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Abstract. This paper introduces a new method for explaining the pre-
dictions of ensembles of neural networks on a case by case basis. The
approach of explaining individual examples differs from much of the cur-
rent research which focuses on producing a global model of the phe-
nomenon under investigation. Explaining individual results is accom-
plished by modelling each of the networks as a rule-set and computing
the resulting coverage statistics for each rule given the data used to train
the network. This coverage information is then used to choose the rule or
rules that best describe the example under investigation. This approach
is based on the premise that ensembles perform an implicit problem space
decomposition with ensemble members specialising in different regions
of the problem space. Thus explaining an ensemble involves explaining
the ensemble members that best fit the example.

1 Introduction

Neural networks have been shown to be excellent predictors. In many cases their
prediction accuracy exceeds that of more traditional machine learning methods.
They are, however, unstable. This means that although two networks may be
trained to approximate the same function, the response of both neural networks
to the same input may be very different. Ensembles of networks have been used
to counteract this problem. An ensemble comprises a group of networks each
trained to approximate the same function. The results of executing each of these
networks is then combined using a method such as simple averaging [3] in the case
of regression problems, or voting in the case of classification problems. Ensembles
used in this way show great promise not only in increasing the stability but also
the accuracy of neural networks. The more diverse the members of the ensemble,
the greater the increase in accuracy of the ensemble over the average accuracy
of the individual members [6].

A further problem with neural networks is their ‘black box’ like nature. Users
are not able to interpret the complex hyperplanes that are used internally by the
network to partition the input space. A neural network may prove to be a better
predictor for a particular task than alternative interpretable approaches but it
is a black box. Therefore, substantial research has been done on the problem of
translating a neural network from its original state into alternative more under-
standable forms. However, despite the obvious advantages of ensembles, much
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less work has been done on the problem of translating ensembles of networks
into more understandable forms.

Zenobi & Cunningham [14] argue that the effectiveness of ensembles stems
in part from the ensemble performing an implicit decomposition of the problem
space. This has two consequences for explaining ensembles. First it implies that
a comprehensible model of the ensemble may be considerably more complex
than an individual network. But more importantly, it means that parts of the
ensemble will be irrelevant in explaining some examples.

Due to the increased complexity of ensembles, the objective of producing a
global explanation of the behaviour of the ensemble is very difficult to achieve. So
the goal of our research is focused on explaining specific predictions - a goal that
is achievable for ensembles. Whereas, in this paper we concentrate on explaining
ensembles of neural networks, our approach can be applied to any ensemble where
outputs of an ensemble member can be explained by rules. This local, rather than
global, approach to explanation is further elaborated in the next section. A brief
introduction to the types of neural networks investigated is given in section 3.2.
The behaviour of individual networks is modelled using rules derived from a
decision tree that is built to model the outputs of an individual neural network,
this is discussed in section 3.3. A method for selecting the most predictive of
these rules for any given case is then presented in section 3.4. Also included in
section 3.5 are some comments on how different policies may be used in different
circumstances depending on the user of the system. Finally, section 4 includes
an evaluation of the results with comments from an independent expert in the
area of study.

2 Explanation

Explanation is important in Machine Learning for three reasons:

– to provide insight into the phenomenon under investigation
– to explain predictions and thus give users confidence
– to help identify areas of the problem space with poor coverage, allowing a

domain expert to introduce extra-examples into the training set to correct
poor rules

The first of these objectives is ’Knowledge Discovery’ and can be achieved
by producing a global model of the phenomenon. This global model might be a
decision tree or a set of rules. Since Machine Learning techniques are normally
used in weak theory domains it is difficult to imagine a scenario where such a
global model would not be of interest. The second objective is more modest
but we argue is adequate in a variety of scenarios. In the next two subsections
we discuss why producing global explanations of ensembles is problematic and
consider situations where local (i.e. example oriented) explanation is adequate.
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2.1 Explaining Neural Networks

Many domains could benefit greatly from the prediction accuracy that neural
networks have been shown to possess. However, becuase of problems with the
black-box nature of neural networks(particularly in domains such as medical
decision support), there is a reluctance to use neural networks. Capturing this
prediction accuracy in a comprehensible format is behind the decision to generate
rules based on neural networks in this research.

Most of the work on explaining neural networks has focused on extracting
rules that explain them; a review of this work is available in [13]; a more in depth
discussion of specific methods is available in [1].

