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Abstract. The performance of a computer system depends not only on
its design and implementation, but also on the workloads it has to handle.
Indeed, in some cases the workload can sway performance evaluation
results. It is therefore crucially important that representative workloads
be used for performance evaluation. This can be done by analyzing and
modeling existing workloads. However, as more sophisticated workload
models become necessary, there is an increasing need for the collection
of more detailed data about workloads. This has to be done with an eye
for those features that are really important.

1 Introduction

The scientific method is based on the ability to reproduce and verify research re-
sults. But in practice, the research literature contains many conflicting accounts
and contradictions — especially multiple conflicting claims to be better than the
competition. This can often be traced to differences in the methodology or the
conditions used in the evaluation. In this paper we focus on one important aspect
of such differences, namely differences in the workloads being used. In particular,
we will look into the characterization and modeling of workloads used for the
evaluation of parallel systems.

The goal of performance evaluation is typically not to obtain absolute num-
bers, but rather to differentiate between alternatives. This can be done in the
context of system design, where the better design is sought, or as part of a pro-
curement decision, where the goal is to find the option that provides the best
value for a given investment. In any case, an implicit assumption is that dif-
ferences in the evaluation results reflect real differences in the systems under
study. But this is not always the case. Evaluation results depend not only on the
systems, but also on the metrics being used and on the workloads to which the
systems are subjected.

To complicate matters further, there may be various interactions between
the system, workload, and metric. Some of these interactions lead to problems,
as described below. But some are perfectly benign. For example, an interaction
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between the system and a metric may actually be a good thing. If systems are
designed with different objectives in mind, metrics that measure these objectives
should indeed rank them differently. In fact, such metrics are exactly what we
need if we know which objective function we wish to emphasize. An interaction
between the workload and the metric is also possible, and may be meaningless.
For example, if one workload contains longer jobs than another, its average
response time will also be higher. On the other hand, interactions between a
system and a workload may be very important, as they may help identify system
vulnerabilities.

But when the effects leading to performance evaluation results are unknown
and not understood, this is a problem. Conflicting results cast a shadow of
doubt on our confidence in all the results. A solid scientific and experimental
methodology is required in order to prevent such situations.

2 Examples of the Importance of Workloads

To support the claim that workloads make a difference, this section presents
three specific cases in some detail. These are all related to the scheduling of
parallel jobs.

A simple model of parallel jobs considers them as rectangles in processors
xtime space: each job needs a certain number of processors for a certain interval
of time. Scheduling is then the packing of these job-rectangles into a larger
rectangle that represents the available resources. In an on-line setting, the time
dimension may not be known in advance. Dealing with this using preemption
means that the job rectangle is cut into several slices, representing the work done
during each time slice.

2.1 Effect of Job-Size Distribution

The packing of jobs obviously depends on the distribution of job sizes. A good
example is provided by the DHC scheme [12], in which a buddy system is used
for processor allocation: each request is extended to the next power of two, and
allocations are always done is power-of-two blocks of processors. This scheme was
evaluated with three different distributions: a uniform distribution in which all
sizes are equally likely, a harmonic distribution in which the probability of size s
is proportional to 1/s, and a uniform distribution on powers of two. Both anal-
ysis and simulations showed significant differences between the utilizations that
could be obtained for the three distributions [I2]. This corresponds to different
degrees of fragmentation that are inherent to packing with these distributions.
For example, with a uniform distribution, rounding each request size up to the
next power of two leads to 25% loss to fragmentation — the average between no
loss (if the request is an exact power of two) to nearly 50% loss (if the request is
just above a power of two, and we round up to the next one). The DHC scheme
recovers part of this lost space, so the figure is actually only 20% loss, as shown
in Figure [[
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Fig. 1. Simulation results showing normalized response time (slowdown) as a function
of load for processor allocation using DHC, from [I2]. The three curves are for exactly
the same system — the only difference is in the statistics of the workload. The dashed
lines are proven bounds on the achievable utilization for the three workloads.

Note that this analysis tells us what to expect in terms of performance,
provided we know the distribution of job sizes. But what is a typical distribution
encountered in real systems in production use? Without such knowledge, the
evaluation cannot provide a definitive answer.

2.2 Effect of Job Scaling Pattern

It is well-known that average response time is reduced by scheduling short jobs
first. The problem is that the runtime is typically not known in advance. But in
parallel systems scheduling according to job size may unintentionally also lead
to scheduling by duration, if there is some statistical correlation between these
two job attributes.

