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Abstract. Easily comprehensible ways of capturing main differences be-
tween two classes of data are investigated in this paper. In addition to
examining individual differences, we also consider their neighbourhood.
The new concepts are applied to three gene expression datasets to dis-
cover diagnostic gene groups. Based on the idea of prediction by collective
likelihoods (PCL), a new method is proposed to classify testing samples.
Its performance is competitive to several state-of-the-art algorithms.

1 Introduction

An important problem in considering two classes of data is to discover signif-
icant differences between the two classes. This type of knowledge is useful in
biomedicine. For example, in gene expression experiments [1,6], doctors and
biologists wish to know genes or gene groups whose expression levels change
sharply between normal cells and disease cells. Then, these genes or their pro-
tein products can be used as diagnostic indicators or drug targets of that specific
disease.

Based on the concept of emerging patterns [3], we define a difference as a
set of conditions that most data of a class satisfy but none of the other class
satisfy. We investigate the geography—properties of neighbourhoods—of these
differences. The differences include those corresponding to boundary rules for
separating the two classes, those at the same level of significance in one class, and
those at lower part of the boundaries. After examining these neighbourhoods, we
can identify differences that are more interesting. We first discuss our ideas in a
general sense. Then we apply the methods to three gene expression datasets [1,6]
to discover interesting gene groups. We also use the discovered patterns to do
classification and prediction.

Suppose we are given two sets of relational data where a fixed number of fea-
tures (also called attributes) exist. Every feature has a range of numeric real val-
ues or a set of categorical values. A condition (also called item) is defined as a pair
of a feature and its value. An example of a condition (an item) is “the expression
of gene_x is less than 1000”. We denote this condition by gene_r@(—o0,1000),
where the feature is gene_x and its value is (—o0, 1000). An instance (or a sam-
ple) is defined as a set of conditions (items) with a cardinality equal to the
number of features in the relational data.
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A pattern is a set of conditions. A pattern is said to occur in an instance
if the instance contains it. For two classes of instances, a pattern can have a
very high occurrence (equivalently, frequency) in one class, but can change to a
low or even zero occurrence in the other class. Those patterns with a significant
occurrence change are called emerging patterns (EPs) [3]. Here, our differences
are those described by EPs.

This paper is organized as follows: Firstly, we present a formal description
of the problems, including the definition of boundary EPs, plateau spaces, and
shadow patterns, and present a related work. Then we describe convex spaces
and prove that all plateau spaces satisfy convexity. This property is useful in
concisely representing large pattern spaces. We also try to categorize boundary
EPs using the frequency of their subsets. Then we present our main results,
patterns discovered from biological data, and explain them in both biological and
computational ways. To show the potential of our patterns in classification, we
propose a new method that sums the collective power of individual patterns. Our
accuracy is better than other methods. Then we briefly report our recent progress
on a very big gene expression dataset which is about the subtype classification
and relapse study of Acute Lymphoblastic Leukemia.

2 Problems and Related Work

Three types of patterns—boundary EPs, plateau EPs, and shadow patterns—are
investigated in this work. Let us begin with a definition of emerging patterns.

Definition 1. Given two classes of data, an emerging pattern is a pattern whose
frequency in one class is non-zero but in the other class is zero.

Usually, the class in which an EP has a non-zero frequency is called the
EP’s home class or its own class. The other class in which the EP has the zero
frequency is called the EP’s counterpart class.

2.1 Boundary EPs

Many EPs may have very low frequency (e.g. 1 or 2) in their home class. So
boundary EPs are proposed to capture big differences between the two classes:

Definition 2. A boundary EP is an EP whose proper subsets are not EPs.

How do boundary EPs capture big differences? If a pattern contains less
number of items (conditions), then the frequency (probability) that it occurs
in a class becomes larger. Removing any one item from a boundary EP thus
increases its home class frequency. However, by definition of boundary EPs, the
frequency of any of its subsets in the counterpart class must be non-zero. There-
fore, boundary EPs are maximally frequent in their home class. They separate
EPs from non-EPs. They also distinguish EPs with high occurrence from EPs
with low occurrence.
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Efficient discovery of boundary EPs has been solved in our previous work [12].
Our new contribution in this work is the ranking of boundary EPs. The number
of boundary EPs is sometimes large. The top-ranked patterns can help users
understand applications better and easier. We also propose a new algorithm to
make use of the frequency of the top-ranked patterns for classification.

