Fast Algorithms for Mining Emerging Patterns

James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao

Department of Computer Science & Software Engineering
The University of Melbourne, Australia
{jbailey,tcm,rao}@cs.mu.o0z.au

Abstract. Emerging Patterns are itemsets whose supports change sig-
nificantly from one dataset to another. They are useful as a means of dis-
covering distinctions inherently present amongst a collection of datasets
and have been shown to be a powerful technique for constructing accu-
rate classifiers. The task of finding such patterns is challenging though,
and efficient techniques for their mining are needed.

In this paper, we present a new mining method for a particular type of
emerging pattern known as a jumping emerging pattern. The basis of
our algorithm is the construction of trees, whose structure specifically
targets the likely distribution of emerging patterns. The mining perfor-
mance is typically around 5 times faster than earlier approaches. We
then examine the problem of computing a useful subset of the possible
emerging patterns. We show that such patterns can be mined even more
efficiently (typically around 10 times faster), with little loss of precision.

1 Introduction

Discovery of powerful distinguishable features between datasets is an important
objective in data mining. Addressing this problem, work presented in [6] in-
troduced the concept of emerging patterns. These are itemsets whose support
changes significantly from one dataset to another. Because of sharp changes in
support, emerging patterns have strong discriminating power and are very useful
for describing the contrasts that exist between two classes of data. Work in [11]
has shown how to use them as the basis for constructing highly accurate data
classifiers. In this paper, we focus on mining of a particular type of emerging
pattern called a jumping emerging pattern (JEP). A JEP is a special type of
emerging pattern, an itemset whose support increases abruptly from zero in one
dataset, to non-zero in another dataset. Due to this infinite increase in sup-
port, JEPs represent knowledge that discriminates between different classes of
data more strongly than any other type of emerging pattern. They have been
successfully applied for discovering patterns in gene expression data [12].
Efficient computation of JEPs remains a challenge. The task is difficult for
high dimensional datasets, since in the worst case, the number of patterns present
in the data may be exponential. Work in [6] introduced the notion of a border

T. Elomaa et al. (Eds.): PKDD, LNAI 2431, pp. 39-50, 2002.
© Springer-Verlag Berlin Heidelberg 2002

40 James Bailey et al.

for concisely representing JEPs. Yet even using borders, the task still has ex-
ponential complexity and methods for improving efficiency are an open issue.
With the volume and dimensionality of datasets becoming increasingly larger,
development of such techniques is consequently crucial. Indeed for large datasets,
approximation methods are also necessary, to ensure tractability.

In this paper, we describe algorithms for computing JEPs that are 2-10 times
faster than previous methods. Our approach has two novel features: The first is
the use of a new tree-based data structure for storing the raw data. This tree is
similar to the so-called frequent pattern tree, used in [9] for calculating frequent
itemsets. However, there are significant differences in the kinds of tree shapes
that promote efficient mining and interesting new issues and tradeoffs are seen
to arise. The second feature is the development of a mining algorithm operating
directly on the data contained in the trees. The mining of emerging patterns is
unlike (and indeed harder than) that of frequent itemsets. Monotonicity proper-
ties relied on by algorithms such as a-priori do not exist for JEPs and thus our
algorithm requires greater complexity than the techniques in [9].

We then look at the problem of mining only a subset of the JEPs using
approximate thresholding techniques. We outline methods which can achieve
further speedups from 2-20 times faster and demonstrate that a small number
of patterns can still provide sufficient information for effective classification.

Related Work: Emerging patterns first appeared in [6], which also introduced
the notion of the border for concisely representing emerging patterns. Unlike this
paper, no special data structure was used for mining the JEPs. Techniques for
building classifiers using JEPs, whose accuracy is generally better than state-
of-the art classifiers such as C4.5 [16] appeared in [11]. Emerging patterns are
similar to version spaces [14]. Given a set of positive and a set of negative training
instances, a version space is the set of all generalisations that each match (or are
contained in) every positive instance and no negative instance in the training
set. In contrast, a JEP space is the set of all item patterns that each match
(or are contained in) one or more (not necessarily every) positive instance and
no negative instance in the set. Therefore, the consistency restrictions with the
training data are quite different for JEP spaces.

