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Abstract. Two-dimensional arrays are generally arranged in memory
in row-major order or column-major order. Sophisticated programmers,
or occasionally sophisticated compilers, match the loop structure to the
language’s storage layout in order to maximise spatial locality. Unsophis-
ticated programmers do not, and the performance loss is often dramatic
— up to a factor of 20. With knowledge of how the array will be used,
it is often possible to choose between the two layouts in order to max-
imise spatial locality. In this paper we study the Morton storage layout,
which has substantial spatial locality whether traversed in row-major or
column-major order. We present results from a suite of simple applica-
tion kernels which show that, on the AMD Athlon and Pentium III, for
arrays larger than 256 × 256, Morton array layout, even implemented
with a lookup table with no compiler support, is always within 61% of
both row-major and column-major — and is sometimes faster.

1 Introduction

Every student learns that multidimensional arrays are stored in “lexicographic”
order: row-major (for Pascal etc) or column-major (for Fortran). Modern pro-
cessors rely heavily on caches and spatial locality, and this works well when the
access pattern matches the storage layout. However, accessing a row-major array
in column-major order leads to dismal performance (and vice-versa). The Mor-
ton layout for arrays (for background and history see [7,2]) offers a compromise,
with some spatial locality whether traversed in row-major or column-major or-
der — although in neither case is spatial locality as high as the best case for
row-major or column-major. A further disadvantage is the cost of calculating ad-
dresses. So, should language implementors consider using Morton layout for all
multidimensional arrays? This paper explores this question, and provides some
qualified answers.

Perhaps controversially, we confine our attention to “naively” written codes,
where a mismatch between access order and layout is reasonably likely. We also
assume that the compiler does not help, neither by adjusting storage layout,
nor by loop nest restructuring such as loop interchange or tiling. Naturally, we
fervently hope that users will be expert and that compilers will successfully
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analyse and optimise the code, but we recognise that very often, neither is the
case.

The idea is this: if we know how the array is going to be used, we could choose
optimally between the two lexicographic layouts. If we don’t know how the array
will be used, we can guess. If we guess right, we can expect good performance.
If wrong, we may suffer very badly. In this paper, we investigate whether the
Morton layout is a suitable compromise for avoiding such worst-case behaviour.
We use a small suite of simple application kernels to test this hypothesis and to
evaluate the slowdown which occurs when the wrong layout is chosen.

2 Related Work

Compiler techniques. Locality can be enhanced by restructuring loops to tra-
verse the data in an appropriate order [8, 6]. Tiling can suffer disappointing
performance due to associativity conflicts, which, in turn, can be avoided by
copying the data accessed by the tile into contiguous memory [5]. Copying can
be avoided by building the array in this layout. More generally, storage layout
can be selected to match execution order [4]. While loop restructuring is limited
by what the compiler can infer about the dependence structure of the loops,
adjusting the storage layout is always valid. However, each array is generally
traversed by more than one loop, which may impose layout constraint conflicts
which can be resolved only with foreknowledge of program behaviour.

Blocked and recursively-blocked array layout. Wise et al. [7] advocate Morton
layout for multidimensional arrays, and present a prototype compiler that im-
plements the dilated arithmetic address calculation scheme which we evaluate
in Section 4. They found it hard to overcome the overheads of Morton address
calculation, and achieve convincing results only with recursive formulations of
the loop nests.

Chatterjee et al. [2] study Morton layout and a blocked “4D” layout (ex-
plained below). They focus on tiled implementations, for which they find that
the 4D layout achieves higher performance than the Morton layout because the
address calculation problem is easier, while much or all the spatial locality is
still exploited. Their work has similar goals to ours, but all their benchmark ap-
plications are tiled (or “shackled”) for temporal locality; they show impressive
performance, with the further advantage that performance is less sensitive to
small changes in tile size and problem size, which can result in cache associativ-
ity conflicts with conventional layouts.

In contrast, the goal of our work is to evaluate whether Morton layout can
simplify the performance programming model for unsophisticated programmers,
without relying on very powerful compiler technology.
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3 Background

3.1 Lexicographic Array Storage

For an M ×N two dimensional array A, a mapping S(i, j) is needed, which gives
the memory offset at which array element Ai,j will be stored. Conventional solu-
tions are row-major (for e.g. in Pascal) and column-major (as used by Fortran)
mappings expressed by

S(N,M)
rm (i, j) = N × i + j and S(N,M)

cm (i, j) = i + M × j

respectively. We refer to row-major and column-major as lexicographic layouts,
i.e. the sort order of the two indices (another term is “canonical”). Historically,
array layout has been mandated in the language specification.