2.2 Plateau EPs and Plateau Spaces

Next we discuss a new type of emerging patterns. If one more condition (item)
is added to a boundary EP, generating a superset of the EP, the new EP may
still have the same frequency as the boundary EP’s. We call those EPs having
this property plateau EPs:

Definition 3. Given a boundary EP, all its supersets having the same frequency
are called its plateau EPs.

Note that boundary EPs themselves are trivially their plateau EPs. Next we
define a new space, looking at all plateau EPs as a whole.

Definition 4. All plateau EPs of all boundary EPs with the same frequency are
called a plateau space (or simply, a P-space).

So, all EPs in a P-space are at the same significance level in terms of their
occurrence in both their home class and counterpart class. Suppose the home
frequency is n, then the P-space is specially denoted P, -space.

We will prove that all P-spaces have a nice property called convezity. This
means a P-space can be succinctly represented by its most general and most
specific elements.! We study how P-spaces contribute to the high accuracy of
our classification system.

2.3 Shadow Patterns

All EPs defined above have the same infinite frequency growth-rate from their
counterpart class to their home class. However, all proper subsets of a boundary
EP have a finite frequency growth-rate as they occur in both the classes. It
is interesting to see how these subsets change their frequency between the two
classes by studying the growth rates. Next we define shadow patterns, which are
special subsets of a boundary EP.

Definition 5. All immediate subsets of a boundary EP are called shadow pat-
terns.

Shadow patterns can be used to measure the interestingness of boundary EPs.
Given a boundary EP X, if the growth-rates of its shadow patterns approach
400, then the existence of this boundary EP is reasonable. This is because the

! Given a collection C of patterns and A € C, A is most general if there is no proper
subset of A in C. Similarly, A is most specific if there is no proper superset of A in

C.
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possibility of X being a boundary EP is large. Otherwise if the growth-rates of
the shadow patterns are on average around small numbers like 1 or 2, then the
pattern X is adversely interesting. This is because the possibility of X being a
boundary EP is small; the existence of this boundary EP is “unexpected”. This
conflict may reveal some new insights into the correlation of the features.

2.4 Related Work on EPs

The general discussion of EP spaces has been thoroughly studied in our earlier
work [12]. It has been proven that every EP space is a convex space. The efficient
discovery of boundary EPs was a problem and it was solved by using border-
based algorithms [3,12]. Based on experience, the number of boundary EPs is
usually large— from 100s to 1000s depending on datasets. So, the ranking and
visualization of these patterns is an important issue. We propose some ideas here
to sort and list boundary EPs.

The original idea of the concept of emerging patterns is proposed in [3].
General definition of EPs, its extension to spatial data and to time series data,
and the mining of general EPs can be also found there [3]. This paper discusses
two new types of patterns: plateau patterns and shadow patterns. They are
closely related to boundary EPs. We study these three types of patterns together
here.

The usefulness of EPs in classification has been previously investigated [4,11].
We propose in this paper a new idea that only top-ranked boundary EPs are
used in classification instead of using all boundary EPs. This new idea leads to
a simple system without any loss of accuracy and can avoid the effect of possible
noisy patterns.

3 The Convexity of P-spaces

Convexity is an important property of a certain type of large collections. It can
be exploited to concisely represent those collections of large size. Next we give
a definition of convex space. Then we prove that our P-spaces satisfy convexity.

Definition 6. A collection C of patterns is a convex space if, for any pat-
terns X, Y, and Z, the conditions X CY C Z and X,Z € C imply that
Y eC.

If a collection is a convex space, it is said to hold convezity. More discussion
about convexity can be found in [7].

Ezample 1. The patterns {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, and {a,b,d} form
a convex space. The set £ consisting of the most general elements in this space
is {{a}}. The set R cousisting of the most specific elements in this space is
{{a,b,c},{a,b,d}}. All the other elements can be considered to be “between” L
and R.
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Theorem 1. Given a set Dp of positive instances and a set Dy of negative
instances, every Pp-space (n > 1) is a convex space.