Work in [9] presented a technique for discovering frequent itemsets (which are
useful in tasks such as mining association rules [1]). The primary data structure
utilised was the Frequent Pattern Tree (FP-tree), for storing the data to be
mined. The trees we use in this paper are similar but important new issues
arise and there are also some significant differences. Given that we are mining
emerging patterns and there are multiple classes of data, tree shape is a crucial
factor. Unlike in [9], building trees to allow maximum compression of data is
not necessarily desirable for mining emerging patterns and we show that better
results are obtained by sacrificing some space during tree construction .

Recent work in [8] also uses trees for calculation of emerging patterns. The
focus is different, however, since the algorithm is neither complete nor sound
(i.e. it does not discover all JEPs and indeed may output itemsets which aren’t

Fast Algorithms for Mining Emerging Patterns 41

actually JEPs). In contrast, work in this paper focuses on both i) Sound and
complete mining of JEPs and ii) Sound but not complete JEP mining.

The emerging pattern (EP) mining problem can also be formulated as discov-
ering a theory that requires the solution to a conjunction of constraints. Work
in [5,10] defined three constraint types; i) f < p, p < f, =(f < p) and —=(p < f)
it) freq(f, D) iii) freq(f, D) <t, freq(f, D2) > t. Using the first and third,
JEP mining for some class D; with reference D; can be expressed as; solution(ci
A c3) where fisa JEP, p € D; and t = 0.

Other methods for mining EPs have relied upon the notion of borders, both
as inputs to the mining procedure in the form of large borders and as a means of
representing the output. [7] employed the Max-Miner [2] algorithm whilst work
in [15] is also applicable in generating large borders. JEP mining procedures do
not require such sophisticated techniques. Rather than generate large borders,
horizontal borders [6] are sufficient. Work in [13] restricts border use to subset
closed collections and allows minimal elements that do not appear in the base
collections. The borders used in this paper reflect interval closed collections and
contain only minimal elements derived from the base collections.

An outline of the remainder of this paper is as follows. In section 2 we give
some necessary background and terminology. Section 3 presents the tree data
structure we use for mining JEPs and describes several variations. Section 4 gives
the algorithm for complete mining of JEPs using this tree and Section 5 gives
an experimental comparison with previous techniques. Section 6 then discusses
approximate methods for mining a subset of the patterns present. Finally, in
section 7 we provide a summary and outline directions for future research.

2 Background and Terminology

Assume two data sets Di and D, the growth rate of an itemset ¢ in favour
of Dy is defined as %. An Emerging Pattern [0] is an itemset whose
support in one set of data differs from its support in another. Thus a p Emerging
Pattern favouring a class of data C, is one in which the growth rate of an
itemset (in favour of C) is > p. This growth rate could be finite or infinite.
Therefore, we define another type of pattern, known as a jumping emerging
pattern (JEP), whose growth rate must be infinite (i.e. it is present in one and
absent in the another). JEPs can be more efficiently mined than general emerging
patterns and have been shown to be useful in building powerful classifiers [11].
We will illustrate our algorithms for mining JEPs assuming the existence of two
datasets D,, (the positive dataset) and D,, (the negative dataset). The mining
process extracts all patterns (i.e. itemsets) which occur in D, and not in D,,.

A border [0] is a succinct representation of some collection of sets. [6] also
showed that the patterns comprising the left bound of the border representing
the JEP collection are the most expressive. Therefore, our procedures will be
referring to mining the left bound border of the JEP collection.

In previous work, mining of JEPs used a cross-product based algorithm
known as border-diff [0]. It takes as input some transaction in D, from which

42 James Bailey et al.

one wishes to extract JEPs (the positive transaction) and a set of transactions
from D,, (negative transactions). It’s output is then all JEPs from this positive
instance (i.e. all subsets of the positive transaction which do not appear within
any negative transaction). We will make use of the border-diff algorithm, but
use the structure of the tree in order to determine when it should be called and
what input should be passed to it. This results in significant performance gains.

