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Abstract. In this paper the Gallant-Lambert-Vanstone method is re-
examined for speeding up scalar multiplication. Using the theory of u-
FEuclidian algorithm, we provide a rigorous method to reduce the theo-
retical bound for the decomposition of an integer k in the endomorphism
ring of an elliptic curve. We then compare the two different methods for
decomposition through computational implementations.

1 Introduction

Public key cryptosystems based on the discrete log problem on elliptic curves
over finite fields(ECC) have gained much attention as a popular and practical
scheme for computational advantages as well as for communicational advantages.
As the complexity of protocols based on ECC relies mostly on the complexity of
scalar multiplication, the dominant cost operation is computing kP for a point
P on an elliptic curve.

Various methods for faster scalar multiplication have been devised by select-
ing relevant objects involving base fields and elliptic curves [1I3]. For example,
by considering elliptic curves defined over the binary field, say Koblitz curves,
Koblitz [5], Meier and Staffelbach [7] and Solinas [T2J13] employed the Frobenius
endomorphism to introduce an algorithm for faster scalar multiplication that do
not use any point doublings. Extending their ideas, Miiller [6] and Smart [IT]
came up with practical methods which are applicable to elliptic curves over small
finite fields of small characteristic.

Recently, Gallant, et al. [3] presented a new method for faster scalar mul-
tiplication on elliptic curves over (large) prime fields that have an efficiently-
computable endomorphism. The key idea of their method is decomposing an
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arbitrary scalar k in terms of an integer eigenvalue A of the characteristic poly-
nomial of such an endomorphism(See §3). The problem with this method is how
efficiently a random integer k € [1,n — 1] could be decomposed into k = k1 + koA
modulo n with the bitlengths of k1 and ko half that of k where n is a large prime
number. They gave an algorithm for decomposing & into the desired form using
the extended Euclidean algorithm and did not derive explicit bounds for decom-
position components. However, they expected that the bounds are approximately
near to /n on the basis of numerous implementations.

In this paper, we present an alternate algorithm for decomposing an integer
k using the theory of p-Euclidian algorithm. This algorithm runs a little bit
faster than that of Gallant et al.’s and unlike their algorithm, our algorithm
gives explicit bounds for the components. To compare the two algorithms for
scalar decomposition we give a precise analysis of all elliptic curves treated in
B].

This paper is arranged as follows. In Section 2, we recall some basic facts on
elliptic curves and in Section 3 we briefly discuss the Gallant-Lambert-Vanstone
method for comparison with ours. Section 4 is concerned with decomposing
an integer k via p-Euclidian algorithm in the endomorphism rings of elliptic
curves. Section 5 contains various examples of elliptic curves and then we give
explicit bounds for decomposition components. In the final section we compare
two methods to draw our conclusions.

2 Endomorphism Rings

We begin with introducing some basics to elliptic curves. Let IF, be a finite field
of ¢ elements and E be an elliptic curve over F, given by a Weierstrass equation

E/F,: Y2+ arzy + asy = ° + asxr? + aux + ag

with a; € F,. E(FFy) denotes the set of Fg-rational points on E together with
the point at infinity O and End(E) denotes the ring of F,-endomorphisms of E.
It is well known that (non-supersingular) elliptic curves over finite fields have
complex multiplication. Indeed, End(FE) is isomorphic to a complex quadratic
order.

The Frobenius endomorphism ¢ € End(E) is the morphism given by @(z,y) =
(x9,y9). Tt satisfies the quadratic relation #? — t® + ¢ = 0 in End(E), where ¢
is called the trace of the Frobenius @. More importantly, ¢ is related closely to
the order of E(F,) by the formula: #E(F,) = ¢ + 1 — ¢t. By Hasse’s remarkable
work on #E(F,), we have

Theorem 1. Let E be an elliptic curve over Fy and let n denote the number of
E(F,), then
lt|=l¢g+1—n| <24

For cryptographic applications, one deals with only non-supersinglar elliptic
curves F, so the endomorphism ring of F is an order in the imaginary quadratic

field Q(1/t? — 4q). Hence it is easily seen that Z[®@] C End(E) C Q(+/t% — 4q).
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3 Gallant-Lambert-Vanstone Method