Proof. By definition, a P,,-space is the set of all plateau EPs of all boundary EPs
with the same frequency of n in the same home class. Without loss of generality,
suppose two patterns X and Z satisfy (1) X C Z; (ii) X and Z are plateau EPs
having the occurrence of n in Dp. Then, for any pattern Y satisfy X CY C Z,
it is a plateau EP with the same n occurrence in Dp. This is because

1. X does not occur in Dy. So, Y, a superset of X, does not occur in Dy
either.

2. The pattern Z has n occurrences in Dp. So, Y, a subset of Z, also has a
non-zero frequency in Dp.

3. The frequency of Y in Dp must be less than or equal to the frequency of X,
but must be larger than or equal to the frequency of Z. As the frequency of
both X and Z is n, the frequency of Y in Dp is also n.

4. X is a superset of a boundary EP, thus Y is a superset of some boundary
EPas X CY.

By the first two points, we can infer that Y is an EP of Dp. From the third
point, we know that Y’s occurrence in Dp is n. Therefore, with the forth point
above, Y is a plateau EP. Then we have proven that every P,,-space is a convex
space.

A plateau space can be bounded by two sets similar to the sets £ and R as
shown in example 1. The set £ consists of the boundary EPs. These EPs are the
most general elements of the P-space. Usually, features contained in the patterns
in R are more numerous than the patterns in £. This indicates that some feature
groups can be expanded while keeping their significance.

The structure of an EP space can be understood in a way by decomposing the
space into a series of P-spaces and a non P-space. This series of P-spaces can be
sorted according to their frequency. Interestingly, one of them with the highest
frequency is a version space [14,8] if the EPs have the full 100% frequency in
their home class.

4 Our Discovered Patterns from Gene Expression
Datasets

We next apply our methods to two public datasets. One contains gene expression
levels of normal cells and cancer cells. The other contains gene expression levels
of two main subtypes of a disease. We report our discovered patterns, including
boundary EPs, P-spaces, and shadow patterns. We also explain these patterns
in a biological sense.
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Table 1. Two publicly accessible gene expression datasets

Dataset Gene number Training size Classes
Leukemia 7129 27, 11 ALL, AML
Colon 2000 22,40 Normal, Cancer

4.1 Data Description

The process of transcribing a gene’s DNA sequence into RNA is called gene
expression. After translation, RNA becomes proteins consisting of amino-acid
sequences. A gene’s expression level is the rough number of copies of that gene’s
RNA produced in a cell.

Gene expression data, obtained by highly parallel experiments using tech-
nologies like oligonucleotide ‘chips’ [13], record expression levels of genes under
specific experimental conditions. By conducting gene expression experiments,
one hopes to find possible trends or regularities of every single gene under a
series of conditions, or to identify genes whose expressions are good diagnostic
indicators for a disease.

A leukemia dataset [6] and a colon tumor dataset [1] are used in this pa-
per. The former contains a training set of 27 samples of acute lymphoblastic
leukemia (ALL) and 11 samples of acute myeloblastic leukemia (AML), and a
blind testing set of 20 ALL and 14 AML samples. (ALL and AML are two main
subtypes of the leukemia disease.) The high-density oligonucleotide microarrays
used 7129 probes of 6817 human gene. All these data are public available at
http://www.genome.wi.mit.edu/MPR. The second dataset consists of 22 nor-
mal and 40 colon cancer tissues. The expression level of 2000 genes of these sam-
ples are recorded. The data is available at http://microarray.princeton.edu/
oncology/affydata/index.html. We use Table 1 to summarize the data.
A common characteristic of gene expression data is that the number of samples
is not large and the number of features is high in comparison with commercial
market data.

4.2 Gene Selection and Discretization

A major challenge in analysing gene expression data is the overwhelming num-
ber of features. How to extract informative genes and how to avoid noisy data
effects are important issues. We use an entropy-based method [5,9] and the CFS
(Correlation-based Feature Selection) algorithm [16] to perform feature selection
and discretization.

The entropy-based discretization method ignores those features which con-
tain a random distribution of values with different class labels. It finds those
features which have big intervals containing almost the same class of points.
The CFS method is a post-process of the discretization. Rather than scoring
(and ranking) individual features, the method scores (and ranks) the worth of
subsets of the discretized features [10].
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Table 2. Four most discriminatory genes of the 7129 features. Each feature is
partitioned into two intervals using the cut points in column 2. The item index
is convenient for writing EPs

Features Cut Point Item Index
Zyxin 994 1,2
FAH 1346 3,4
CST3 1419.5 5,6
Tropomyosin 83.5 7,8

4.3 Patterns Derived from the Leukemia Data

The CFS method selects only one gene, Zyxin, from the total of 7129 features.

