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Abstract. NTP is a well-known and widely used clock synchronization
mechanism for PC cluster environments. However, like other software-
based clock synchronization algorithms, its precision depends on the es-
timated accuracy of the network latency for synchronization messages.
This paper presents a low-cost internal clock synchronization mechanism
that uses a simple T'TL signal distributor to support remote clock read-
ing to obtain the time drift necessary to execute local clock adjustments.
The objective is to improve precision, thus eliminating the need to esti-
mate the network latency as in usual methods.

1 Introduction

Synchronized clocks are useful in distributed systems for performance measure-
ments, auditing, event ordering and task scheduling, among other things. Typi-
cally, COTS (commodity off-the-shelf) PC clusters do not have access to a global
clock or possess dedicated clock synchronization support. The goal of the inter-
nal clock synchronization is to minimize the maximum difference between any
two clocks. Most internal clock synchronization algorithms, such as the Network
Time Protocol (NTP)[1], are software-based. They are flexible and economical,
but the performance is limited by the synchronization message transit delay.
This paper presents a low-cost hybrid internal clock synchronization mechanism
and its implementation on a COTS PC cluster running Linux. A simple signal
distributor hardware and the parallel printer ports of the machines are used to
support remote clock reading to improve the precision, thus eliminating the need
to estimate the network latency.

Clock synchronization has been extensively studied for the last two decades
and hardware, software and hybrid approaches have been proposed[23]. Hardware
approaches[2[34] achieve us level precision through the use of dedicated hard-
ware at each node and a separate network solely for the propagation of clock
signals. Cost, however, has been a limiting factor. Software approaches do not
need any extra hardware but the performance is limited by the synchronization
message transit delay and provides a precision in the ms range[5l2]. Figure [
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Fig. 1. External and Internal clock synchronization via NTP.

shows the interference of network latency on the clock synchronization precision
obtained via NTP in two different network environments: Internet and Fast-
Ethernet LAN.

Due to that limitation, a hybrid approach[3J5] has been proposed. This ap-
proach requires minimum extra hardware and uses the available network infras-
tructure for synchronization message exchanges. Although the extra hardware is
considered to be minimum, these solutions usually require expensive apparatus
such as a precise quartz crystal oscillator[3l5], a GPS signal receiver[5lJ6] or a cus-
tom LSI[4J5]. Even the most recent version of NTP, based on a Nanokernel[6algorithm,
needs a precise pulse per second (PPS) signal produced by an external device to
obtain better performance. We refrained from using expensive hardware, such
as those used in other methods, to match with the Beowulf-class PC cluster
philosophy.

2 Clock Synchronization Mechanism

The on-going method uses the usually inactive PCs’ I/O ports, such as serial or
parallel ports, which can generate hardware interruptions. The TTL level signal
distributor hardware is used to simultaneously signal the I/O ports to start
a reading process of each local clock. After that, we obtain the instantaneous
image of all clocks’ value involved in the synchronization. The available network
infrastructure is used to transmit the reference clock’s value to the other nodes,
to calculate the time offset in order to adjust each local clock in an appropriate
way. This way, although the clock value is transmitted through the available
network there is no need to calculate the message transmission latency as would
be the case in a purely software based algorithm. Figure [2 shows a simplified
scheme of the synchronization mechanism and the implemented hardware.

3 Implementation Issue and Results

The PC cluster on which we have implemented our model consists of 8 Pen-
tium II 350 MHz with 64MB RAM interconnected by a Fast-Ethernet network.
We used kernel version 2.2.16 of the linux operating system and NTP version
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Fig. 2. Hybrid internal clock synchronization mechanism.

4.0.99k. The NTP was used for external clock synchronization of the reference
node’s clock. We have elaborated a simple synchronization signal distributor
hardware, a character oriented device driver for parallel ports, and the master
and slave processes. The choice of the parallel printer port was only due to its
easy manipulation and programming.

The synchronization signal distributor hardware distributes a TTL level sig-
nal to the Acknowledge (ACK) parallel port pin to generate hardware interrup-
tion TRQ7 which causes the device driver to read the local clock through the
kernel function do_gettimeofday with 1 ps resolution and makes its value avail-
able in the “/dev/sincro” device. Then it wakes up the slave processes to begin
the resynchronization by requesting the master process for the reference clock
value to adjust each local clock. This is done through the system call adjtimez
derived from the NTP clock discipline algorithm[Il6], which has been used by
Linux since 1992.

During the experiments, the processes running on the cluster were reduced
to a minimum level and we observed the clock drift behavior of all node clocks
(node2 to 7) in relation to the reference clock (nodel)without any local clock
adjustments. The result can be viewed in figure Bl We used several resynchro-
nization interval periods to observe the clock synchronization behavior and ob-
tained hundreds, tens and few microseconds precision using, respectively, 30s,
3s and 1s as the pulse intervals. Figure [3 for 3s pulse interval, unlike figure [I]
shows only the clock offset before each resynchronization process instead of the
real-time behavior. We did not work on the clock adjustment algorithm and
only used available function adjtimer to cancel out the time-offset. Before each
resynchronization process, each clock drifts according to its own drifting rate.

In comparison to the NTP we have obtained better and more homogeneous
results in the time-offset variation as time passes even using 30s as the resynchro-
nization interval. Using smaller intervals the processing and communication over-
heads increase. It is therefore necessary to choose an optimum interval matching
the application’s requirements. The computational cost of the slave process that
consumes most processing time is less than 0.03% of the CPU time. During the
experiments, we observed some interferences that appear in the graph as spikes.
One of them is the reading error that produces data inconsistency and the other
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Fig. 3. Clock drift and internal synchronization using an interval of 3s.

is the noise generated by external devices, such as monitors and transformers.
These values are ignored by the data filtering subroutine.

4 Conclusions

This paper has described an overview of a low-cost hybrid internal clock syn-
chronization mechanism. The performance evaluation in a small size COTS PC
cluster running Linux has shown that this method can be a good alternative to
improve internal clock synchronization without using any expensive extra hard-
ware. However, the implemented model still requires improvements to be suitable
for the real world. This model has great scalability in systems with the condition
that the nodes are placed physically close. A next step might be to analyze the
dependence between the precision and the signal generation interval, making it
possible to construct an adaptive clock synchronization mechanism.
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