As it turns out, the question of whether such a correlation exists is not easy
to settle. Three application scaling models have been proposed in the literature
[30123):

— Fized work. This assumes that the work done by a job is fixed, and parallelism
is used to solve the same problems faster. Therefore the runtime is assumed to
be inversely proportional to the degree of parallelism (negative correlation).
This model is the basis for Amdahl’s law.

— Fized time. Here it is assumed that parallelism is used to solve increasingly
larger problems, under the constraint that the total runtime stays fixed. In
this case, the runtime distribution is independent of the degree of parallelism
(no correlation).

— Memory bound. If the problem size is increased to fill the available memory
on the larger machine, the amount of productive work typically grows at
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Fig. 2. Comparison of EASY and conservative backfilling using the CTC workload,
with inaccurate and accurate user runtime estimates.

least linearly with the parallelism. The overheads associated with parallelism
always grow superlinearly. Thus the total execution time actually increases
with added parallelism (a positive correlation).

Evaluating job scheduling schemes with workloads that conform to the different
models leads to drastically different results. Consider a workload that is com-
posed of jobs the use power-of-two processors. In this case a reasonable schedul-
ing algorithm is to cycle through the different sizes, because the jobs of each size
pack well together [T6]. This works well for negatively correlated and even un-
correlated workloads, but is bad for positively correlated workloads [T6/17]. The
reason is that under a positive correlation the largest jobs dominate the machine
for a long time, blocking out all others. As a result, the average response time
of all other jobs grows considerably.

But which model actually reflects reality? Again, evaluation results depend
on the selected model of scaling; without knowing which model is more realistic,
we cannot use the performance evaluation results.

2.3 Effect of User Runtime Estimates

Returning to the 2D packing metaphor, a simple optimization is to allow the
insertion of small jobs into holes left in the schedule. This is called backfilling,
because new jobs from the back of the queue are used to fill current idle resources.
The two common variants of backfilling are conservative backfilling, which makes
strict reservations for all queued jobs, and EASY backfilling, which only makes a
reservation for the first queued job [19]. Both rely on users to provide estimates
of how long each job will run — otherwise it is impossible to know whether
a backfill job may conflict with an earlier reservation. Users are expected to
be highly motivated to provide accurate estimates, as low estimates improve the
chance for backfilling and significantly reduced waiting time, but underestimates
will cause the job to be killed by the system.
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It has been shown that in some cases performance evaluation results depend
in non-trivial ways on the accuracy of the runtime estimates. An example is
given in Figure [2, where EASY backfilling is found to have lower slowdown
with inaccurate estimates, whereas conservative backfilling is better at least for
some loads when the estimates are accurate. This contradiction is the result of
the following [8]. When using accurate estimates, the schedule does not contain
large holes. The EASY scheduler is not affected too much, as it only heeds
the reservation for the first queued job; other jobs do not figure in backfilling
decisions. The conservative scheduler, on the other hand, achieves less backfilling
of long jobs that use few processors, because it takes all queued jobs into account.
This is obviously detrimental to the performance of these long jobs, but turns
out to be beneficial for short jobs that don’t get delayed by these long jobs.
As the slowdown metric is dominated by short jobs, it shows the conservative
backfiller to be better when accurate estimates are used, but not when inaccurate
estimates are used.

Once again, performance evaluation has characterized the situation but not
provided an answer to the basic question: which is better, EASY or conservative
backfilling? This depends on the workload, and specifically, on whether user
runtime estimates are indeed accurate as we expect them to be.

3 Workload Analysis and Modeling

As shown above, workloads can have a big impact on performance evaluation
results. And the mechanisms leading to such effects can be intricate and hard
to understand. Thus it is crucially important that representative workloads be
used, which are as close as possible to the real workloads that may be expected
when the system is actually deployed. In particular, unbased assumptions about
the workload are very dangerous, and should be avoided.

3.1 Data-Less Modeling

But how does one know what workload to expect? In some cases, when truly in-
novative systems are designed, it is indeed impossible to predict what workloads
will evolve. The only recourse is then to try and predict the space of possible
workloads, and thoroughly sample this space. In making such predictions, one
should employ recurring patterns from known workloads as guidelines. For ex-
ample, workloads are often bursty and self-similar, process or task runtimes are
often heavy tailed, and object popularity is often captured by a Zipf distribution
H].

3.2 Data-Based Modeling

The more common case, however, is that new systems are an improvement or
evolution of existing ones. In such cases, studying the workload on existing sys-
tems can provide significant data regarding what may be expected in the future.
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The case of job scheduling on parallel systems is especially fortunate, because
data is available in the form of accounting logs [22]. Such logs contain the details
of all jobs run on the system, including their arrival, start, and end times, the
number of processors they used, the amount of memory used, the user who ran
the job, the executable file name, etc. By analyzing this data, a statistical model
of the workload can be created [7f9]. This should focus on recurrent features that
appear in logs derived from different installations. At the same time, features
that are inconsistent at different installations should also be identified, so that
their importance can be verified.