The discretization method partitions this feature into two intervals using the cut

point at 994. Then, we discovered two boundary EPs,
{gene_zyxin@Q(—00,994)} and {gene_zyrin@[994, +0)},

having a 100% occurrence in their home class.

Biologically, these two EPs say that if the expression of Zyxin in a cell is
less than 994, then this cell is an ALL sample. Otherwise this cell is an AML
sample. This rule regulates all 38 training samples without any exception. If
this rule is applied to the 34 blind testing samples, we obtained only three mis-
classifications. This result is better than the accuracy of the system reported
in [6].

Biological and technical noise sometimes happen in many stages such as in
the production of DNA arrays, the preparation of samples, the extraction of
expression levels, and may be from the impurity or mis-classification of tissues.
To overcome these possible machine and human minor errors, we suggest to use
more than one gene to strengthen our system as shown later.

We found four genes whose entropy values are significantly less than all the
other 7127 features when partitioned by the discretization method. We used
these four genes for our pattern discovery whose name, cut points, and item
indexes are listed in Table 2.

We discovered a total of 6 boundary EPs, 3 each in the ALL and AML classes.
Table 3 presents the boundary EPs together with their occurrence and the per-
centage of the occurrence in the whole class. The reference numbers contained
in the patterns can be interpreted using the interval index in Table 2.

Biologically, the EP {5, 7} as an example says that if the expression of CST3
is less than 1419.5 and the expression of Tropomysin is less than 83.5 then this
sample is ALL with 100% accuracy. So, all those genes involved in our boundary
EPs are very good diagnostic indicators for classifying ALL and AML.

We discovered a P-space based on two boundary EPs of {5, 7} and {1}. This
Par-space consists of five plateau EPs: {1}, {1,7}, {1,5}, {5,7}, and {1,5,7}.
The most specific plateau EP is {1,5,7} and it still has a full occurrence of 27
in the ALL class.
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Table 3. Three boundary EPs in the ALL class and three boundary EPs in the
AML class

Boundary EPs Occurrence in ALL (%) Occurrence in AML (%)

(5,7} 27 (100%) 0
{1} 27 (100%) 0
{3} 26 (96.3%) 0
{2} 0 11 (100%)
{8} 0 10 (90.9%)
{6} 0 10 (90.9%)

Table 4. Here only top 5 ranked boundary EPs in the normal class and in the
cancerous class are listed. The meaning of the reference numbers contained in
the patterns are not presented due to page limitation

Boundary EPs Occurrence Normal (%) Occurrence Cancer (%)
12,6,7,11, 21, 23,31} 18 (31.8%) 0
{2,6,7,21,23,25,31} 8 (81.8%) 0
(2,6,7,9,15,21,31} 8 (81.8%) 0
{2,6,7,9,15, 23,31} 18 (81.8%) 0
(2,6,7,9,21,23,31} 8 (81.8%) 0
{14, 34,38} 0 0 (75.0%)
{18, 34, 38} 0 6 (65.0%)
{18, 32,38, 40} 0 5 (62.5%)
(18,32, 44} 0 5 (62.5%)
(20,34} 0 5 (62.5%)

4.4 Patterns Derived from the Colon Tumor Data

This dataset is a bit more complex than the ALL/AML data. The CFS method
selected 23 features from the 2000 as most important. All of the 23 features were
partitioned into two intervals.

We discovered 371 boundary EPs in the normal cells class, and 131 boundary
EPs in the cancer cells class. The total 502 patterns were ranked according to
the these criteria:

1. Given two EPs X; and X}, if the frequency of X; is larger than X, then X;
is prior to X in the list.

2. When the frequency of X; is equal to Xj, if the cardinality of X; is larger
than X, then X; is prior to X in the list.

3. If their frequency and cardinality are both identical, then X; is prior to X
when X is first produced.

Some top ranked boundary EPs are reported in Table 4.

