
Solving Underdefined Systems
of Multivariate Quadratic Equations

Nicolas Courtois1, Louis Goubin1, Willi Meier2, and Jean-Daniel Tacier2

1 CP8 Crypto Lab, SchlumbergerSema
36-38 rue de la Princesse, BP45

F-78430 Louveciennes Cedex, France
{NCourtois, LGoubin}@slb.com
2 FH Aargau, CH-5210 Windisch
{meierw,jd.tacier}@fh-aargau.ch

Abstract. The security of several recent digital signature schemes is
based on the difficulty of solving large systems of quadratic multivariate
polynomial equations over a finite field F. This problem, sometimes called
MQ, is known to be NP-hard. When the number m of equations is equal
to the number n of variables, and if n < 15, Gröbner base algorithms
have been applied to solve MQ. In the overdefined case n � m, the
techniques of relinearization and XL, due to A. Shamir et. al., have shown
to be successful for solving MQ. In signature schemes, we usually have
n � m. For example signature schemes Flash and Sflash submitted to
Nessie call for primitives or the UOV scheme published at Eurocrypt
1999. Little is known about the security of such underdefined systems.
In this paper, three new and different methods are presented for solving
underdefined multivariate systems of quadratic equations. As already
shown at Eurocrypt 1999, the problem MQ becomes polynomial when
n ≥ m(m+1) for fields F of characteristic 2. We show that for any field,
for about n ≥ 2m/7(m+ 1), exponential but quite small in practice, the
problem becomes polynomial in n.
When n→ m the complexity of all our 3 algorithms tends to qm. How-
ever for practical instances of cryptosystems with n ≈ O(m), we show
how to achieve complexities significantly lower than exhaustive search.
For example we are able break Unbalanced Oil and Vinegar signature
schemes for some “bad” choices of the parameters (but not for the pa-
rameters proposed in [4]).

1 Introduction

Since the 1970’s many digital signature schemes have been proposed and the
best are probably those based on factoring or discrete logarithms in well chosen
groups. However in many specific applications the classical standardized schemes
are either too slow, or give signatures that are too long. In order to fill the gap,
several new digital signature schemes based on multivariate polynomials have
been studied recently J. Patarin et. al. hoping to do better. These signature
schemes can be very efficient in smart card implementations and are among the

D. Naccache and P. Paillier (Eds.): PKC 2002, LNCS 2274, pp. 211–227, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

212 Nicolas Courtois et al.

shortest signature schemes ever known [10]. They differ in the type of trapdoor
structure embedded into the public polynomials, see [4] for a particular example
of such a scheme and for an overview of various other schemes. Several of these
schemes were broken soon after being proposed, for others the security is an
open problem.
Most multivariate schemes rely on the problem of solving systems of mul-

tivariate polynomial modular equations over a small finite field F. The general
problem is called MQ and is known to be NP-complete, even for q = 2, cf.
[3]. In practice, the public key will be a system of m quadratic polynomials
Gi(x1, ..., xn), i = 1, ...,m, with n variables xj , j = 1, ..., n over a finite field F of
(small) order q, where m and n are (large enough) integers. Messages are repre-
sented as elements of the vector space Fm, whereas signatures are elements of Fn.
An element x is a signature of a message y if the public polynomials evaluated
at x give the correct components of y, i.e., if Gi(x1, ..., xn) = yi for i = 1, ...,m.
The trapdoor information enables a legitimate signer to find a solution x of the
system for a given message y.
Several multivariate signature schemes use MQ systems of m quadratic equa-

