the chunks in the dataset are read. For each training record or tuple in each chunk
that is read, we determine the node at the current level to which it belongs. Then,
we check if the node belongs to the set AQ. If so, we increment the elements in
the AVC-group of the node.

The second loop finds the best splitting criteria for each of the active nodes,
and creates the children. Before that, however, it must check if a stop condition
holds for this node, and therefore, it need not be partitioned. For the nodes that
are partitioned, no physical rewriting of data needs to be done. Instead, just
the tree should be updated, so that future invocations to classify point to the
appropriate children. The nodes that have been split are removed from the set
AQ and the newly created children are added to the set Q.

At the end of the second loop, the set AQ is empty and the set @) contains
the nodes that still need to be processed. The third loop determines the set of
the nodes that will be processed in the next phase. We iterate over the nodes in
the set @, remove a node from @ and move it to AQ. This is done till either no
more memory is available for AVC-groups, or @ is empty.

The last loop contains only a very small part of the overall computing. There-
fore, we focus on parallelizing the first and the second loop. Parallelization of
the second loop is straight-forward and discussed first.

A simple multi-threaded implementation is used for the second loop. There is
one thread per processor. This thread gets a node from the set AQ and processes
the corresponding AVC-group to find the best splitting criteria. The computing
done for each node is completely independent. The only synchronization required
is for getting a node from AQ to process. This is implemented by simple locking.

Next, we focus on the first loop. Note that this loop fits nicely with the
structure of the canonical loop we had shown in Figure [[] The set of AVC-
groups for all nodes that are currently active is the reduction object. As different
consumer threads try to update the same element in a AVC-set, race conditions
can arise. The elements of the reduction object that are updated after processing
a tuple cannot be determined without processing the tuple.

Therefore, the parallelization techniques we had presented in the last section
are applicable to parallelizing the first loop. Both memory overheads and locking
costs are important considerations in selecting the parallelization strategy. At
lower levels of the tree, the total size of the reduction object can be very large.
Therefore, memory overhead of the parallelization technique used is an important
consideration. Also, the updates to the elements of the reduction object are fine-
grained. After getting a lock associated with an element or a set of elements,
the only computing performed is incrementing one value. Therefore, locking
overheads can also be significant.

350 R. Jin and G. Agrawal

Next, we discuss the application of the techniques we have developed to
parallelization of the first loop. Recall that the memory requirements of the
three techniques are very different. If R is the size of reduction object, N is the
size of consumer threads, and L is the number of elements per cache line, the
memory requirement of full replication, optimized full locking and cache sensitive
locking are N x R, 2 x R, and % X R, respectively. This has an important
implication for our parallel algorithm. Choosing a technique with larger memory
requirements means that the set AQ will be smaller. In other words, a larger
number of passes over the dataset will be required.

An important property of the reduction object in RF-read is that updates to
each AVC-set are independent. Therefore, we can apply different parallelization
techniques to nodes at different levels, and for different attributes. Based upon
this observation, we developed a number of approaches for applying one or more
of the parallelization techniques we have. These approaches are, pure, horizontal,
vertical, and mized.

In the pure approach, the same parallelization approach is used for all AVC-
sets, i.e., for nodes at different levels and for both categorical and numerical
attributes.

The vertical approach is motivated by the fact that the sum of sizes of AVC-
groups for all nodes at a level is quite small at upper levels of the tree. Therefore,
full replication can be used for these levels without incurring the overhead of ad-
ditional passes. Moreover, because the total number of elements in the reduction
object is quite small at these levels, locking schemes can result in high overhead
of waiting for locks and coherence cache misses. Therefore, in the vertical ap-
proach, replication is used for the first few levels (typically between 3 to 5) in
the tree, and either optimized full locking or cache-sensitive locking is used at
lower levels.

In determining the memory overheads, the cost of waiting for locks, and
coherence cache misses, one important consideration is the number of distinct
values of an attribute. If the number of the distinct values of an attribute is
small, the corresponding AVC-set is small. Therefore, the memory overhead in
replicating such AVC-sets may not be a significant consideration. At the same
time, because the number of elements is small, the cost of waiting for locks
and coherence cache misses can be significant. Note that typically, categorical
attributes have a small number of distinct values and numerical attributes can
have a large number of distinct values in a training set.

Therefore, in the horizontal approach, full replication is used for attributes
with small number of distinct values, and one of the locking schemes is used for
attributed with a large number of distinct values. For any attribute, the same
technique is used at all levels of the tree.

Finally, the mixed strategy combines the two approaches. Here, full replica-
tion is used for all attributes at the first few levels, and for attributes with small
number of distinct values at the lower levels. One of the locking schemes is used
for the attributes with a large number of distinct values at lower levels of the
tree.

Shared Memory Parallelization of Decision Tree Construction 351

5 Experimental Results

We used a Sun Fire 6800. Each processor in this machine is a 64 bit, 750 MHz Sun
UltraSparc III. Each processor has a 64 KB L1 cache and a 8 MB L2 cache. The
total main memory available is 24 GB. The Sun Fireplane interconnect provides
a bandwidth of 9.6 GB per second. We experimented with up to 8 consumer
threads on this machine.

The dataset we used for our experiments was generated using a tool described
by Agrawal et al. [I]. The dataset is nearly 1.3 GB, with 32 million records in
the training set. Each record has 9 attributes, of which 3 are categorical and
other 6 are numerical. Every record belongs to 1 of 2 classes.