The research on rule extraction can be separated into two approaches, direct
decomposition and black box approaches. In a direct decomposition approach
interpretable structures (typically trees or rules) are derived from an analysis
of the internal structure of the network. With black box approaches, the inter-
nals of the network are not considered, instead the input/output behaviour of
the network is analysed (see section 3.3). Clearly, the first set of techniques is
architecture-specific while the black-box approaches should work for all architec-
tures. The big issue with these approaches is the fidelity of the extracted rules;
that is, how faithful the rule-set behaviour is to that of the net.

2.2 Explaining Ensembles

For the black-box approaches described in the previous section the contents of
the black-box can be an ensemble of neural networks, as easily as a single neural
net.

Domingos [8] describes a decision tree-based rule extraction technique that
uses the ensemble as an oracle to provide a body of artificial examples to feed a
comprehensible learner. Craven and Shavlik [5] describe another decision tree-
based rule extraction technique that uses a neural network as an oracle to pro-
vide a body of artificial examples to feed a comprehensible learner. Clearly, this
technique would also work for an ensemble of neural networks.

The big issue with such an approach is the fidelity of the extracted rules;
that is, how closely they model the outputs of the ensemble. Craven and Shavlik
report fidelity of 91% on an elevator control problem. Emphasising the impor-
tance of the ensemble, Domingos reports that his technique preserves 60% of
the improvements of the ensemble over single models. He reports that there is
a trade-off between fidelity and complexity in the comprehensible models gen-
erated; models with high fidelity tend to be quite complex. It is not surprising
that comprehensible models that are very faithful to the ensemble will be very
complex; and thus less comprehensible.

2.3 Global versus Local Explanation

The focus of this paper is on explaining predictions on a case by case basis.
This is different to the current thrust of neural network explanation research.
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One author who has also taken this approach is Sima [12] and his approach is
reviewed by Cloete and Zurada [4]. Local explanations of time-series predictions
have also been explored by Das et al. [7].

Most other researchers have focused on producing global model explanations.
These models aim to fully describe all situations in which a particular event will
occur. Although this may be useful in many situations, it is argued here that
it is not always appropriate. For example, it may be useful in the problem of
predicting success in IVF(in-vitro fertilisation) research for instance, studied by
Cunningham et al. [6] ,to produce a global model of the phenomenon. Such
a model would allow practitioners to spend time understanding the conditions
leading to success and to focus their research on improving their techniques. Also,
a global model would allow the targeting of potential recipients of the treatment
who have a high probability of success. This would lead to a monetary saving for
the health service and would avoid great disappointment for couples for whom
the treatment would most likely fail. A global model might also allow doctors
to suggest changes a couple might make in order to improve their chances of
success with the treatment.

In the accident and emergency department of a busy hospital, the explanation
requirement would be quite different. Here the need is for decision support rather
than knowledge discovery. What is needed is an explanation of a decision in terms
of the symptoms presented by individual patients.

3 System Description

3.1 Datasets

Two datasets were used in the analysis presented in this paper. Since the objec-
tive of the research is to produce explanations of predictions the main evaluation
is done on some Bronchiolitis data for which we have access to a domain expert.
This data relates to the problem of determining which children displaying symp-
toms of Bronchiolitis should be kept in hospital overnight for observation. This
data set comprising 132 cases has a total of 22 features, composed of 10 con-
tinuous and 12 symbolic and a single binary output reflecting whether the child
was kept overnight or not.

In order to provide some insight into the operation of the system we also
include some examples of explanations for the Iris data-set [2]. This is included
to show graphically the types of rules that are selected by the system.

3.2 Neural Networks

The neural networks used in this system are standard feed-forward networks
trained using backpropagation. It is well known that although neural networks
can learn complex relationships, they are quite unstable. They are unstable in
the sense that small changes in either the structure of the network(i.e. number
of hidden units, initial weights etc.) or in the number of training data may lead
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to quite different predictions from the network. An effective solution is to use a
group (ensemble) of networks trained to approximate the same function, and to
aggregate the outputs of the ensemble members to produce a prediction [6,9].