Classification using JEPs is described in [11]. Initially all JEPs for each of the
classes are computed - observe this needs to be done once only for the datasets
(the training time). Then, given some test instance, a score is calculated for each
class. This score is proportional to the number of JEPs (from the class being
examined) contained within the test. Typically the contribution of an individual
JEP to the overall score is some function of its support (hence JEPs with high
support have a greater influence on classification). The test instance is deemed
to match the class with the highest overall score.

3 Trees

The tree based data structure we use for mining JEPs is based on the frequent
pattern tree [9]. Since we are dealing with several classes of data, each node
in the tree must record the frequency of the item for each class. Use of a tree
structure provides two possible advantages:

— when multiple transactions share an itemset, they can be merged into indi-
vidual nodes with increased counts. This results in compression proportional
to the number of itemsets which share some prefix of items and the length
of the prefix. Such compression can allow the data structure to be kept in
memory and thus accessed faster, rather than being stored on disk.

— Different groupings of positive transactions (those from D)) and negative
transactions (those from D,,) become possible. The efficiency of mining is
highly dependent on how this grouping is done. We now examine how trans-
actions are ordered to achieve different groupings.

In choosing an appropriate ordering for the items contained within the item-
sets being inserted into the tree, we have the following 2 aims i) To minimise the
number of nodes in the tree and ii) To minimise the effort required in traversing
the tree to mine JEPs. [9] addressed the first of these in the context of computing
frequent itemsets. However, for mining JEPs, we will see that the second is the
more important. We have investigated six types of orderings.

Frequent tree ordering. Same as in [9]. Take each item and find its probability
in the set (D, UD,,). Items are ordered in descending probability. This ordering
aims to minimise the number of nodes in the tree.

Ratio tree ordering and inverse ratio tree ordering. Let the probability of an
item in D, be p; and its probability in D,, be ps. For p = py/ps, order items in
descending value of p. The intuition here is that we expect JEPs to reside much
higher up in the tree than they would under the frequent tree ordering and this

Fast Algorithms for Mining Emerging Patterns 43

will help limit the depth of branch traversals needed to mine them. The inverse
ratio ordering is just the reverse of this ordering.

Hybrid ordering. A combination of the ratio tree ordering and the frequent tree
ordering. First, calculate both the ratio tree ordering and frequent tree ordering.
For a given percentage «, the initial o items are extracted from and ordered
according to the ratio ordering. All items not yet covered are then ordered ac-
cording to the frequent ordering. The hybrid ordering thus produces trees which
are ordered like a ratio tree in the top « segment and like a frequent tree in the
bottom 1 — a segment. The intuition behind it is that trees are created which
possess both good compression characteristics as well as good mining properties.
Least probable in the negative class ordering (LPNC). Let the probability of an
item in D,, be p. Items are ordered in ascending value of p. The intuition behind
this ordering is similar to that for the ratio ordering, JEPs are likely to occur
higher up in the tree, since the quantity of nodes higher up in the tree containing
zero counts for the negative classes is greater.

Most probable in the positive class ordering (MPPC). Let p be the probability of
an item in D,. Items are ordered in descending value of p (first item has highest
probability). The intuition here is that by placing nodes higher up in the tree (in
accordance with their frequency in the positive class), then if the datasets are
inherently dissimilar, we are more likely to find JEPs in the tree’s upper regions.

4 Tree-Based JEP Mining

We now describe our tree mining procedure. It uses a core function called border-
diff [6] with format border-diff(positive_transaction,vector negative_transactions,).
This function returns the set of JEPs present within positive_transaction with ref-
erence to the list of negative_transactions. i.e. All subsets of positive_transaction
which don’t occur within a member of the negative transaction list. The ef-
ficiency of border-diff is dependent upon the number of negative transactions
which are passed to it, their average dimensionality and the dimensionality of
the positive transaction. OQur tree mining procedure makes use of this function
in a way aimed to reduce all of these parameters.