3.2 Blocked Array Storage

How can we reduce the number of code variants needed to achieve high perfor-
mance? An attractive strategy is to choose a storage layout which offers a com-
promise between row-major and column-major. For example, we could break the
N ×M array into small, P ×Q row-major subarrays, arranged as a N/P ×M/Q
row-major array. We define the blocked row-major mapping function (this is the
4D layout discussed in [2]) as:

S(N,M)
brm (i, j) = (P × Q) × S(N/P,M/Q)

rm (i/P, j/P ) + S(P,Q)
rm (i%P, j%Q)

This layout can increase the cache hit rate for larger arrays, since every load
of a block will satisfy multiple future requests.

3.3 Bit-Interleaving

Assume for the time being that, for an N × M array, N = 2n, M = 2m. Write
the array indices i and j as

B(i) = in−1in−2 . . . i3i2i1i0 and B(j) = jn−1jn−2 . . . j3j2j1j0

respectively. Now the lexicographic mappings can be expressed as bit-concate-
nation (written “‖”):

S(N,M)
rm (i, j) = B(i)‖B(j) = in−1in−2 . . . i3i2i1i0jn−1jn−2 . . . j3j2j1j0

S(N,M)
cm (i, j) = B(j)‖B(i) = jn−1jn−2 . . . j3j2j1j0in−1in−2 . . . i3i2i1i0

If P = 2p and Q = 2q, the blocked row-major mapping is

S(N,M)
brm (i, j) = B(i)(n−1)...p‖B(j)(m−1)...q‖B(i)(p−1)...0‖B(j)(q−1)...0.

Now, with N = M choose P = Q = 2, and apply blocking recursively:

Smz(i, j) = in−1jn−1in−2jn−2 . . . i3j3i2j2i1j1i0j0

This mapping is called the Morton Z-order [2], and is illustrated in Fig. 1.
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Fig. 1. Morton storage layout for 8× 8 array. Location of element A[4, 5] is calculated
by interleaving “dilated” representations of 4 and 5 bitwise: D0(4) = 0100002, D1(5) =
1000102. Smz(5, 4) = D0(5) | D1(4) = 1100102 = 5010. A 4-word cache block holds a
2 × 2 subarray; a 16-word cache block holds a 4 × 4 subarray. Row-order traversal of
the array uses 2 words of each 4-word cache block on each sweep of its inner loop, and
4 words of each 16-word block. Column-order traversal achieves the same hit rate.

3.4 Cache Performance with Morton-Order Layout

Given a cache with any even power-of-two block size, with an array mapped
according to the Morton order mapping Smz, the cache hit rate of a row-major
traversal is the same as the cache-hit rate of a column-major traversal. In fact,
this applies given any cache hierarchy with even power-of-two block size at each
level. This is illustrated in Fig. 1. The problem of calculating the actual cache
performance with Morton layout is somewhat involved; an interesting analysis
for matrix multiply is presented in [3].

4 Morton-Order Address Calculation

4.1 Dilated Arithmetic

Bit-interleaving is too complex to execute at every loop iteration. Wise et al. [7]
explore an intriguing alternative: represent each loop control variable i as a
“dilated” integer, where the i’s bits are interleaved with zeroes. Define D0 and
D1 such that

B(D0(i)) = 0in−10in−20 . . . 0i20i10i0 and B(D1(i)) = in−10in−20 . . . i20i10i00

Now we can express the Morton address mapping as Smz(i, j) = D0(i) | D1(j),
where “|” denotes bitwise-or. At each loop iteration we increment the loop control
variable; this is fairly straightforward:

D0(i + 1) = ((D0(i) | Ones0) + 1) & Ones1
D1(i + 1) = ((D1(i) | Ones1) + 1) & Ones0



284 J. Thiyagalingam and P.H.J. Kelly

#define ONES_1 0x55555555
#define ONES_0 0xaaaaaaaa
#define INC_1(vx) (((vx + ONES_0) + 1) & ONES_1)
#define INC_0(vx) (((vx + ONES_1) + 1) & ONES_0)

void mm_ikj_da(double A[SZ*SZ], double B[SZ*SZ], double C[SZ*SZ])
{

int i_0, j_1, k_0;
double r;
int SZ_0 = Dilate(SZ);
int SZ_1 = SZ_0 << 1;
for (i_0 = 0; i_0 < SZ_0; i_0 = INC_0(i_0))

for (k_0 = 0; k_0 < SZ_0; k_0 = INC_0(k_0)){
unsigned int k_1 = k_0 << 1;
r = A[i_0 + k_1];
for (j_1 = 0; j_1 < SZ_1; j_1 = INC_1(j_1))