tions in n variables with n � m. For example cryptosystems Flash and Sflash
submitted to Nessie call for primitives [9] or the Unbalanced Oil and Vinegar
scheme (UOV) [4].
As opposed to the case m� n, where useful methods for solving MQ are known
(see [6], [1]), only one result seems to be known for finding a solution if n� m:
In the massively underdefined case n ≥ m(m + 1), a polynomial algorithm for
solving MQ is given in [4], provided the field F has characteristic 2.
In this paper, three different methods are developed for solving MQ in the under-
defined case n� m (algorithms A, B and C). We also generalize the known algo-
rithm from [4] that solves in polynomial time massively underdefined systems of
equations over fields of characteristic 2. We show that it can be extended to odd
characteristics. The present version works for roughly about n ≥ 2m/7(m + 1),
exponential but in practice not so big.
The three algorithms A, B and C can also be applied for practical systems when
n = O(m). Depending on the choice of m, n and q, one or the other of the
algorithms as presented turns out to be more efficient, and no one outperforms
the others in general. Their complexity remain exponential, but each of the 3
algorithms enables solving MQ with a complexity significantly lower than ex-
haustive search for some practical parameter sets.
The three algorithms apply different but well known principles: The birthday
paradox, a linearization technique, and reduced representations of quadratic
forms. These principles are used however in a novel way. By studying and com-
paring the efficiency of different algorithms for the same problem, we attempt
to get a better understanding of the difficulty of MQ. As a cryptographic ap-
plication, we obtain new criteria for the security parameters of general multi-
variate signature schemes. The security of schemes like Flash and Sflash is not
affected by the results of this paper. However our algorithms can be used to
break Unbalanced Oil and Vinegar signature schemes for some “bad” choices of

Solving Underdefined Systems of Multivariate Quadratic Equations 213

the parameters (but not for the parameters proposed in [4]). Note that no attack
was previously known for these parameters. This shows that the choice of the
parameters for Unbalanced Oil and Vinegar must be made carefully.
In section 2 the problem MQ is described. In section 3, algorithms A, B and

C for solving MQ in the underdefined case n � m are presented, and their ef-
ficiency is studied. Section 4 presents efficient algorithms for solving massively
underdefined MQ systems. In section 5, our methods are applied to the crypt-
analysis of practical multivariate signature schemes. In Appendix A, a result on
which algorithm C is based upon is derived.

2 The Problem MQ

Let F be a finite field of order q. Consider a (random) system of m simultaneous
equations in n variables over F,

G�(x1, x2, ..., xn) = y�, � = 1, ...,m,

where the G� are (not necessarily homogeneous) polynomials of degree two, i.e.,
G� is of the form

G�(x1, ..., xn) =
n∑
i=1

n∑
j≥i

αij�xixj +
n∑
k=1

γk�xk, � = 1, ...,m.

Hereby the coefficients of the polynomials as well as the components of the
vectors x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym) are elements in F. Depending
on the parameters m and n, several algorithms have been developed to solve
MQ: If m = n < 15, Gröbner bases algorithms can be applied to solve MQ
(see [2] for one of the most efficient variants amongst such algorithms). In the
overdefined case m � n, the methods of relinearization and XL have shown to
be useful (see [6] and [1]). In particular, in the overdefined case m = εn2, the
XL algorithm is expected to be polynomial. In the massively underdefined case
n ≥ m(m + 1), a polynomial algorithm has been developed in [4] to solve MQ
in case F has characteristic 2.

3 Solving MQ for Underdefined Systems of Equations

Suppose a given system of quadratic equations is underdefined, i.e., n � m.
Several algorithms are presented in this section for solving MQ faster than by
exhaustive search when n � m. Our goal is to find one among about qn−m

expected solutions.
The complexity of our algorithms will be compared to the complexity of

exhaustive search that is about O(qm). Thus a natural choice for an elementary
operation is a numeric evaluation of all m quadratic polynomials G� for a single
set of values of x1, ..., xn. If we want otherwise measure the complexity in terms
of numbers of operations in GF (q), the complexity should be multiplied by about
m · n2.