The initially constructed tree contains a null root node, with each of its chil-
dren forming the root of a subtree referred to hereafter as a component tree. For
each component tree, we perform a downwards traversal of every branch. Look-
ing during traversal for nodes which contain a non-zero counter for the class for
which we are mining JEPs, and zero counters for every other class (such nodes
are called base nodes). The significance of these nodes is that the itemset span-
ning from the root of the branch to the base node is unique to the class being
processed. This itemset is therefore a potential JEP and hence any subset of this
itemset is also potentially a JEP. The importance of base nodes is not simply
that they identify potential JEPs, but they also provide a means of partitioning
our problem. By considering all branches which share some root node (i.e. all
branches of some component tree) and some additional node, (a base node), we
can isolate all other transactions containing these two items. Using this set of
transactions as the basis for a sub mining problem provides great flexibility in

44 James Bailey et al.

the inputs which are provided to the border-diff function. We have some control
over the number of negative transactions, their cardinality and the cardinality of
the positive transaction, all key determinants in performance. After identifying
a potential JEP, we gather up all negative transactions that are related to it (i.e.
share the root and base node). These negative transactions can be obtained using
side links which join all nodes representing the same item. Border-diff is then
invoked to identify all actual JEPs contained within the potential JEP. After
examining all branches for a particular component tree, we re-insert them back
into the remaining component trees, having removed the initial node of each.
The following pseudo-code gives a high-level outline of the mining algorithm.

Component_Trees CTs = build_tree();
For each component tree, ct of CTs
For each branch b of ct
if(b is a potential JEP)
border_diff (b, negative_transactions);
relocate_branches(ct, CTs);

Ezxample: Consider the following tree.

Transactions for Class 1
{a, b, c,d}

{a.b, c, e}

{b,c}

s

Beginning at the leftmost component tree (with root a) we traverse its chil-
dren looking for base nodes for potential JEPs. In this case there are three, {c,
d and e}. On finding ¢ we attempt to gather the associated negative transac-
tions (with reference the root a and base c), in this case there exist no such
transactions. {a, ¢} is output as a JEP. On encountering base node d, we are
able to collect the negative transaction {a, b, d}, border-diff is called with {{a,
b, ¢, d} , {a, b, d}}. Finally on discovering e as a base node and collecting the
associated negative transactions, we call border-diff with the input {{a, b, ¢, e},
{a, b, d, e}}. The component tree with a as the root has now been processed

Fast Algorithms for Mining Emerging Patterns 45

and its transactions are re-inserted with the a element removed. Mining would
then continue on this next component tree.

By examining potential JEPs only, we ensure that the only patterns we mine
are JEPs. The fact that we examine every potential JEP with reference to every
component tree (and thus every item in the problem), ensures completeness.
In all cases the number of component trees is equal to the number of unique
items in the database. Component tree traversal in the worst case requires vis-
iting a number nodes equal to the number of attributes in the problem, per
branch. Subsequent collation of all negative transactions, in the worst-case, re-
quires gathering |DBJ-1 transactions.

5 Performance of Tree Mining

The following table displays the performance of our JEP mining procedure using
various types of tree orderings. The Original column refers to the implementa-
tion used to mine JEPs using previous published work. Times recorded are user
times and are given in seconds. The column headed nybria, represents a hybrid
tree with the the first thirty percent of items ordered by ratio, the remainder by
absolute frequency. The column labelled speeaup compares the hybrid tree with
the original approach. The data sets used were acquired from the UCI Machine
Learning Repository [3]. All experiments were performed on a 500MHz Pentium
I PC, with 512 MB of memory, running Linux (RedHat).