One technique for dividing the data and combining the networks is bagging [3]
(short for bootstrap aggregating). This involves randomly selecting examples
with replacement from the full set of data available for training. If the size of
these bootstrap sets is the same as the full training set, roughly a third of the
examples will not be selected at all for each individual sample. These remaining
samples can be used as a validation set to avoid overfitting the network to the
data. For regression tasks Breiman [3] simply takes the average of the individual
network outputs as the ensemble output. For the classifications tasks used in
this evaluation, majority voting is used to determine the ensemble prediction.

Ensembles have the added benefit that in reducing the instability of networks
the prediction performance is also improved by averaging out any errors that may
be introduced by individual networks. The more unstable the networks, the more
diverse the networks and thus the greater the improvement of the ensemble over
the accuracy of the individual networks.

3.3 Rule Extraction

The approach to explaining ensembles of neural networks that we describe here
involves extracting rules from the individual networks in the ensemble, finding
the rules that contribute to the prediction and selecting the rules that best fit the
example. The approach we use for rule extraction is a fairly standard black-box
approach - similar to that used by Domingos [8]. One major difference between
our approach and that of Domingos is that Domingos built a single tree based on
the results of using the ensemble as an oracle. We also implemented this solution
and compared it with our approach; the results of both approaches are included
in the evaluation. Our rule extraction process uses the neural networks as oracles
to train a decision trees using C4.5 [10]. C4.5Rules is then used to extract rules
from this decsion tree. The steps are as follows:

1. Generate artificial data by small perturbations on the available training data.
2. Use the neural network to predict an output (i.e. label) for this data.
3. Use this labeled data to train a C4.5 decision tree.
4. Extract rules from this decision tree using C4.5Rules

This yields a set of rules that model the neural net with reasonable fidelity.
This number of rules actually produced can be controlled by setting the pruning
parameter in the process of building the tree.

3.4 Rule Selection

After training an ensemble of networks and building decision trees to model the
behaviour of the individual networks we are left with a group of rule-sets, one
for each network. The task then is to find the most predictive of these rules for
a given input. This is accomplished by executing the following steps:
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– Apply each of the rule-sets to the example to produce a prediction from that
rule-set

– The rule-sets vote among themselves to decide the overall ensemble predic-
tion
• Any rule-set that did not vote for this predicted outcome is now discarded
• Rules that did not vote for the winning prediction within the remaining

rule-sets are also discarded
• This leaves only rules that contributed to the winning prediction

It is from this subset of relevant rules that the most relevant rules will be
chosen. In order to select the most relevant rules, it is first necessary to know
some statistics about these rules. These are computed after initially producing
each rule set.

Rule Coverage Statistics After producing each rule-set, it is necessary to
propagate each data item in the set of data used to train the network through
each rule. If a rule fires for a particular example and both the example and the
rule have the same target, then this example is saved with the rule. The number
of examples saved with the rule is considered to be the coverage for that rule.

However, it is possible to go beyond a simple coverage figure. This is done
by analysing the individual rule antecedents with respect to the examples cov-
ered. For each antecedent in the rule that tests a numeric feature, the mean and
standard deviation of the values of that feature contained within the examples
covered by that rule can be calculated. The is shown graphically for a single fea-
ture in Figure 1. For antecedents testing symbolic features, a perfect fitness score
is automatically assigned since any example firing that rule must by definition
have the value of that symbolic feature.

X

Meanx2 x1

Rule antecedent: x2 < X < x1

Fig. 1. Number line showing limit of rule antecedent test and several values from
examples that fired this rule

Having calculated the above statistics for each of the antecedents, it is now
possible to calculate the ”fit” of future unseen examples to each of the rules.

Firstly a fit is calculated for each of the numeric features in the rule. This is
calculated using equation 1.

FitX =
∣
∣
∣
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The antecedent with the maximum (i.e. poorest) fitness score is then selected as
the fit for the rule as a whole. This is similar to the approach taken in MYCIN [11]
as shown in equation 2.

MB[h1 ∧ h2, e] = min(MB[h1, e], MB[h2, e]) (2)

In this case the measure of belief(MB) in two terms in conjunction in a rule
would be the MB of the weaker term.

Finally, basing the fitness on the distance from the mean is not appropriate
in situations where a term is only limited on one side (e.g the first example in
section 4.1). In those situations, an example with a feature value on the far side
of the mean to the limit is given the maximum fitness, i.e. it is considered to fit
the rule well.