Unlike the ALL/AML data, in the colon tumor dataset there does not ex-
ist single genes acting as arbitrator to separate normal and cancer cells clearly.
Instead, gene groups are contrasting the two classes. Note that these boundary
EPs, especially those having many conditions, are not obvious but novel to biol-
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Table 5. Most general and most specific elements in a P1g-space in the normal
class of the colon data

Most general and specific EPs Occurrence in Normal

{2,6,7,11, 21,23, 31} 18
{2,6,7,21,23,25,31} 18
{2,6,7,9,15,21,31} 18
{2,6,7,9,15,23,31} 18
{2,6,7,9,21,23,31} 18
{2,6,9,21,23,25,31} 18
{2,6,7,11,15,31} 18
{2,6,11,15,25,31} 18
{2,6,15,23,25,31} 18
{2,6,15,21,25,31} 18
{2,6,7,9,11,15,21,23, 25,31} 18

Table 6. A boundary EPs and its three shadow patterns

Patterns  Occurrence in Normal Occurrence in Cancer

{14,34, 38} 0 30
{14, 34} 1 30
{14,38} 7 38
{34, 38} 5 31

ogists and medical doctors. They may reveal some new protein interactions and
may be used to find new pathways.

There are a total of ten boundary EPs having the same highest occurrence of
18 in the normal cells class. Based on these boundary EPs, we found a Pyg-space
in which the only most specific element is Z = {2,6,7,9,11, 15,21, 23,25,31}. By
convexity, any subsets of Z but superset of anyone of the ten boundary EPs have
the occurrence of 18 in the normal class. Observe that there are approximately
one hundred EPs in this P-space. While by convexity, we can concisely represent
this space using only 11 EPs which are shown in Table 5.

From this P-space, it can be seen that significant gene groups (boundary
EPs) can be expanded by adding some other genes without loss of significance,
namely still keeping high occurrence in one class but absence in the other class.
This may be useful in identifying a maximum length of a pathway.

We found a P3g-space in the cancerous class. The only most general EP in this
space is {14, 34,38} and the only most specific EP is {14, 30, 34, 36, 38,40, 41, 44,
45}. So a boundary EP can be extended by six more genes without a reduction
in occurrence.

It is easy to find shadow patterns. Below, we report a boundary EP and
its shadow patterns (see Table 6). These shadow patterns can also be used to
illustrate the point that proper subsets of a boundary EP must occur in two
classes at non-zero frequency.



334 Jinyan Li and Limsoon Wong

5 Usefulness of EPs in Classification

In the previous section, we have found many simple EPs and rules which can well
regulate gene expression data. Next we propose a new method, called PCL, to
test the reliability and classification potential of the patterns by applying them
to the 34 blind testing sample of the leukemia dataset [6] and by conducting a
Leave-One-Out cross-validation (LOOCV) on the colon dataset.

5.1 Prediction by Collective Likelihood (PCL)

From the leukemia training data, we first discovered two boundary EPs which
form a simple rule. So, there was no ambiguity in using the rule. However, a
large number of EPs were found in the colon dataset. A testing sample may
contain not only EPs from its own class, but it may also contain EPs from its
counterpart class. This makes the prediction a bit more complicated. Naturally,
a testing sample should contain many top-ranked EPs from its own class and
contain a few low-ranked, preferably no, EPs from its opposite class. However,
according to our observations, a testing sample can sometimes, though rarely,
contain 1 to 20 top-ranked EPs from its counterpart class. To make reliable
predictions, it is reasonable to use multiple highly frequent EPs of the home
class to avoid the confusing signals from counterpart EPs.

Our method is described as follows: Given two training datasets Dp and Dy
and a testing sample T', the first phase of our prediction method is to discover
boundary EPs from Dp and Dy. Denote the ranked EPs of Dp as,

TopEP_P_1,TopEP_P2,--- ,TopEP_P 1,

in descending order of frequency. Similarly, denote the ranked boundary EPs of
Dy as
TopEP_N_1,TopEP_N_2,--- TopEP_N_j

also in descending order of frequency. Suppose T contains the following EPs of
Dp:
TopEP_P_i1,TopEP_P_iy, -, TopEP_P_i,

where i1 < ig < -+ < i, <, and the following EPs of Dy:
TopEP_N_ji,TopEP_N _ja,---,TopEP_N_j,,

where j; < jo <--- < jy <.