iRatio—tree|Ratio—tree| Hybrid | Original |Speedup|

| Dataset |MPPC—tree FP-tree |LPNC-tree

mushroom | 38.57 27.59 | 37.35 17.32 16.77 | 13.66 | 138.45 | 10.13
census 497.17 | 459.65 | 385.51 | 221.84 | 214.23 | 182.84 | 1028.00 | 5.62
ionosphere | 83.63 69.75 | 59.04 21.91 21.15 | 19.07 | 86.74 | 4.55
vehicle 5.86 6.01 5.82 3.92 3.85 3.20 5.33 1.67
german 140.84 | 138.46 | 94.61 50.75 47.54 | 38.59 | 131.37 | 3.40
segment 68.16 66.86 | 65.65 45.52 41.42 | 35.60 | 71.99 2.02
hypothyroid| 3.65 3.03 3.84 1.99 1.89 1.77 1.79 1.01
pendigits | 687.32 |719.09 | 631.62 | 563.05 | 560.92 | 507.55 | 2951.26 | 5.81
letter-rec | 3632.92 |3537.37| 3199.32 | 1815.82 | 1700.91 |1485.20| 6896.07 | 4.64
soybean-1 | 321.28 490.70| 457.45 | 135.46 | 127.03 | 74.15 | 611.50 | 8.25
waveform | 4382.27 4391.85| 2814.14 | 2794.07 | 2779.66 |2560.16|26180.50| 10.23
chess 811.51 871.91| 865.30 | 245.96 | 238.95 | 90.62 | 358.62 | 3.96

We see that using our tree mining algorithm, significant savings are achieved
over the original method. We now rank the various types of trees:

1. Hybrid tree - always the fastest performer. The parameter a was set to
30% (we conducted other experiments for alternative values, with this choice
giving the best overall times). The performance gains are typically around 5
times faster than the original method.

2. Ratio and inverse ratio trees.

46 James Bailey et al.

3. LPNC tree.

4. Frequent pattern tree and MPPC tree. Each with similar running times.

5. Original method of [6]. The slowest technique serving as a benchmark for
the tree-based methods.

We can make a number of observations about these results:

1. The relative memory usage among the various trees will of course vary be-
tween the various datasets. However, from additional data not included here due
to lack of space, the ranking (from least average tree size to largest average tree
size) is 1) Frequent pattern tree, ii) MPPC tree, iii) Hybrid tree (when using
a = 30%), iv) Ratio and inverse ratio trees, v) LPNC tree. The frequent pat-
tern tree uses the least memory, but takes the longest time to mine. This would
indicate that tree size is not a dominant factor in determining the mining effort
needed for JEPs. This is in contrast to the work in [9], where the main objective
in using frequent pattern trees was to reduce tree size, so that frequent itemset
calculation could be carried out entirely within main memory.
2. The LPNC and MPPC trees are consistently worse than the ratio tree vari-
ants. The orderings for these trees only consider one of the positive and negative
datasets and thus there is less overlap between positive and negative transac-
tions. Consequently more potential JEPs will need testing.
3. Ratio and inverse ratio trees are superior for mining than frequent pattern
trees. We believe this is because ratio/inverse ratio tree structure results in fewer
potential JEPs needing to be tested. As the component trees are processed ac-
cording to the ratio order, singleton items which have high support in one class
and low support in the other are pruned earlier. Such items are strong differ-
entiators between the classes. Thus the tendency is for positive and negative
transactions to have greater overlap as processing proceeds and hence fewer po-
tential JEPs (especially duplicate ones) will be tested by border-diff.
4. The hybrid tree is faster to mine than the pure ratio tree. We conjecture
that frequent trees allow items which have high support in both classes to be
pruned earlier. This in turn means that there will be fewer and fewer transac-
tions per component tree as processing proceeds, also decreasing the number of
required border-diff calls. Combining this property of frequent pattern trees with
the properties of ratio trees, results in a tree that is very fast to mine. It is the
subject of further research to more deeply analyse the interplay of factors here.
Overall, these tree based methods are significant improvements on previous
methods for mining emerging patterns. Nevertheless, for datasets of very high
dimensionality, the running time of a complete mine may still be prohibitive.
This motivates a supplementary approach which mines only a subset of the
complete set of JEPs.