214 Nicolas Courtois et al.

3.1 Algorithms for Solving MQ over Any Finite Field

Algorithm A. Choose k variables out of n and k′ equations out of m. Write
each equation G�, � = 1, ..., k′, in the following form:

g�(x1, .., xk) +
k∑
i=1

xi · (
n∑

j=k+1

β�ijxj) + g′�(xk+1, ..., xn) = y�

where g�, g�′ are multivariate quadratic polynomials. Our aim is to remove the
part of G� where x1, ..., xk and xk+1, ..., xn are mixed. For each G� this is done
by imposing k linear relations on the variables xk+1, ..., xn by

n∑
j=k+1

β�ijxj = c�i, i = 1, ..., k,

where the constants c�i are elements in F. Let k = min(m/2, �
√
n/2−√n/2�),

and let k′ = 2k. Then k′ ≤ m, and we have

kk′ ≤ 2(
√
n/2−

√
n/2)2 ≤ n− 2

√
n/2 ≤ n− 2k,

(i.e., 2k2 ≤ n − 2k is satisfied). Therefore n − k − kk′ ≥ k. Thus imposing kk′

linear constraints on the n − k variables xk+1, ..., xn, we can still express them
by k̄ ≥ k independent new variables x′1, ..., x

′̄
k
. Restricting to the equations G�,

� = 1, ..., 2k, the system to solve becomes

g′�(x1, ..., xk) + h�(x′1, ..., x
′̄
k) = y�, � = 1, ..., 2k.

where g′� differs from g� by linear summands in x1, ..., xk. This system can be
solved in about qk rather than q2k trials: Generate the set of vectors obtained
by evaluating g′�, � = 1, ..., 2k, in all q

k arguments. Similarly generate a set of
qk result vectors for y� − h�, � = 1, ..., 2k. By the birthday paradox, with some
probability the sets have an element in common (see e.g. [8], p. 53). Once this
partial system is solved, with probability q2k−m the remaining m−2k equations
will be satisfied too. Otherwise repeat the whole attack as described, with a
different choice of subsets of k variables and of k′ equations.
Thereby some polynomial overhead arises by imposing each time a new set

of kk′ linear constraints on a different set of n − k variables. However this can
be mostly avoided if n is slightly larger than m: Suppose that k, m and n
besides 2k2 ≤ n− 2k also satisfy 2k2 > m− 2k. The latter inequality guarantees
that the search space is still large enough if only the constants c�i change in
each trial, but the subsets of variables and equations are chosen only once, so
that the linear constraints (except the constants) remain the same. This means
that in a parameterized expression describing the new variables x′1, ..., x

′̄
k
, only

the constants change. Hence in substituting these variables in the quadratic
expressions G� each time, only the linear parts need to be changed. Thus if
2k2 > m− 2k we have:

Solving Underdefined Systems of Multivariate Quadratic Equations 215

Complexity of Algorithm A: O(qm−k), where k = min(m/2, �
√
n/2−√n/2�).

Hence the complexity of algorithm A for increasing n tends to O(qm/2).

Example: Let n = 40. Then k = 4 satisfies 2k2 ≤ n − 2k. As this holds by
equality, m = 39 is the largest number of equations so that also 2k2 > m − 2k
is satisfied. Suppose furthermore that q = 16, m = 20. Then the complexity of
algorithm A is of order 264 instead of 280 operations.

Algorithm B. This algorithm uses linearization to reduce the search complexity
for solving MQ. Let k be an integer to be specified. In an initial step chose m−k
of the quadratic equations to eliminate the quadratic terms xixj , 1 ≤ i, j ≤ k.
Hereby these terms are simply regarded as linear variables. The aim is to get
k selected equations in which the variables x1, ..., xk occur only linearly. This is
possible if

k(k + 1)/2 ≤ m− k.

Hence
k ≈ �√2m+ 2− 1.5�,

which is at most m/2 for m ≥ 2. After the initial step, which is done only once,
the algorithm proceeds as follows:

1. Choose random values in F for the variables xk+1, ..., xn.
2. Substitute these values in the k selected quadratic equations to get a system
of k linear equations in x1, ..., xk.

3. Solve this system of k linear equations.
4. Go back to 1. as long as the values for x1, ..., xn thus determined do not
satisfy the other m− k quadratic equations.