Let E be an elliptic curve over F, and ¢ be an efficiently-computable endomor-
phism in End(E). For cryptographic purposes, the order of E(F,) must have
a large prime factor n. Let P € E(F,) be a point of prime order n. Then the
map ¢ acts on the subgroup of E(F,) generated by P as a multiplication by A,
where ) is a root of the characteristic polynomial of ¢ modulo n. In place of the
Frobenius, Gallant et al. exploited ¢ to speed up the scalar multiplication by
decomposing an integer k into a sum of the form k = k; + koA (mod n), where
k € [l,n—1] and ky, ke =~ y/n. Now we compute

Since ¢(P) can be easily computed, a windowed simultaneous multiple exponen-
tiation applies to k1 P + ko¢(P) for additional speedup. It is analyzed in [3] that
this method improves a running time up to 66 % compared with the general
method, thus it is roughly 50 % faster than the best general methods for 160-bit
scalar multiplication. The problem we face is how efficiently a randomly chosen
k can be decomposed into a sum of the required form and how explicitly upper
bounds of the lengths of the components k; and ks can be given.

For complete comparison with our method we will now describe the algorithm
in [3] for decomposing k out of given integers n and A. It is composed of two steps.
By considering the homomorphism f : Z X Z — Z,, defined by (4,7) — (i + j\)
(mod n) we first find linearly independent short vectors vy, ve € Z X Z such that
f(v1) = f(v2) = 0. As a stage of precomputations this process can be done by
the Extended Euclidean algorithm, independently of k. Secondly, one needs to
find a vector in Zwvy +Zvs that is close to (k,0) using linear algebra. Then (k1, k2)
is determined by the equation:

(K1, ko) = (k,0) = ([b1]v1 + [b2]v2),

where (k,0) = byvy + bavs is represented as an element in Q x Q and |b] denotes
the nearest integer to b. We provide an explicit algorithm in [3] as follows:

Algorithm 1 (Finding (k1, k2))

Input: k & n, the short vectors v1 = (x1,y1),v2 = (x2,y2).
Output: (k1,ke) such that k = k1 + koA (mod n).

1) D = T1Y2 — T2Y1, A1 = ygk', ag = —ylk}.

2)  z;=la;/D] fori=1,2.

3) ki=Fk—(z121 + 2212), k2 = z1y1 + 2200.
Return: (kq, k2).

This algorithm takes two round operations and eight large integer multipli-
cations. In [B, Lemma 2], an upper bound of the vector (ki,ks) obtained from
Algorithm 1 is estimated by the Euclidean norm inequality :

| (s k) [|< max (|| o1 f], ] vz )-
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In the procedure of finding two independent short vectors vy, v9 such that f(vy) =
f(v2) = 0, Gallant, et al. showed || v; ||< 24/n but could not estimate || ve ||
explicitly. However they expected heuristically that v, would also be short. For
this reason, they could not give explicit upper bounds of k; and ko although the
lengths of components prove to be near to y/n through numerous computational
experiments.

4 An Alternate Decomposition of k

We are now describing a new method for decomposing k from a viewpoint
of algebraic number theory. Recall that End(E) is a quadratic order of K =
Q(v=D)(D > 0), which is contained in the maximal order of K, denoted Of.
Let ¢ be an efficiently-computable endomorphism in End(F). Then we have
Z]¢] C End(E) C Ok. Since ¢ is in general not a rational integer, it satisfies a
quadratic relation
¢* —tsd +ng = 0. (1)
We assume that the discriminant of ¢ defined by Dy = ti — 4ny is of the
form —Dm? for some integer m. As usual, for a point P € E(F,) of a large prime
order n we want to perform scalar multiplication kP for k € [1,n — 1]. Suppose
now that there exists an element oo = a + b € Z[¢] such that

Nyg/z(a) = syn and ()P = O @

for some positive integer s,, which is relatively small to n. We then want to
decompose a scalar k using a division by « in the u-Euclidean ring Z[¢], where
L is some positive real (see Lemma B or [I1]). First of all, the existence of such
« is guaranteed from the following Lemma.

Lemma 1. There exists an element a € Z[¢p| satisfying (@) for some positive
integer s, < 3ng. Moreover, s, = 1 when Z[¢] is a principal mazimal order and

n splits in Q(¢)/Q.