6 Mining the Highest Support JEPs Using Thresholds

We now examine a method which sacrifices completeness of JEP mining in return
for faster computation.

Fast Algorithms for Mining Emerging Patterns 47

Since completeness will no longer hold, we wish the JEPs we mine to be “im-
portant ones”, i.e. they should have high support. Examining the characteristics
of JEPs of high support, it should be clear that in general shorter JEPs will
experience greater support levels than longer JEPs.

We therefore aim to to mine as many of the short JEPs as possible. Our
mining procedure is now modified to only identify potential JEPs whose length
is below a specified threshold. Any potential JEPs above this threshold will not
be examined by the border-diff function to see if actual JEPs are present. Whilst
this method will not necessarily ensure mining of only the highest support JEPs,
it presents an attractive alternative due to the relatively small computation time
and its algorithmic simplicity.

Applying such thresholds means that the number of times the border-diff
function is called is drastically reduced, as well as ensuring that when used it is
not too expensive, since we have complete control over one of the factors, the
cardinality of the itemsets passed to it.

The success of such a strategy is dependent upon how many short JEPs ac-
tually reside within the threshold one chooses to impose. Sometimes application
of the threshold may mean that some short JEPs may be lost. e.g. A poten-
tial JEP J = {a,b,c,d,e, f,g,h,i,j} in a ten attribute problem (where a is the
root item and j is the base item) may actually contain the following JEPs;
{a,b,7}, {a,c,j} and {a,e,j}. However, choosing a threshold of four for this
example would eliminate the possibility of discovering these JEPs. The follow-
ing diagrams now illustrate the merit of various threshold values applied to a
ratio tree. The four graphs illustrate the variance of accuracy and user time ver-
sus threshold for two datasets. The accuracy and time of JEP mining without
thresholds (complete mining) is provided as a reference. For these examples we
can see that as thresholds increase, accuracy converges relatively quickly and
user time increases relatively slowly.

chess (Ratio-Tree) chess (Ratio-Tree)
100

250

% 200

% 150 |

threshold ——
complete -

Accuracy

94 100 F

User Time (sec)

92 50 -

threshold ——
__complete ——--

4 5 6 7 8 9 10 4 5 6 7 8 9 10
Threshold Threshold

90

48 James Bailey et al.

census (Ratio-Tree) census (Ratio-Tree)
100
200
95
90 & 150
Q
2 &
o
o]
5 85 £
3 £ ol
< o]
»
80 =)
50 -
75
threshold —— threshold ——
complete -------- complete --------
70 : 0 ;
4 5 6 7 8 9 10 4 5 6 7 8 9 10
Threshold Threshold

Dataset | pt=4 | pt=5 | pt=6 | pt=7 | pt=8 | pt=9 | pt=10 | original
mushroom | 6.03 | 6.11 | 6.28 | 6.48 | 6.82 | 7.38 | 8.19 | 138.45
census 16.23 | 17.46 | 20.78 | 27.75 | 40.61 | 61.71 | 91.75 | 1028.00
jonosphere | 1.37 | 1.43 | 1.45 | 1.56 | 1.67 | 1.83 | 1.99 86.74
vehicle 0.96 | 0.99 | 1.00 | 1.07 | 1.19 | 1.33 | 1.50 5.33
german 1.53 | 1.64 | 1.86 | 2.28 | 2.93 | 3.86 | 5.19 | 131.37
segment 844 | 8.86 | 9.71 [11.08 |12.92|15.34 | 18.15| 71.99
hypothyroid| 1.16 | 1.21 | 1.22 | 1.25 | 1.27 | 1.30 | 1.35 1.79
pendigits | 63.25 | 72.53 | 88.32 (111.37]142.30|181.77|230.28| 2951.26
letter-rec |249.14|256.49(275.44|319.41(396.38|510.47|659.98| 6896.07
soybean-1 | 13.67 | 13.68 | 13.69 | 13.75 | 13.83 | 14.09 | 14.24 | 611.50
waveform | 18.09 | 21.31 | 30.53 | 47.13 | 72.71 |110.47|165.44|26180.50
chess 7.64 | 7.66 | 7.75 | 7.83 | 8.02 | 833 | 8.68 | 358.62

timing-pure thresholding (ratio-tree)