Step 3 is of complexity O(k3) = O(m3/2). However this is not measured by
numbers of numeric evaluations of systems of quadratic polynomials but by
simple operations like addition and multiplication in the field F. To estimate
the complexity of algorithm B, first note that in step 2, a number of n−k values
are substituted in k quadratic equations of n variables. This also includes a step
of formally simplifying these equations, whose complexity can be reduced by
only varying m − k out of n − k variables in step 1 in each trial, and leaving
the other variables constant throughout the search. Thus the complexity of step
2 is growing with k(m − k)2. The complexity of the formal step may be some
multiple of the unit complexity and can dominate the complexity of step 3. Let
K = max(C2, C3), where C2 and C3 measure the complexity of steps 2 and 3,
respectively. Then we get

Complexity of Algorithm B: K · qm−k, where k = �√2m+ 2 − 1.5�, and where
the factor K grows polynomially in k or m−k, respectively, and is not explicitly
quantified.

216 Nicolas Courtois et al.

Remark: There are possibilities to combine the principles applied in algorithms
A and B, leading to algorithms with lower complexity of the exponential part
compared to each of algorithms A and B, but at the cost of an increased poly-
nomial overhead. Depending on the variant to be specified of such a combined
algorithm, and depending on m, n and q, this algorithm may be more efficient
than algorithms A and B alone.

3.2 An Algorithm for Solving MQ over Fields of Characteristic 2

In this section, a general method for simplifying underdefined systems of multi-
variate quadratic equations over fields of characteristic 2 is described. Combined
with a relinearization or XL algorithms [6,1] it gives another algorithm to solve
MQ in case n� m.

Preliminaries. Let F denote the field GF (2s). Then a quadratic form Q with
n variables over F is a homogeneous polynomial in these variables of total degree
two. Two quadratic formsQ1 andQ2 are equivalent ifQ1 can be transformed into
Q2 by means of a nonsingular linear transformation of the variables. A quadratic
form Q with n variables is nondegenerate if it is not equivalent to a quadratic
form with fewer than n variables. A linear form f over F with n variables is a
linear expression

∑n
i=1 aixi, where the coefficients ai as well as the variables xi

are in F. In later use, f will denote an element of Fn, i.e., a column vector with
components ai ∈ F, whereas the linear form f will denote the scalar product of
f with x ∈ Fn. A nondegenerate quadratic form over F can be transformed in
a sum of �n2 � products of pairs of linear forms f2i−1f2i, i=1,...,�n2 � plus at most
two square terms. More precisely for n odd, Q(x) can be transformed in:

f1f2 + f3f4 + · · ·+ fn−2fn−1 + f2
n

and for n even in one of the two following forms:

f1f2 + f3f4 + · · ·+ fn−1fn
f1f2 + f3f4 + · · ·+ fn−1fn + f2

n−1 + af2
n

In the last formula, a stands for an element whose trace over F has value 1. A
constructive proof is given in ([7], p.286). The reduction of Q(x), as described in
[7] requires O(n3) operations in GF (2s). The derivation of this fact is straight-
forward but lengthy.

Simplifying underdefined systems of quadratic equations with more
unknowns than equations. Suppose t is a positive integer and n ≥ (t +
1)m. Then we show that it is possible to adaptively fix t · m linear relations
between the unknowns, so that by eliminating unknowns using these relations,
we get a simpler system ofm equations withm unknowns, where a few equations
simultaneously have become linear in the remaining m variables.

Solving Underdefined Systems of Multivariate Quadratic Equations 217

By a linear relation between the unknowns we mean a relation
∑n
i=1 aixi = b,

where ai, i = 1, ..., n and b are elements of F. The equations that have thus be-
come linear can be used to eliminate further unknowns so that we get a simplified
system with less unknowns and equations. If in a later step for solving this sys-
tem it turns out that there exists no solution, we assign different values b to the
relations.
The following Lemma is derived from results in [7] and states two basic

facts on quadratic forms that will be useful later. Similar facts also hold for any
polynomial of degree two.