A good example is the first such analysis, published in 1995, based on a log
of three months of activity on the 128-node NASA Ames iPSC/860 hypercube
supercomputer. This analysis provided the following data [T1]:

— The distribution of job sizes (in number of nodes) for system jobs, and for
user jobs classified according to when they ran: during the day, at night, or
on the weekend.

— The distribution of total resource consumption (node seconds), for the same
job classifications.

— The same two distributions, but classifying jobs according to their type:
those that were submitted directly, batch jobs, and Unix utilities.

— The changes in system utilization throughout the day, for weekdays and
weekends.

— The distribution of multiprogramming level seen during the day, at night,
and on weekends. This also included the measured down time (a special case
of 0 multiprogramming).

— The distribution of runtimes for system jobs, sequential jobs, and parallel
jobs, and for jobs with different degrees of parallelism. This includes a con-
nection between common runtimes and the queue time limits of the batch
scheduling system.

— The correlation between resource usage and job size, for jobs that ran during
the day, at night, and over the weekend.

— The arrival pattern of jobs during the day, on weekdays and weekends, and
the distribution of interarrival times.

— The correlation between the time a job is submitted and its resource con-
sumption.

— The activity of different users, in terms of number of jobs submitted, and
how many of them were different.

— Profiles of application usage, including repeated runs by the same user and
by different users, on the same or on different numbers of nodes.

— The dispersion of runtimes when the same application is executed many
times.

Practically all of this empirical data was unprecedented at the time. Since then,
several other datasets have been studied, typically emphasizing job sizes and run-
times [27IT4/THI6I2IT/T8]. However, some new attributes have also been consid-
ered, such as speedup characteristics, memory usage, user estimates of runtime,
and the probability that a job be cancelled [20JI0JT9/2].
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Fig. 3. The cumulative distribution functions of runtimes of jobs with different sizes,
from the SDSC Paragon.

3.3 Some Answers and More Questions

Based on such analyses, we can give answers to the questions raised in the
previous section. All three are rather surprising.

The distribution of job sizes has often been assumed to be bimodal: small
jobs that are used for debugging, and large jobs that use the full power of the
parallel machine for production runs. In fact, there are very many small jobs
and rather few large jobs, and large systems often do not have any jobs that use
the full machine. especially surprising is the high fraction of serial jobs, which
is typically in the range of 20-30%. Another prominent feature is the emphasis
on power-of-two job sizes, which typically account for over 80% of the jobs.
This has been claimed to be an artifact of the use of such size limits in the
queues of batch scheduling system, or the result of inertia in system where such
limits were removed; the claim is supported by direct user data [3]. Nevertheless,
the fact remains that users continue to prefer powers of two. The question for
workload modeling is then whether to use the “real” distribution or the empirical
distribution in models.

It is hard to obtain direct evidence regarding application scaling from ac-
counting logs, because they typically do not contain runs of the same applica-
tions using different numbers of nodes, and even if they did, we do not know
whether these runs were aimed at solving the same problem. However, we can
compare the runtime statistics of jobs that use different numbers of nodes. the
result is that there is little if any correlation in the statistical sense. However, the
distributions of runtimes for small and large jobs do tend to be different, with
large jobs often having longer runtimes [7] (Figure 3]). This favors the memory
bound or fixed time scaling models, and contradicts the fixed work model. There
is also some evidence that larger jobs use more memory [10]. Thus, within a sin-
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gle machine, parallelism is in general not used for speedup but for solving larger
problems.

Direct evidence regarding user runtime estimates is available in the logs of
machines that use backfilling. This data reveals that users typically overestimate
job runtime by a large factor [19]. This indicates that the expectations about
how users behave are wrong: users are more worried about preventing the system
from killing their job than about giving the system reliable data to work with.
This leads to the question of how to model user runtime estimates. In addition,
the effect of the overestimating is not yet fully understood. One of the surprising
results is that overestimating seems to lead to better overall performance than
using accurate estimates [19).

4 A Workloads RF1]

There is only so much data that can be obtained from accounting logs that
are collected anyway. To get a more detailed picture, active data collection is
required. When studying the performance of parallel systems, we need high-
resolution data about the behavior of applications, as this affects the way they
interact with each other and with the system, and influences the eventual per-
formance measures.