Dataset | pt=4 | pt=5 | pt=6 | pt=7 | pt=8 | pt=9 | pt=10 complete|
mushroom |100.00{100.00{100.00{100.00{100.00{100.00{100.00| 100.00
census | 82.57 | 82.99 | 83.19 | 83.64 | 84.18 | 84.47 | 84.55 | 84.60
ionosphere | 90.32 | 90.27 | 91.11 | 90.83 | 91.13 | 90.85 | 90.85 | 88.32
vehicle | 46.23 | 48.35 | 49.66 | 52.27 | 53.10 | 55.93 | 58.52 | 65.11
german | 71.50 | 72.10 | 72.90 | 73.70 | 73.90 | 74.40 | 74.20 | 74.70
segment | 94.67 | 94.80 | 94.76 | 94.98 | 94.89 | 94.46 | 94.59 | 93.81
hypothyroid| 97.60 | 97.72 | 97.76 | 97.76 | 97.76 | 97.76 | 97.88 | 98.48
pendigits | 93.17 | 94.72 | 95.30 | 95.57 | 95.72 | 95.92 | 95.95 | 96.16
letter-rec | 63.07 | 76.90 | 82.12 | 84.34 | 85.28 | 86.63 | 87.85 | 92.21
soybean-1 | 82.73 | 83.43 | 83.92 | 85.66 | 84.71 | 84.88 | 83.06 | 84.92
waveform | 70.48 | 77.62 | 79.38 | 80.12 | 80.16 | 80.32 | 80.44 | 82.94
chess 93.21 194.93 1 96.03 | 95.93 | 96.18 | 96.18 | 96.31 | 94.24

accuracy-pure thresholding (ratio-tree)

The two tables above provide more complete information on mining be-
haviour using thresholds. We see that mining with a threshold value of 4 is

Fast Algorithms for Mining Emerging Patterns 49

substantially faster than mining the complete set of JEPs using a ratio tree.
Classification accuracy is degraded for three of the datasets (Vehicle, Waveform
and Letter-recognition) though. Analysis of the vehicle and chess datasets aid in
explaining this outcome (supporting figures have been excluded due to lack of
space). It is clear that classification accuracy is dependent upon finding patterns
that strongly discriminate and at the same time are strongly representative of
the instances of a particular class. The number of patterns one finds can be
viewed as an indicator of how well a class’ instances can be differentiated from
instances of another class. The importance of each pattern, as a representative
of the class, can be measured as its support. The discrepancy in classification
accuracy of the vehicle dataset, from a threshold of 4 to 10, may be accounted
for by a large difference in the number of patterns found for two of its classes
(saab and opel) between threshold 4 and threshold 10. The average support of
patterns is roughly the same at each of these threshold values. In contrast, for
the chess dataset, we don’t experience such marked fluctuation in classification
over the thresholds, since the balance between number of JEPs and their average
support is kept constant as threshold value increases. A threshold of 4 for chess
has fewer number of JEPs, but their average support is greater, while a threshold
of 10, has lower average support JEPs, but possesses a greater number of them.
Clearly both factors are important and further work is required to determine
their precise relationship(s).

Isolating behaviour with a threshold value of 10, we see that the improvement
in mining time is not as great, but still substantial (around 2-10 times faster than
mining the complete set with a ratio tree, and around 2-158 times faster than
the original method). Classification accuracy is also the same (only about 1%
difference) as classification using the full set of JEPs.

Adopting a threshold of 10 then, is a useful means of speeding up mining
without appreciable loss of precision. For further work, it would be interesting
to see whether it is possible to automatically choose different thresholds ac-
cording to the characteristics of the input datasets or to develop more complex
thresholding criteria.