Lemma 1. Let Q(x) be a nondegenerate quadratic form with n variables over
F. Suppose Q is written in reduced representation, Q = f1f2 + f3f4 + ..., where
the fi’s, i = 1, ..., n denote appropriate linear forms. Then

a) the coefficient vectors f
i
, i = 1, ..., n, are linearly independent over F

b) Q has �n2 � product terms, and at most �n2 �+ 1 linear relations in x1, ..., xn
need to be fixed in order that Q becomes linear in the remaining variables

The next result gives a simple lower bound for the number of equations that
can be made linear (depending on t) by fixing linear relations.

Proposition 1. Let a system of m polynomial equations of degree two with n
unknowns be given. Denote u = �log2(t + 1)� . Suppose n ≥ (t + 1)m and that
m ≥ u−1. Then a number ν ≤ t ·m of linear relations between the unknowns can
be fixed so that at least u−1 equations become linear in the remaining n−ν ≥ m
unknowns.

Proof: As stated in Lemma 1, b), the polynomial G1 can be made linear by
fixing at most �n2 � + 1 linear relations. Using the linear relations thus fixed,�n2 �+1 unknowns can be eliminated. Iterating this procedure from G2 onwards,
we can fix further linear forms and eliminate unknowns, while the number R of
remaining unknowns is at least m. Suppose t+ 1 is a power of 2, i.e t+ 1 = 2u.
The general case can be easily reduced to this case. Thus check whether R ≥ m
holds if the above procedure has been iterated u−1 times: R ≥ 2um− (2u−1m+
1)− (2u−2m+ 1)− ...− (2m+ 1) = 2m− (u− 1) ≥ m, by assumption.
As u−1 variables can be eliminated using the linear equations, Proposition 1

can immediately be used to (slightly) reduce the search for a solution of MQ: The
complexity of this search is approximately qm−log2(n/m) instead of qm. We show
that depending on t one can generally do better than indicated in Proposition
1. In fact, for very large t, i.e., for t ≥ m, solving systems of m polynomial
equations of degree two with n ≥ (t+1)m unknowns over F = GF (2s) has been
shown to be easy (cf. [4]). Our method does work for general t, but to get specific
results, we focus here on small values of t, as these are of main interest for our
cryptographic applications.
The idea is to successively fix linear relations so that the number of product
terms decreases simultaneously in two polynomials Gi. This can be applied to
derive the following result (see Appendix A):

218 Nicolas Courtois et al.

Theorem 1. Let Gi(x1, x2, ..., xn) = yi, i = 1, ...,m, denote a system of m
polynomial equations of degree two in n unknowns over F, where m > 10 is
even, and n ≥ (t + 1)m. Then t ·m linear relations between the unknowns can
be fixed to get a system of m equations with m variables so that

- if t = 2, G1 is linear, and G2 in reduced representation is the sum of at most
one product of linear forms, a square of a linear form, and linear terms.

- if t = 3, G1 and G2 are linear, and G3 in reduced representation is the sum
of about 2m

9 + 2 products of linear forms, a square of a linear form, and
linear terms.

Remarks: A similar result also holds for an odd numberm of equations. Moreover
m > 10 is just chosen to assure that certain steps in the proof are not void. The
complexity of the procedure to get the modified system of m equations with m
unknowns in Theorem 1 is of order O(n3). By a similar technique, for larger t
some more equations can be made linear, e,g, if t = 8, about 5 equations can
be made simultaneously linear. The method equally applies if the number of
variables is a not an integer multiple of the number of equations. Moreover it
is possible to improve on Theorem 1, as is shown in Appendix A. Theorem 1
immediately shows that the complexity of solving MQ in case n ≥ 4m is at
most of order O(qm−2) (without any polynomial overhead). However solving
MQ can be significantly improved if Theorem 1 is combined with the methods
of relinearization and XL as introduced in [6] and [1] for solving overdefined
systems of multivariate quadratic equations.
In [1], the efficiency of relinearization is investigated, and another algorithm

for the same purpose, XL (for extended relinearization), is introduced and dis-
cussed. Suppose the given system has m equations with n variables, m > n, such
that m = εn2 for 0.1 < ε ≤ 1/2. Then in [1] it is stated that the algorithm XL
is expected to succeed with work factor