3.5 Rule Selection Policies

This fitness measure gives us our main criteria for ranking rules and, so far, has
proved quite discriminating in examples examined. However in the Bronchiolitis
scenario (see section 4.2) ties can occur when a group of rules all have maximum
fitness. Ties can be resolved in these situations by considering rule specificity,
i.e. the number of terms in the rule. In situations where simple explanations
are preferred, rules with few terms are preferred. In situations where elaborate
explanations might be interesting rules with more terms in the left-hand-side
can be ranked higher.

The doctor examining the results of the Bronchiolitis data suggested that,
in practice, simple explanations might be appropriate for holding a patient
overnight whereas more elaborate explanations might be necessary for discharge.
The logic behind this is that a single symptom might be enough to cause con-
cern about a child whereas to discharge a child no adverse symptoms should be
observable.

So in selecting and ranking rules to explain the Bronchiolitis data the main
criterion was the ranking based on the rule fit. Then ties were resolved by se-
lecting the most simple rules for admissions and the most complex rules for
discharges. This produced very satisfactory results.

4 Evaluation

Evaluation of this research is not straightforward. To appreciate the quality of
the suggested rules, it is necessary to have a good understanding of the domain
under investigation. For this reason, the results generated for the Bronchiolitis
dataset were given to an expert in this area and his opinions are recorded in
section 4.2.

For each of the datasets a total of ten examples were held back from training
of the networks and used for evaluation only. For each one of these examples the
five most predictive rules were chosen. Also included in the results was a second
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set of rules selected from rules that were extracted from a decision tree that
was trained to model the behaviour of the vote over the ensemble of networks.
This second set of results was included as a comparison to see if the system
could select more accurate rules given the more diverse rule-sets of the ensemble
members.

4.1 Iris Dataset

In order to offer some insight into the operation of the system, we can show some
examples of it in operation on the Iris dataset [2]. The Iris data contains three
classes and four numeric features so the rules are much simpler than those pro-
duced for Bronchiolitis. This dataset is so simple in fact that the fidelity results
are close to perfect. In order to make the problem somewhat more difficult(and
to produce more diverse ensemble members) the total number of examples for
each class was cut from 50 to 20. A plot of the training data in two dimensions
is shown in Figure 2.
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Fig. 2. Iris data plotted in two dimensions

From Figure 2 we can see how the two following rules were selected to explain
two different examples. The number in the square brackets preceding the rules
is the fit for the example for that rule. The first rule classifies an Iris-setosa. The
zero fit indicates that the example being tested fell on the far side of the mean
for the rule and hence was given a maximum fit as described in section 3.4. The
second rule classifies the example indicated by the arrow in the figure. It has a
fit of 0.76 because this example is actually quite close to the limit for the second
term for that rule. The example fits the first term well but the poorer fitness is
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chosen as the overall fitness for the rule. Nevertheless this rule was selected as
the best rule from and ensemble of 9 members.

[0.000000]
IF petal_length <= 1.874200
THEN Iris-setosa

[0.759346]
IF sepal_length <= 6.120790
AND 1.874200 < petal_length <= 4.797420
THEN Iris-versicolor

4.2 Bronchiolitis Dataset

In the case of the Bronchiolitis dataset Paul Walsh, a doctor in Crumlin Chil-
dren’s Hospital Dublin and the original provider of the data wrote a response to
each of the selected rules for each of the tested examples.

Before analysing some of the comments of the expert, some statistics are
included in Table 1 describing important characteristics of the network and rules.
These statistics were calculated using 10 fold cross validation with an ensemble of
five neural networks per fold. The accuracies for each network and its associated
extracted rules were calculated on the remaining data in each fold. The fidelity
between the network and rule results was also calculated. Finally the results
from all the individual networks in a single fold were combined using voting to
produce an accuracy for the ensemble.

Table 1. Average and standard deviation figures for the accuracy and fidelity
using 10-fold cross validation on Bronchiolitis data

Average Ensemble Accuracy 73% ± 9

Average Network Accuracy 69% ± 12

Average Rule-set Accuracy 67% ± 12

Average Network/Rules Fidelity 84% ± 9

The fidelity result in Table 1 is of particular interest. The fidelity figure is a
measure of how well the rules actually model the network behaviour. This mea-
sure is estimated by executing both the network and the rules with all the data.
The fidelity is the percentage of times the rule-sets agree with the associated
network. Clearly it is important that this figure be as high as possible.