7 Summary and Future Work

In this paper we have developed efficient algorithms to mine emerging patterns.
We presented a mining algorithm that used tree data structures to explicitly
target the likely distribution of JEPs. This achieved considerable performance
gains over previous approaches. We also looked at methods for computing a
subset of the possible JEPs, corresponding to those with the highest support in
the dataset. These approximate methods achieved additional performance gains,
while still attaining competitive precision. For future work we intend to:

- Extend our techniques to handle finite growth rate emerging patterns.
- Investigate further ways of ordering trees and investigate whether methods
that have been developed in other machine learning contexts (e.g. for ranking

50

James Bailey et al.

attributes or splitting in decision trees) can help.
- Develop analytical justification for the hybrid tree’s performance.

Acknowledgements

This work was supported in part by an Expertise Grant from the Victorian
Partnership for Advanced Computing.

References

1.

10.

11.

12.

13.

14.

15.

16.

R. Agrawal and R. Skrikant. Fast algorithms for mining association rules. In Pro-
ceedings of the Twentieth International Conference on Very Large Data Bases,
Santiago, Chile, 1994. p. 487-499. 40

Bayardo, R. J. Efficiently Mining Long Patterns from Databases. SIGMOD 1998.
41

C. L. Blake and P. M. Murphy. UCI Repository of machine learning
[www.ics.uci.edu/ mlearn/MLRepository.html]. 45

C. V. Cormack, C. R Palmer and C. L. A. Clarke. Efficient construction of large test
collections. In Proceedings of the Twenty-first Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Melbourne,
Australia, 1998. p. 282-289.

De Raedt, L., Kramer, S. The Level-Wise Version Space Algorithm and its Appli-
cation to Molecular Fragment Finding. (IJCAI-01), 2001. 41

G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proceedings of the fifth International Conference on Knowledge
Discovery and Data Mining, San Diego, USA, (SIGK DD’99), 1999, p.43-52. 39,
40, 41, 43, 46

Dong, G., Li, J. and Zhang, X. Discovering Jumping Emerging Patterns and Ex-
periments on Real Datasets. (IDC99), 1999. 41

Fan, H. and Ramamohanarao, K. An efficient Single-scan Algorithm for mining
Essential Jumping Emerging Patterns for Classification Accepted at PAKDD-2002,
Taipei, May6-8, Taiwan.C. 40

J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the International Conference on Management of Data, Dallas,
Texas, USA (ACM SIGMOD), 2000. p. 1-12. 40, 42, 46

Kramer, S., De Raedt, L., Helma, C. Molecular Feature Mining in HIV Data. ACM
SIGKDD (KDD-01), 2001. 41

J. Li, G. Dong and K. Ramamohanarao. Making use of the most expressive jump-
ing emerging patterns for classification. In Proceedings of the Fourth Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Kyoto, Japan, 2000. p.
220-232. 39, 40, 41, 42

J. Li and L. Wong. Emerging patterns and Gene Expression Data. In proceedings
of 12th Workshop on Genome Informatics. Japan. December 2001, pages 3—-13. 39
Mannila, H. and Toivonen, H. Levelwise Search and Borders of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery 1(3), 1997. 41

T. M. Mitchell. Generalization as search. Artificial Intelligence, 18, 203-226, 1982.
40

Pasquier, N., Bastide, R., Taouil, R. and Lakhal, L. Efficient Mining of Association
Rules using Closed Itemset Lattices. Information Systems 24(1), 1999. 41

J. R. Quinlan: C4.5 Programs for Machine Learning. Morgan Kaufmann, 1993. 40

	Fast Algorithms for Mining Emerging Patterns
	Introduction
	Related Work

	Background and Terminology
	Trees
	Tree-Based JEP Mining
	Performance of Tree Mining
	Mining the Highest Support JEPs Using Thresholds
	Summary and Future Work
	Acknowledgements
	References