WF ≈ n
(ω� 1√

ε
�)

(� 1√
ε

)! , (1)

where 2 ≤ ω < 3 is the exponent of gaussian reduction.
This bound only holds asymptotically in the number of variables n. Therefore

in [1] experimental results for various concrete values of m and n are given. In
particular, an experiment with 11 equations (over GF (27)) and 9 variables is
reported. In order to solve such a system, the XL algorithm leads to 3543 linear
equations in the same number of variables. Thus the complexity of XL to solve
a system of quadratic equations with m = 11 equations and n = 9 variables
is of the order 235, which is much larger than the work factor given by (1).
The complexity drops however, if m − n is larger: In ([1], Table 1) results of
an experimental analysis of relinearization are given. For our purpose, we quote
that solving m = 12 equations with n = 8 variables leads to a linear system of
only 336 equations with 324 variables. The complexity of solving this system is
of the order 225, i.e. it is close to the asymptotic work factor in (1) evaluated for
n = 8. We now proceed to solve MQ:

Solving Underdefined Systems of Multivariate Quadratic Equations 219

Algorithm C. Let n = t ·m, t ≥ 2.
1. Suitably fix linear relations between the variables with the simultaneous
condition that
i) two (or three) equations become linear (Theorem 1)
ii) the simplified system of equations gets sufficiently overdefined for XL to
become efficient.

2. Apply XL to solve the simplified system of quadratic equations.

The complexity of algorithm C depends on the complexity of XL. To obtain pre-
cise estimates of the complexity of algorithm C, we restrict to cases as mentioned,
where the exact complexity of XL (or of relinearization) has been determined
experimentally. This is applied in the following examples.

Example 1. Let t ≥ 3, m = 16, and q = 2s. Then apply the techniques used
to prove Theorem 1 to the initial system of equations, to get a system of m
equations withm variables, where the first two equations are linear and the third
equation is a sum of at most 4 products of linear forms, a square of a linear form,
and linear terms. Thus we need 5 relations to be fixed in order to eliminate the
product terms and the square, so that the third equation also becomes linear.
Use these relations and the three linear equations to get a system of 13 equations
with 8 unknowns. Apply the result in [1] on relinearization, as quoted, to solve a
system of 12 (or 13) equations with 8 variables, so that we get an upper bound
for the total complexity of the order of 25s · 225 = 25s+25. Using a refinement
of Theorem 1 as sketched in Appendix A, and using the approximation (1), we
may even arrive at a complexity of 24s+26. Thus the complexity of solving MQ
for m = 16 and n ≥ 64, is of an order between 24s+26 and 25s+25.

Example 2: Let t ≥ 2, m = 16, and q = 2s. By similar arguments as in Example
1 we estimate the complexity of algorithm C to solve MQ to be of an order
between 24s+28 and 25s+26.
The complexities as determined in the above examples are the product of the

complexity of a (partial) search and the complexity of the XL algorithm, i.e., of
solving (large) linear systems of equations. This complexity is measured in num-
bers of GF (q)-operations rather than in numbers of evaluations of m quadratic
polynomials in n variables. Therefore the estimates as given in Examples 1 and
2 may be viewed as upper bounds for the complexity of algorithm C.

3.3 Comparing Efficiency of the Algorithms

Our results show that the problem MQ, even in the underdefined case n � m,
remains exponential in general, as long as n < m2. For different regions of a
three dimensional space in q, m and n, one or the other of the algorithms we
have presented for solving MQ will be more efficient. To illustrate this point, let,
e.g.,m = 16. Then if n is only slightly larger thanm, we expect that algorithm B
will outperform other algorithms for solving MQ. However, if n is getting larger,
algorithm A will be more efficient than algorithm B. In the case that the order

220 Nicolas Courtois et al.

of F is a power of 2, q = 2s, compare algorithm A with algorithm C: Let, e.g.,
n = 48. Then for algorithm A, k = 4 is a suitable value and thus the complexity
of algorithm A is of order 212s. On the other hand the complexity of algorithm
C is upper bounded by 25s+26 (see Example 2). Thus this method outperforms
algorithm A as soon as s ≥ 4, e.g., if s = 4 the complexities are 246 for algorithm
C, compared to 248 for algorithm A, and if s = 8 they are 266 compared to 296.
This is due to the fact that the complexity of algorithm A is dominated by a
search part and the polynomial overhead can be practically ignored, whereas the
complexity of algorithm C is the product of the complexities of a small search
and a larger polynomial part.