Proof. Let v; = (a,b) be the short vector constructed in [3] such that f(v;) = 0.
Since f(v1) = a+bA =0 (mod n), it is clear that (a+bgp)P = O. Put « = a+b¢
and n' = Nyz4)/z(a+bg) € Z. Then we have Nyy)/z(a+b¢) = (a+bg)(a+bp) =
n/,son'P = (a+bg)(a+bp)P = O. It implies that ' =0 (mod n) and n’ = s,n
for some integer s,,. Since a,b < \/n in [3] and | t4 |< 2,/7g, we have

spn = a® + abty + b?ng < a®+ | abty | +b2ng < ng(a®+ | ab | +b%) < 3ngn.
The second assertion follows from [T4]. O

Motivated by the work of [3] we give an alternate decomposition of & in terms
of ¢ in place of A in [B]. Viewing a k as an element of Z[¢] we divide k by «
satisfying (2)) in Z[¢] and write

k= pBa+p
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with Nzjg)/z(p) < ulNzg)/z(a) for some 3 and p € Z[¢]. We then compute
kP = (Ba+ p)(P) = B(a(P)) + p(P) = p(P).
From a representation of p, that is, p = k1 + k2¢, it turns out that

Since ¢(P) is easily computed we can apply a (windowed) simultaneous multiple
exponenciation to yield the same running time improvement as in [3]. Unlike [3]
our method gives rigorous bounds for the components ki, k2 in term of ng. To
see this, we give the following theorem estimating N4,z (p)-

Theorem 2. Let a = a+bp # 0 € Z[p]. If 5 € Z[p] then there exist 6, p € Z[]
such that 3 = 6a + p and Nzjg)/z(p) < uNzg)/z(c) with

(944ny)/16  if ty is odd,
O<“S{(1+n¢)/4 if ty is even.

Proof. Since ¢* —tsp+ny = 0, we take ¢ = (ts++/Dy)/2 where Dy = t5 —4n.
Put Ny = Nzjp)/z(a) and ¢ = —[t4/2]. Setting ¢’ = ¢+c and changing a Z-basis
{1, ¢} to {1,¢'}, we have Z[¢] = Z[¢'] and

¢,: (1+\/D¢)/2 ift¢ is Odd7
Dy /2 otherwise.

Then o can be written as a; + b1¢’ in term of this new basis. For a given
dividend (3, we let v = 8/« and then we have

T1 + 120’
N

where @ denotes the complex conjugate of a. Take 0 = y; + yo’ with y; =
|z;/No| (i = 1,2), where |z] denotes the nearest integer to x. Finally, take
p = a(y—9), then since 8 = ay,ad € Z[¢], p € Z|]. It is easily checked that

Nzig1/2(p)/Najg)jz(@) = Nojgiza(y —6) < Nojgja(s + 3¢
3+./D

— 1N (14¢) = iNZ[dﬂ/Z( 2 d))

4 Z[¢]/Z 1 2+ /D¢ .

1 Nz141/2(—%—) otherwise.

_ { i(9*40¢) < i((g +4ny)/4) if t, is odd,

i(4—D¢) < i((4 +4ng)/4) otherwise. a

ry:ﬂ/a:ﬁa/Na:

if t, is odd,

4 _—

From the proof of Theorem [2], we can produce an efficient algorithm to com-
pute a remainder p = ki + koo from k and o = a + b¢. It is also composed of
two steps as in [3]. As a stage of precomputations, we first compute

Precomputations
1) No = Nyg)y2(q) = sun, ty = Traez(¢) and ¢ = —[ts/2].
2) Set ¢ = ¢+ ¢. N = Nyigy/z(¢') and T = Trypg2(8) = { 1 if t4 is odd,

0 otherwise.
3) a1 = a—be, by =b (to represent a = aj + b1 ¢').
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Algorithm 2 (Divide k by a = a + bg)

Input: k=~nand N,,T,N,c,aq,b;.
Output: p = k; + koo such that Nz ,z(p) < uNzg)/z(a).

].) Ir1 = k(a1 + blT) and o = —kbl.

2)  yi=|x/Nal (i=1,2).
3) ki =Fk—(a1gn — Nbryz) and ky = —(a1ya + biys + Thiya).
4) k1 = (kY + kbe) and ko = K.

Return: kq, ks.