The next step is to calculate two scores for predicting the class label of T
Suppose we use k (k < i and k < j) top-ranked EPs of Dp and Dy . Then we
define the score of T in the Dp class as

)0 Z frequency(TopEP_P _i,,)
score(T =
P frequency(TopEP_P_m)’
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Table 7. By LOOCV on the colon dataset, our PCL’s error rate comparison
with other methods

Methods Error Rates
C4.5 20

NB 13

k-NN 28

SVM 24

Our PCL 13, 12, 10, 10, 10, 10

(k=5,6,7,8,9,10)

and similarly the score in the Dy class as

k

score(T) Dy = Z

m=1

frequency(TopEP_N _j,)
frequency(TopEP_N_m) "

If score(T)-Dp > score(T)-Dy, then T is predicted as the class of Dp. Otherwise
predicted as the class of Dy. We use the size of Dp and Dy to break tie.

The spirit of our proposal is to measure how far the top & EPs contained
in T are away from the top k EPs of a class. Assume k = 1, then score(T).Dp
indicates whether the number one EP contained in T is far from the most fre-
quent EP of Dp. If the score is the maximum value 1, then the “distance” is very
close, namely the most common property of Dp is also present in this testing
sample. With smaller scores, the distance becomes further. Thus the likelihood
of T belonging to the class of Dp becomes weaker. Using more than one top-
ranked EPs, we utilize a “collective” likelihood for more reliable predictions. We
name this method PCL (prediction by collective likelihood).

5.2 Classification Results

Recall that we also have selected four genes in the leukemia data as the most
important. Using PCL, we obtained a testing error rate of two mis-classifications.
This result is one error less than the result obtained by using the sole Zyxin gene.

For the colon dataset, using our PCL, we can get a better LOOCV error
rate than other classification methods such as C4.5 [15], Naive Bayes (NB) [10],
kE-NN, and support vector machine (SVM) [2]. We used the default settings of
the Weka package [16] and exactly the gene selection preprocessing steps as ours
to get the results. The result is summarized in Table 7.

5.3 Making Use of P-spaces for Classification: A Variant of PCL

Can the most specific elements of P-spaces be useful in classification? In PCL, we
tried to replace the ranked boundary EPs with the most specific elements of all
P-spaces in the colon dataset. The remaining process of PCL are not changed. By
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LOOCYV, we obtained an error rate of only six mis-classifications. This reduction
is significant.

The reason for this good result is that the neighbourhood of the most specific
elements of a P-space are all EPs in most cases, but there are many patterns in
the neighbourhood of boundary EPs that are not EPs. Secondly, the conditions
contained in the most specific elements of a P-space are usually much more than
the boundary EPs. So, with more number of conditions, the chance for a testing
sample to contain opposite EPs becomes smaller. Hence, the probability of being
correctly classified becomes higher.

6 Recent Progress

In a collaboration with St. Jude Children’s Research Hospital, our algorithm
has been applied to a big gene expression dataset [17]. This dataset consists of
the expression profile of 327 patients who suffered from Acute Lymphoblastic
Leukemia (ALL). Each instance is represented by 12,558 features. The purpose is
to establish a classification model to predict whether a new patient suffers from
one of the six main subtypes of ALL. By our PCL, we achieved a testing error
rate that is 71% better than C4.5, 50% better than Naive Bayes, 43% better
than k-NN, and 33% better than SVM.

More than mere a prediction, importantly, our algorithm provides simple
rules and patterns. These knowledge can greatly help medical doctors and biol-
ogists deeply understand why an instance is predicted as positive or negative.

7 Conclusion

We studied how to describe main differences between two classes of data using
emerging patterns. We proposed methods to rank boundary EPs. Using bound-
ary EPs, we defined two new types of patterns, plateau EPs and shadow patterns,
and proved that all P-spaces satisfied convexity. Based on the idea of prediction
by collective likelihood, we proposed a new classification method called PCL.

All these ideas and methods have been applied to three gene expression data.
The discovered patterns are interesting, and may be useful in identifying new
pathways and interactions between proteins. The PCL methods performed better
than other classification models on the datasets used in this paper.

In future, we plan to define central points of a P-space and use the central
patterns for classification. Also, we like to study shadow patterns and their
relation with boundary EPs more deeply than in this paper.
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