4 Solving MQ
for Massively Underdefined Systems of Equations

In the massively underdefined case n ≥ m(m + 1), a polynomial algorithm was
developed in [4] to solve MQ in case F has characteristic 2, leaving the case of odd
characteristic open. In this section, we extend these results to odd characteristics
and solve a random underdefined MQ in polynomial time1 as soon as:{

n ≥ m(m+ 1) if F has characteristic 2;
n ≥ roughly 2m7 (m+ 1) if F has an odd characteristic.

Let (S) be the following system:

(S)




∑
1≤i≤j≤n

aij1xixj +
∑

1≤i≤n
bi1xi + δ1 = 0

...∑
1≤i≤j≤n

aijmxixj +
∑

1≤i≤n
bimxi + δm = 0

The main idea of the algorithm consists in using a change of variables such
as: 


x1 = α1,1y1 + α2,1y2 + ...+ αt,1yt + αt+1,1yt+1 + ...+ αn,1yn
...

xn = α1,ny1 + α2,ny2 + ...+ αt,nyt + αt+1,nyt+1 + ...+ αn,nyn

whose αi,j coefficients (for 1 ≤ i ≤ t, 1 ≤ j ≤ n) are found step by step, in order
that the resulting system (S ′) (written with respect to these new variables y1,
..., yn) is easy to solve.

– We begin by choosing randomly α1,1, ..., α1,n.
– We then compute α2,1, ..., α2,n such that (S ′) contains no y1y2 terms. This
condition leads to a system of m linear equations in the n unknowns α2,j
(1 ≤ j ≤ n): ∑

1≤i≤j≤n
aijkα1,iα2,j = 0 (1 ≤ k ≤ m).

1 In time polynomial in the size of the initial system that can be exponential.

Solving Underdefined Systems of Multivariate Quadratic Equations 221

– We then compute α3,1, ..., α3,n such that (S ′) contains neither y1y3 terms,
nor y2y3 terms. This condition is equivalent to the following system of 2m
linear equations in the n unknowns α3,j (1 ≤ j ≤ n):




∑
1≤i≤j≤n

aijkα1,iα3,j = 0 (1 ≤ k ≤ m)
∑

1≤i≤j≤n
aijkα2,iα3,j = 0 (1 ≤ k ≤ m)

– . . .
– Finally, we compute αt,1, ..., αt,n such that (S ′) contains neither y1yt terms,
nor y2yt terms, ..., nor yt−1yt terms. This condition gives the following system
of (t− 1)m linear equations in the n unknowns αt,j (1 ≤ j ≤ n):




∑
1≤i≤j≤n

aijkα1,iαt,j = 0 (1 ≤ k ≤ m)

...∑
1≤i≤j≤n

aijkαt−1,iαt,j = 0 (1 ≤ k ≤ m)

In general, all these linear equations provide at least one solution (found by
Gaussian reductions). In particular, the last system of m(t− 1) equations and n
unknowns generally gives a solution, as soon as n > m(t− 1).

Moreover, the t vectors



α1,1
...

α1,n


, ...,



αt,1
...

αt,n


 are very likely to be linearly

independent for a random system (S). The remaining αi,j constants (i.e. those
with t + 1 ≤ i ≤ n and 1 ≤ j ≤ n) are randomly chosen, so as to obtain a
bijective change of variables. By rewriting the system (S) with respect to these
new variables yi, we have the following system:

(S ′)




t∑
i=1

βi,1y
2
i +

t∑
i=1

yiLi,1(yt+1, ..., yn) +Q1(yt+1, ..., yn) = 0

...
t∑
i=1

βi,my
2
i +

t∑
i=1

yiLi,m(yt+1, ..., yn) +Qm(yt+1, ..., yn) = 0

where each Li,j is an affine function and each Qi is a quadratic function.
Then we compute yt+1, ..., yn such that:

∀i, 1 ≤ i ≤ t, ∀j, 1 ≤ j ≤ m, Li,j(yt+1, ..., yn) = 0.