Algorithm 2 takes in general two round operations and eight large integer
multiplications as in Algorithm 1. But if the values ¢, and n4 are rather small,
then the values ¢ and N are also expected to be small, which reduces 8 large
integer multiplications to 6. From this observation we may expect that the pro-
posed algorithm will be a little bit more efficient than that of [3]. In Table [[] we
compare running times of two algorithms applied to Examples 1-4 in §5.1.

Table 1. Comparison of Two Algorithms(on PetiumlII 866Mhz)

tg =0 tp=-1 tp =1 ty =0
7’L¢:1 17,4):1 7L¢:2 n¢:2

Gallant’s Algorithm 1 0.072 ms 0.069 ms 0.071 ms 0.069 ms
Our Algorithm 2 0.053 ms 0.054 ms 0.053 ms 0.054 ms

5 Examples and Upper Bounds

5.1 Examples

In this subsection we list up a family of elliptic curves over a large prime field F,
with efficient endomorphisms treated in [3] and give the characteristic polynomial
of such an endomorphism in each case.

Example 1. Let p =1 (mod 4) be a prime, and let E; be an elliptic curve
defined by
EyJF, :y* = 2° + ax.

Let 8 € F, be an element of order 4. Then the map ¢ : &y — FE; defined by
(z,y) — (—z,By) and O — O belongs to End(E1). Moreover, it is easily seen
that ¢ satisfies the quadratic equation

¢*+1=0,

so tg = 0,ny = 1 and End(E;) is isomorphic to Z[¢], the maximal order of

QV-1).
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Example 2. Let p =1 (mod 3) be a prime, and let Es be an elliptic curve
defined by

E,/F, : y? =23 +0b.
Let v € F, be an element of order 3. Then the map ¢ : E; — FE5 defined by

(x,y) — (yz,y) and O +— O is an endomorphism defined over F,,. Moreover, the
quadratic equation of ¢ is given by

¢ +o+1=0,

so tg = —1,ng = 1 and End(E») is isomorphic to Z[¢], the maximal order of
Q(V-3).

It is noted in both Examples 1 and 2 that the map ¢ can be easily computed
using only one multiplication in IF,.

Example 3. Let p > 3 be a prime such that —7 is a perfect square in F,, and
let w=(14+/-7)/2, and let a = (w — 3)/4. Let E3 be an elliptic curve defined
by

E3/F, y* =2 — 23:2—235—1.
Then the map ¢ : E3 — Fs5 defined by

2 2
o2t —w 3 2 —2ar+w
(@) = (W w A P )

and O — O belongs to End(E3). Moreover, ¢ satisfies
¢2 - ¢ + 2= 07

so tg = 1,ny = 2 and End(Ej3) is isomorphic to Z[¢], the maximal order of
QW-17).
Example 4. Let p > 3 be a prime such that —2 is a perfect square in F,,. Let
E4 be an elliptic curve defined by

E4/F, : y* = 42® — 302 — 28.
Then the map ¢ : E4 — E, defined by

2% 44 +9 2% +8x -1 )
(z+2) 4/ 2@+22!

and O +— O belongs to End(FEy). Moreover, the quadratic equation of ¢ is given
by

(@) — (

¢*+2=0,
so ty = 0,ny = 2 and End(FE,) is isomorphic to Z[¢], the maximal order of

Qv-2).
In Examples 3 and 4, computing an endomorphism is a little harder than
doubling a point.
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5.2 Upper Bounds on the Components kq, ko

Now we restrict ourselves to elliptic curves E(F,) only in the previous subsection.
For cryptographic applications, let P be a point of E(F,) of large prime order
n, so #E(F,) = hn where h is called the cofactor of E(F,). Recall that for each
1 < i< 4,End(E;) = Z[¢] is the maximal order of Q(v/—D) where D =1,3,7
or 2, respectively. By Lemma [Tl there exists an element a = a + b¢ € Z[$] such
that Nz4)/z(a) = n and ()P = O. Finding such an a boils down to solving
out a quadratic equation in Z[¢]. Indeed, this process can be done using the
known methods such as Shanks’ algorithm [9] and lattice reduction method [10].
Especially, one can also represent n, which splits in Q(v/—D)/Q, by the principal
form only by using the Cornacchia’s algorithm [2]. We use Theorem ] to give
explicit upper bounds on  in the p-Euclidean ring Z[¢].