The results in Table 1 show that we get a reasonable improvement in accuracy
from using ensembles in the Bronchiolitis dataset. We also get increased stability,
the individual network results in the ensembles varied more than the ensemble
results.
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In general many of the rules considered ’excellent’ in the sets presented to
the expert were among the first presented(i.e. those with the greatest fitness).
From this it would appear that the fitness criterion was effective in selecting
good rules. An example of one of these rules is included below:

IF Dehydration = None
AND Retractions = None
AND 92.397100 < SaO_2_2
AND BS <= 0.358798
THEN DISCHARGE

In the rule above there are two tests on numeric features and two on symbolic
features. The fitness is influenced by the numeric features since the fitness on
symbolic features will be ’perfect’ if the rule applies to the example.

In more detail, the domain expert was asked to examine and rate rules ex-
plaining 10 examples. At most five ranked rules were presented to the expert as
good explanations for the prediction(some examples had fewer than five rules
that fired from all rule-sets in the ensemble). In addition to these ranked rules,
rules that comprised solely of antecedents testing symbolic features were also
presented. Rules comprising symbolic features only will automatically have per-
fect fitness. In total there 60 rules were presented to the expert to explain the
10 examples and 90% of these were correct explanations.

A very small number of rules were marked as definitely being incorrect(4
examples had wrong rules). Of the remaining rules, all contributed in aiding the
explanation of the prediction according to the expert. In just eight rules, one of
the antecedents in the rule selected did not add much to the knowledge contained
within the rule, although the rule as a whole was still considered acceptable. Of
the remaining rules, six were marked as excellent, indicating that those rules
described almost exactly the published criteria for decision making and covered
all of the most important features in a single rule.

By comparison, the rules selected from the set of rules derived from the
decision tree built to model the ensemble as a whole were less useful. There were
only seventeen rules in total(there were far fewer rules in the single ruleset to
select from) and of these only two were marked as excellent and three contained
wrong or misleading antecedents.

It is interesting to note that in both cases above, the rules with antecedents
comprising tests of only symbolic features are only once marked as excellent
and once marked as wrong. Most of the rest of these rules were described as
“common sense” by the expert.

A final note of interest is that for predictions to send a child home, the
explanations given were consistently more accurate(this was true for both the
rules selected from the individual networks and from the rules derived from
the ensemble targets). This could be due to the fact that any child that goes
home, is more likely to display very well defined symptoms. While a child whose
symptoms may not have reached critical levels is admitted because the doctor
knows through intution that the child will soon display those levels.
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4.3 General Observations on Medical Datasets

Some final points should be noted about medical datasets in general that could
lead to skewed results:

– Subjective features may exist where the opinions of those collecting the data
may have differed.

– Several of the examples in the dataset may have been influenced by envi-
ronmental factors that cannot be expressed in the data and may have been
responsible for a prediction that otherwise wouldn’t normally be the case.
For example, in the Bronchiolitis scenario there might be concern about the
home environment into which a child might be discharged.

Both of these facts are, for all practical purposes, unavoidable in medical datasets
and present a particular challenge to the researcher during their analysis.

5 Conclusions & Future Work

These results encourage us that explanations built from rules derived from com-
ponent neural networks will be more insightful that rules derived from the en-
semble as a whole. This work was based on the hypothesis that the effectiveness
of ensembles depends on members of the ensemble specialising in different re-
gions of the problem space. Thus, an explanation of a prediction of an ensemble
for an individual example needs to seek out this specialising member. Explana-
tions based on viewing the ensemble as a black-box will be more bland. This
preliminary evaluation seems to support this.

The process of rule ranking based on the fitness criterion described here is
not yet a complete solution. Problems still exist for rules that have only symbolic
features since these will automatically get maximum fitness and this will often
not be appropriate. There is also the potential for rules with numeric features to
have maximum fitness as explained in section 4; however, the use of antecedent
specificity as a further criterion to address this issue shows promise.

It became clear during the evaluation that features that were not strongly
predictive were turning up in rules where they were not useful. Because of this
we propose to precede the whole process with a feature selection process to weed
out poorly predictive features. In general, it seems to us wise to precede any
explanation exercise with feature selection since it will relieve the explanation
process of the burden of accounting for features that are not very relevant.
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