4.1 Internal Structure of Applications

Workload models based on job accounting logs tend to regard parallel jobs as
rigid: they require a certain number of processors for a given time. But run-
time may depend on the system. For example, runs of the ESP system-level
benchmark revealed that executions of the same set of jobs on two different
architectures led to completely different job durations [28]. The reason is that
different applications make different use of the system in terms of memory, com-
munication, and I/O. Thus an application that requires a lot of fine-grain com-
munication may be relatively slow on a system that does not provide adequate
support, but relatively fast on a system with an overpowered communication
network.

In order to evaluate advanced schedulers that take multiple resources into
account we therefore need more detailed workload models. It is not enough to
model a job as a rectangle in processorsxtime space. We need to know about
its internal structure, and model that as well. Such a model can then form the
basis for an estimation of the speedup a job will display on a given system, when
provided with a certain set of resources.

A simple proposal was given in [13]. The idea is to model a parallel appli-
cation as a set of tasks, which are either independent of each other, or need
to synchronize repeatedly using barriers. The number of tasks, number of bar-
riers, and granularity are all parameters of the model. While this is a step in

! Request for Information
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the right direction, the modeling of communication is minimal, and interactions
with other system resources are still missing. Moreover, representative values for
the model parameters are unknown.

There has been some work on characterizing the communication behavior of
parallel applications [5l25]. This has confirmed the use of barrier-like collective
communications, but also identified the use of synchronization-avoiding non-
blocking communication. The granularity issue has remained open: both very
small and very big intervals between communication events have been measured,
but the small ones are probably due to multiple messages being sent one after the
other in the same communication phase. The granularity of computation phases
that come between communication phases is unclear. Moreover, the analysis was
done for a small set of applications in isolation; what we really want to know is
the distribution of granularities in a complete workload.

More detailed work was done on I/O behavior [2124]. Like communication,
I/0 is repetitive and bursty. But again, the granularity at which it occurs (or
rather, the distribution of granularities in a workload) is unknown. An interesting
point is that interleaved access from multiple processes to the same file may lead
to synchronization that is required in order to use the disks efficiently, even if
the application semantics do not dictate any strict synchronization.

Very little work has been done on the memory behavior of parallel applica-
tions. The conventional wisdom is that large-scale scientific applications require
a lot of memory, and use all of it all the time without any significant locality.
Still, it would be nice to root this in actually observations, especially since it is
at odds with reports of the different working set sizes of SPLASH applications
[29]. Somewhat disturbing also is a single paper that investigated the paging
patterns of different processes in the same job, and unexpectedly found them to
be very dissimilar [26]. More work is required to verify or refute the generality
of this result.

4.2 User Behavior

Workload models typically treat job arrivals as coming from some independent
external source. Their statistics are therefore independent of the system behav-
ior. While this makes the evaluation easier, it is unrealistic. In reality, the user
population is finite and often quite small; when the users perceive the system as
not responsive, they tend to reduce their use (Figure E). This form of negative
feedback actually fosters system stability and may prevent overload conditions.

Another important aspect of user behavior is that users tend to submit the
same job over and over again. Thus the workload a system has to handle may be
rather homogeneous and predictable. This is very different from a random sam-
pling from a statistical distribution. In fact, it can be called “localized sampling”:
while over large stretches of time, e.g. a whole year, the whole distribution is
sampled, in any given week only a small part of it is sampled.

In terms of performance evaluation, two important research issues may be
identified in this regard. One is how to perform such localized sampling, or in
other words, how to characterize, model, and mimic the short-range locality
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Fig. 4. The workload placed on a system may be affected by the system performance,
due to a feedback loop through the users.

of real workloads. the other is to figure out what effect this has on system
performance, and under what conditions.

5 The Rocky Road Ahead

Basing performance evaluation on facts rather than on assumptions is important.
But it shouldn’t turn into an end in itself. As Henri Poincaré said,

Science is built up with facts, as a house is with stones. But a collection
of facts is no more a science than a heap of stones is a house.

The systems we now build are complex enough to require scientific methodology
to study their behavior. This must be based on observation and measurement.
But knowing what to measure, and how to connect the dots, is not easy.

Realistic and detailed workload models carry with them two dangers. One
is clutter and obfuscation — with more details, more parameters, and more
options, there are more variations to check and measure. Many of these are
probably unimportant, and serve only to hide the important ones. The other
danger is the substitution of numbers for understanding. With more detailed
models, it becomes harder to really understand the fundamental effects that are
taking place, as opposed to merely describing them. This is important if we want
to learn anything that will be useful for other problems except the one at hand.
These two dangers lead to a quest for Einstein’s equilibrium:

Everything should be made as simple as possible, but not simpler.
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The challenge is to identify the important issues, focus on them, and get them
right. Unbased assumptions are not good, but excessive detail and clutter is
probably not better.
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