Lemma 2. Let a = a + bp such that Nz /z(a) = n. For any integer k, there
exists a remainder p € Z[P] such that k = fa+ p for some B € Z[p| with

n/2 for Eq,
3n/4 for Es,
Nzgz(p) = 9, for Es,
3n/4 for Ejy.

Proof. Recall that t, is even for £y and Ejy, and t4 is odd for Ey and E3. From
the proof of Theorem [2], we get

109=Day i 4. is odd
Nzig1/2(p) [Nzjg)/z(e) < { 411E4_4D¢; if £y is odd,
1

if 4 is even,
which gives the desired result. O
Finally, Lemma [2] gives explicit upper bounds on the components of k.

Theorem 3. For any k, let p be a remainder of k divided by o using Algorithm
2 and write p = k1 + koo. Then we have

n/2 for Eq,
Vn for Es,
<
maX{|k1|,|k2|} — 8n/7 fO?" ES;

V3n,/2 for Ej.
Proof. In case of Ey, it is easy to see that Ny4,7(p) = Nzjg)/z(k1 + ko) =
k? + k2. Lemma Blimmediately gives k? + k2 < n/2, which completes the proof
for F;.
In case of Fy, we have N4 /z(p) = k? + k3 — kiko. If k1ka < 0 then it
follows from Lemma [2 that max{|ki|,|k2|} < \/3n/4. Assume k1ks > 0 and
|k2| > |k1| > 0. Then by Lemma [2, we easily deduce

1 3
ki + k3 — kiky = |k1|? + |ko|* — [Ka||ka2| = (Jk1| — §|/l€2|)2 + Z|k2|2 <3n/4.

Hence |k1|? < |k2|? < n implies that max{|ki|,|k2|} = |k2| < /n, completing
the proof for F,. The other cases are also done similarly. O
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6 Comparisons of the Two Methods and Conclusion

6.1 Comparisons

In this section we compare the two methods by decomposing many integral
scalars on all elliptic curves in Section 5. To protect Pohlig-Hellman attack [g]
the group order of E(F,) has a large prime factor n at least 160-bit. The problem
of determining the group order of a given elliptic curve is not an easy task in gen-
eral but thanks to an improved Schoof’s algorithm one can figure out the group
order of an elliptic curve. However, in the case where the endomorphism ring is
known, computing the group order of E(F,) is rather easy and it is explicitly
given by a well known formula in [4]. Conversely, determining the elliptic curve
having a given group order is not easy. For this reason, it is not easy to take
‘cryptographically good’ elliptic curves whose the group order has a large prime
factor n and has a small cofactor. Without knowing the exact group order of
elliptic curves we here decompose scalars by the two methods under the assump-
tion that elliptic curves in consideration are good cryptographically. Indeed our
method gives a decomposition of a scalar if only we know the quadratic equation
satisfied by an efficient endomorphism on elliptic curves.

For each example in subsection 5.1, we considered various primes p where p
is the norm of some element 7 € Z[@] satisfying Nzj4),z(1 — m) = nh for a large
prime n and a small h. We then decomposed 10° random integers k € [1,n — 1].
In an appendix we put a list of tables showing comparable data in two decompo-
sitions. Here we briefly describe implementation results. For Example 1 the two
decompositions are identically same for 20 different primes p. In other examples
different decompositions of k occurred but for most of scalars k the decomposi-
tions are exactly same and in different cases the length differences for components
are within 2 bits because the ratios of maximum lengths are less than 3, so it
makes no big difference in applying the simultaneous windowed techniques. On
the whole, we can analyze that the two decompositions are same for more than
80 % out of all cases we have investigated. In different decompositions, the length
differences are almost negligible.