C[i_0 + j_1] += r * B[k_0 + j_1];
}

}

Fig. 2. Morton-order matrix-multiply implementation using dilated arithmetic for the
address calculation. Variables i 0 and k 0 are dilated representations of the loop control
counter D0(i) and D0(k). Counter j is represented by j 1= D1(j). The function Dilate
converts a normal integer into a dilated integer.

where “&” denotes bitwise-and, and

B(Ones0) = 01010 . . . 10101 and B(Ones1) = 10101 . . . 01010

This is illustrated in Fig. 2, which shows the ikj variant of matrix multiply.
The dilated arithmetic approach works when the array is accessed using an

induction variable which can be incremented using dilated addition. We found
that a much simpler scheme often works nearly as well: we simply pre-compute a
table for the two mappings D0(i) and D1(i). We illustrate this for the ikj matrix
multiply variant in Fig. 3. Note that the table accesses are very likely cache hits,
as their range is small and they have unit stride. One small but important detail:
we use addition instead of logical “or”. This may improve instruction selection.
It also allows the same loop to work on lexicographic layout using suitable tables.
If the array is non-square, 2n × 2m, n < m, we construct the table so that the j
index is dilated only up to bit n.

Fig. 4 shows the performance of these two variants on a variety of computer
systems. In the remainder of the paper, we use the table lookup scheme exclu-
sively. With compiler support, many applications could benefit from the dilated
arithmetic approach, leading in many cases to more positive conclusions.

5 Experimental Results

We have argued that Morton layout is a good compromise between row-major
and column-major. To test this experimentally, we have collected a suite of simple
implementations of standard numerical kernels operating on two-dimensional
arrays:
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void mm_ikj_tb(double A[SZ*SZ], double B[SZ*SZ], double C[SZ*SZ],
unsigned int MortonTabEven[],
unsigned int MortonTabOdd[])

{
int i, j, k;
double r;
for (i = 0; i < SZ; i++)

for (k = 0; k < SZ; k++){
r = A[MortonTabEven[i] + MortonTabOdd[k]];
for (j = 0; j < SZ; j++)

C[MortonTabEven[i] + MortonTabOdd[j]]
+= r * B[MortonTabEven[k] + MortonTabOdd[j]];

}
}

Fig. 3. Morton-order matrix-multiply implementation using table lookup for the ad-
dress calculation. The compiler detects that MortonTabEven[i] and MortonTabEven[k]
are loop invariant, leaving just one table lookup in the inner loop.
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Fig. 4. Matrix multiply (ikj) performance (in MFLOPs) of (left) dilated arithmetic
Morton address calculation (see Fig. 2) versus (right) table-based Morton address
calculation (see Fig. 3). The graphs show MFLOPs normalised to the performance
achieved by the standard row-major ikj implementation at each problem size on each
system. Details of the systems are given in Table 1. The worst slowdown of the table
lookup scheme over the dilated-arithmetic scheme is observed on the P4 and is 46%.
For problem sizes larger than 256 the worst figure is 24% on PIII. On the SunFire
6800 the lookup table implementation is always faster. In these graphs, larger numbers
represent better performance.

MMijk Matrix multiply, ijk loop nest order (usually poor due to large stride)
MMikj Matrix multiply, ikj loop nest order (usually best due to unit stride)
LU LU decomposition with pivoting (based on Numerical Recipes)
Jacobi2D Two-dimensional four-point stencil smoother
ADI Alternating-direction implicit kernel, ij,ij order
Cholesky k variant (usually poor due to large stride)

In each case we run the code on square arrays of various sizes, repeating
the calculation if necessary to ensure adequate timing resolution. The system
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Table 1. Cache and CPU configurations used in the experiments.