In Section @l we had described pure, vertical, horizontal, and mized ap-
proaches for using one or more of the parallelization techniques we support in
the middleware. Based upon these, a total of 9 different versions of our parallel
implementation were created. Obviously, there are three pure versions, corre-
sponding to the use of full replication (fr), optimized full locking (ofl) and
cache sensitive locking (csl). Optimized full locking can be combined with full
replication using vertical, horizontal, and mixed approach, resulting in three
versions. Similarly, cache sensitive locking can be combined with full replica-
tion using vertical, horizontal, and mixed approach, resulting in three additional
versions, for a total of 9 versions.

Figure Rlshows the performance of pure versions. With 1 thread, fr gives the
best performance. However, the parallel speedups are not good. This is because
the the use of full replication for AVC-sets at all levels results in very high mem-
ory requirements. Locking schemes result in a 20 to 30% overhead on 1 thread,
but the relative speedups are better. Using 8 threads, the relative speedups for
ofl and csl are 5.37 and 4.95, respectively.

Figure Bl shows the experimental results from combining fr and ofl. As
stated earlier, the two schemes can be combined in three different ways, horizon-
tal, vertical, and mixed. The performance of these three versions is quite similar.

] K3

2500 2500

2000

21500

Time (s)

1000

500

1 2 4 8 1 2 4 8
No. of Nodes. No. of Nodes

Fig. 2. Performance of pure versions Fig. 3. Combining full replication and
full locking, dataset 2

352 R. Jin and G. Agrawal

3000

Il horizontal
[vertical
B mixed

2500

2000

Time (s)

1500

1000

500 -

1 2 4 8
No. of Nodes

Fig. 4. Combining full replication and cache-sensitive locking

vertical is the slowest on 2, 4, and 8 threads, whereas mixed is the best on 2,
4, and 8 threads.

Figure[d presents the experimental results from combining fr and csl. Again,
the mixed version is the best among the three versions, for 2, 4, and 8 threads.

6 Conclusions

In this paper, we have presented a shared memory parallelization of a RainForest
based decision tree construction algorithm, using a middleware framework we
had developed in our earlier work.

Our work has lead to a number of interesting observations. First, we have
shown that a RainForest based decision tree construction algorithm can be paral-
lelized in a way which is very similar to the way association mining and clustering
algorithms have been parallelized. Therefore, a general middleware framework
for decision tree construction can simplify the parallelization of algorithms for
a variety of mining tasks. Second, unlike the algorithms for other mining tasks,
a combination of locking and replication based techniques results in the best
speedups for decision tree construction. Thus, it is important that the frame-
work used supports a variety of parallelization techniques.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-
spective. IEEE Transactions on Knowledge and Data Eng., 5(6):914-925,, Decem-
ber 1993.

2. J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat— optimistic decision
tree construction. In In Proc. of the ACM SIGMOD Conference on Management
of Data, June 1999.

3. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast
decision tree construction of large datasets. In VLDB, 1996.

Shared Memory Parallelization of Decision Tree Construction 353

RF-Read(dataset D)
global Tree root, Queue Q , AQ;
local Node node;
Q<+« NULL; AQ + NULL;
add(root, AQ);
while not (empty(Q) and empty(AQ))
{ Loop1: build AVC-group for nodes in AQ}

foreach (chunk C € D)
foreach (tuple t € C)
node < classify(root,t);
if node € AQ
foreach (attribute a € t)
reduction(node.ave_group, a, t.class);
{ Loop2: split the nodes in AQ}

foreach (node € AQ)
if not satisfy_stop_condition(node)
find_best_split(node);
foreach (Node child € create_children(node))
add(child, Q);
{ Loop3: build new AQ}

AQ «+ NULL;
done + false;
while not empty(Q) and not done
get(node, Q);
if enough-memory(Q)
remove(node, Q);
add(node, AQ);
else done + true;

Fig. 5. Algorithm for Parallelizing RF-read Using Our Middleware

. Ruoming Jin and Gagan Agrawal. A middleware for developing parallel data
mining implementations. In Proceedings of the first SIAM conference on Data
Mining, April 2001.

. Ruoming Jin and Gagan Agrawal. Shared Memory Parallelization of Data Mining
Algorithms: Techniques, Programming Interface, and Performance. In Proceedings
of the second SIAM conference on Data Mining, April 2002.

. M. V. Joshi, G. Karypis, and V.Kumar. Scalparc: A new scalable and efficient
parallel classification algorithm for mining large datasets. In In Proc. of the Inter-
national Parallel Processing Symposium, 1998.

. F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms.
Knowledge Discovery and Data Mining, 3, 1999.

. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA, 1993.

354

9.

10.

11.

R. Jin and G. Agrawal

S. Ruggieri. Efficient c4.5. Technical Report TR-00-01, Department of Information,
University of Pisa, February 1999.

J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier for
data mining. In Proceedings of the 22nd International Conference on Very Large
Databases (VLDB), pages 544-555, September 1996.

M. J. Zaki, C.-T. Ho, and R. Agrawal. Parallel classification for data mining on
shared-memory multiprocessors. IEEE International Conference on Data Engi-
neering, pages 198-205, May 1999.

	1 Introduction
	2 Decision Tree Construction Using RainForest Framework
	3 Middleware and Parallelization Techniques
	4 Parallel RainForest Algorithm and Implementation
	5 Experimental Results
	6 Conclusions
	References