6.2 Conclusion

We described an alternate method of decomposing k using the theory of u-
Euclidian algorithm. The proposed method gives not only a different decompo-
sition of a scalar k but also produces explicit upper bounds for the components
by computing norms in the complex quadratic orders. We then compare the two
different methods for decomposition through computational implementations.
From these we conclude that the two decompositions are same for most of cases
of elliptic curves we have considered. Even in different decompositions of a same
scalar, the two methods makes no big difference in a sense that the length dif-
ferences of components are very small. So this shows that the algorithm of [3]
runs smoothly with desired bounds for components, as expected.
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Appendix: Implementation Results

We list up tables showing comparable data in two decompositions. For each ex-
ample in subsection 5.1 we considered 3 different primes p and then decomposed
10° random integers k € [1,n — 1] for each p. Each example consists of 3 tables
and each table pairs with two parts. One part in each table consists of 4 data,
p,n,« and A. The other part shows the degree of likeness in two decompositions.
It contains the ratio of the same decompositions to different ones and the ratio of
maximum lengths, maxg;—; 2y to v/n where max; denotes the maximum length
of the components by our method and maxs denotes that by Gallant et al.’s
method.
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Example 1: ¢ +1 =0

R >33

243565077856178942435675064648653565341982256141
121782538928089471217837129718716275477823778781
46308316286753456460287381300232203960042557786
344020884210249105176430 + 58584726296944062172859 ¢

same different maxi /y/n maxs /y/n
100% 0% 0.576 0.576

73218518567862951418412496115887978012488022377
36609259283931475709206372356291283402327940473

p
n
A 19769856633674487989568880377360877117950324407
e

182324503299070277988048 + 58026156004674194058763 ¢

same different maxi /y/n maxs /v/n
100% 0% 0.628 0.628

R >»3I

3930678888074997741808595252689014229714795666337
1965339444037498870904297555040731424331941753793
1309814068063573440285466856760823735681467247754
955003786398729195609953+ 1026307562089254651689328 ¢

same different maxi /y/n maxs /y/n
100% 0% 0.706 0.705

Example 2: > +¢+1=0
1220661975006673910903067813381247142962340996767
305165493751668477725767239564012652535330395111
256830761758906032863730036022774491978136833295
13427969703513498583905 -545581462326562493124029]¢

Q>3

same different max; > maxs maxi /y/n maxz /y/n
100 % 0% 0% 0.517 0.517

95022144632423596840305985525769665138 7176185739
316740482108078656134353712393812433628538586883
282351485077898513737832695111818872635483464575
427307913549832813191637 -210370149109814056450749 ¢

L ~3 3

same different max; > maxs maxi /v/n maxs /\/n
75% 25% 21 % 0.938 0.743

p 102141088351305829127384982729193913756927751223
n 102141088351305829127384437816439248390624478251
A 29377624209728221104940825415138564729613238982
a 192902776209697260883689-176004989227834521194641 ¢

same different max; > maxs maxi /\/n maxs /\/n
74% 26% 14% 0.878 0.844
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Example 3: ¢ —¢p+2=0

1220661975006673910903067813381247142962340996767
305165493751668477725767239564012652535330395111
256830761758906032868730036022774491978136833295
13427969703513498583905 -545581462326562493124029 ¢

Q >»3I

same different max; > max, max; /y/n maxs /\/n
100% 0% 0% 0.518 0.518

2781189092944197387439531156403663331323230903297
927063030981399129146509532434827196498555896781
219182799978228032966133538064490739403593626775
853033060580609187737651 -190989728098028002286769¢

S >3

same different max; > maxs maxi /v/n maxs /\/n
75% 25% 24% 0.982 0.640

950221446324235968403059855257696651387176185739
316740482108078656134353712393812433628538586883
282351485077898513737832695111818872635483464575
427307913549832813191637-210370149109814056450749 ¢

R >»3I

same different max; > maxs max; /\/n maxs /\/n
75% 25% 21% 0.941 0.750

Example 4: ¢ +2 =0

563632937115951694076446048851688169341933858747
281816468557975847038222704663449942157079908971
89410463644172197664541344572565104224954335021
480304564005069232838013-159881197071256943510201 ¢

R >»3I

same different max; > max, max; /y/n maxs /\/n
100% 0% 0% 0.753 0.753

681467908765229024305247629959086033509735746451
340733954382614512152623155749477043588700478113
92899111242628958306702491539054896203949387582
351342873047286962313279-329615032986583083697556 ¢

R >3

same different max; > maxs max; /\/n maxs /\/n
75% 25% 13% 0.864 0.864

p 563632937115951694076446048851688169341933858747
n 281816468557975847038222704663449942157079908971
A 89410463644172197664541344572565104224954335021

o 480304564005069232838013-1598811970712569435102 ¢

same different max; > maxs max; /y/n maxz /v/n
100% 0% 0% 0.752 0.752
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