Alpha Alpha 21264 (EV6) 500MHz,
Compaq L1 D-cache: 2-way, 64KB, 64B cache block
AlphaServer ES40 L2 cache: direct mapped, 4MB. Compiler: Compaq C V6.1-020 “-fast”
Sun UltraSparc III (v9) 750MHz
SunFire 6800 L1 D-cache: 4-way, 64KB, 32B cache block

L2 cache: direct-mapped, 8MB.
Compiler: Sun Workshop 6 “-xO5” (update 1 C 5.2 Patch 109513-07)

PIII Intel Pentium III Coppermine, 1GHz
L1 D-cache: 4-way, 16KB, 32B cache block
L2 cache: 8-way 256KB, sectored 32B cache block
512MB SDRAM. Compiler “gcc-2.95 -O3”

P4 Pentium 4, 1.3 GHz
L1 D-cache: 8-way, 8KB, sectored 64B cache block
L2 cache: 8-way, 256KB, sectored 64B cache block
256MB RDRAM. Compiler “gcc-2.95 -O3”

AMD AMD Athlon Thunderbird, 1.4GHZ
L1 D-Cache: 2-way, 64KB, 64B cache block
L2 cache: 8-way, 256KB, 64B cache block
512MB DDR RAM. Compiler “gcc-2.95 -O3”

Table 2. Performance of various kernels on different systems. For each kernel, for each
machine, we show performance range in MFLOPs for row-major array layout, for array
sizes ranging from 256× 256 to 1024× 1024.

ADI Chol-K Jacobi2D LU MMijk MMikj
min max min max min max min max min max min max

AMD 33.81 34.72 11.05 47.61 195.84 199.25 16.76 83.02 10.05 32.18 90.27 92.72
PIII 21.17 23.71 16.05 26.99 122.21 128.90 32.44 69.32 27.44 37.19 58.90 59.20
SunFire 37.64 40.35 16.12 21.62 140.69 411.78 44.48 77.08 16.16 69.90 125.57 137.24
Alpha 49.77 63.47 12.02 41.90 120.23 245.53 30.22 112.28 14.41 95.34 148.78 254.13
P4 65.04 67.56 23.05 43.15 410.16 419.32 41.72 73.98 32.35 34.98 293.51 297.92

configurations are detailed in Table 1. Table 2 shows the baseline performance
achieved by each machine using standard row-major layout.

Results using Morton layout are summarised in Fig. 5. We have not used non-
square arrays in this paper, but the approach handles them reasonably effectively
(see Section 4), at the cost of padding each dimension to the next power of two.

Our results show that Morton layout is not effective for arrays smaller than
256 × 256. We therefore confine our attention to larger problem sizes. On the
AMD Athlon and Pentium III, we find that Morton layout is often faster than
both row-major and column-major, and is never more than 61% slower. Further-
more, the costs of poor layout choice on these machines are particularly acute -
in extreme cases a factor of 20. We have only studied up to 2048×2048 (32MB),
and further investigation is needed for very large problems. On the other ma-
chines, the picture is less clear. Kernels with high spatial locality, such as MMikj
and Jacobi2D, run close to the machine’s peak performance; so bandwidth to
L1 cache for table access is probably a major factor.
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Fig. 5. Performance of table-lookup-based implementation of Morton layout for various
common dense kernels. In the upper graph we show how much slower Morton layout can
be compared with row-major layout (which for our benchmarks are usually fastest). In
each case we show the maximum and minimum slowdown over a range of problem sizes
from 256× 256 to 2048× 2048. In the lower graph, we show how much faster Morton
layout can be compared with column-major layout. In each case we show the maximum
and minimum speedup over the same range of problem sizes. A more detailed version
of this paper is available at http://www.doc.ic.ac.uk/˜jeyan/index.html.

6 Conclusions and Directions for Further Research

Using a small suite of dense kernels working on two-dimensional arrays, we have
studied the impact of poor array layout. On some machines, we found that
Morton array layout, even implemented with a lookup table with no compiler
support, is always within 61% of both row-major and column-major. We also
found that using a lookup-table for address calculation allows flexible selection
of fine-grain non-linear array layout, while offering attractive performance com-
pared with lexicographic layouts on untiled loops.

The next step is building Morton layout into a compiler, or perhaps a self-
optimising BLAS library [1] (which would allow run-time layout selection). It
should be possible to achieve better results using competitive redistribution —
i.e. instrument memory accesses and copy the array into a more appropriate
distribution if indicated.

In our brief analysis of spatial locality using Morton layout (Section 3.4,
Fig. 1), we assumed that cache blocks and VM pages are a square (even) power
of two. This depends on the array’s element size, and is often not the case. Then,
row-major and column-major traversal of Morton layout lead to differing spatial
locality. A more subtle non-linear layout could address this. It seems less likely
that Morton layout can offer a competitive compromise for arrays with more
than two dimensions.
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A more detailed version of this paper is available at http://www.doc.ic.
ac.uk/ jeyan/index.html.
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