This is possible because we have to solve a linear system ofmt equations and n−t
unknowns, which generally provides at least one solution, as long as n ≥ (m+1)t.
We pick one of these solutions. It remains to solve the following system of m

222 Nicolas Courtois et al.

equations in the t unknowns y1, ..., yt:

(S ′′)




t∑
i=1

βi1y
2
i = λ1

...
t∑
i=1

βimy
2
i = λm

where λk = −Qk(yt+1, ..., yn) (1 ≤ k ≤ m). We call this problem the MQ2

problem with t variables and m equations. We have two cases:

4.1 When F Has Characteristic 2 and n ≥ m(m+ 1)

In this case, it is enough to have t = m or slightly bigger and MQ2 is easy.
Then the system (S ′′) gives the y2

i by Gaussian reduction and since z �→ z2 is a
bijection on any field of characteristic 2, we will then find yi from the y2

i .
Our algorithm works for n ≥ (m+ 1)t = m(m+ 1) as claimed.

4.2 When the Characteristic of F Is Odd and n = O(m2)

This case is still not completely solved when n ≥ m(m + 1). In what follows
we show an algorithm in which n grows exponentially in m, but very slowly.
More precisely when n ≥ about 2m7 m(m+ 1), then the system will be solved in
polynomial time in n. In practice for many systems with n = O(m2) we will also
have n ≥ about 2m7 m(m+ 1) and our algorithm will solve these cases.
The starting point is the exponential algorithm already mentioned in [4]. In

order to solve the MQ2 problem with t = O(m) we fix all with the exception of
about m variables. The resulting system is linear in the y2

i , and is then solved by
gaussian elimination. For each resulting solution obtained for y2

i , the probability
that it is indeed a square in F is 1/2. The probability that all the y2

i are squares
is 2−m and therefore we need to repeat the attack 2m times. For this there must
be at least about logq(2m) =

m
log2 q

additional variables. Therefore, the algorithm
solves the MQ2 problem in time 2m when t ≥ m+ m

log2(q) .
Certainly, the exponential algorithm is efficient for m ≤ 40. Now we will

improve it. We will show a reduction from the MQ2 problem with t variables
and m equations to the MQ2 problem with t

40+40/ log2 q
variables and m − 40

equations. For this we do the following:

1. We assume that the available computing power is greater than 240 opera-
tions.

2. First we ignore most of the variables except the 40 + 40/ log2 q variables
y1, . . . y40+40/ log2 q

.
3. With a multiple of 240 operations we find a nonzero solution to the first 40
equations, provided that the contribution of the other variables is zero.

4. The remaining variables are divided in groups of at least 40 + 40/ log2 q
variables.

Solving Underdefined Systems of Multivariate Quadratic Equations 223

5. For each group of variables, in about 240 operations, we find a nonzero so-
lution, such that their contribution to the first 40 equations is zero.

6. Now we have found a solution y1, . . . y40+40/ log2 q
, . . . , yt such that the first

40 equations are satisfied.
7. This solution to the first 40 equations, gives in fact many solutions: for ex-
ample if we have a nonzero solution, y1+40+40/ log2 q

, . . . y2·(40+40/ log2 q) such
that their contribution to the first 40 equations is zero, such is also the case
for the values
zy1+40+40/ log2 q

, . . . zy2·(40+40/ log2 q) and for any value of z.
8. For each group starting from the second, we can add a new variable zi,

i = 1.. t
40+40/ log2 q

− 1 as described in 7.
9. Whatever are the values of the zi, the first 40 equations are satisfied.
10. Now we have another MQ2 system: with m − 40 equations and with

t
40+40/ log2 q

− 1 variables zi, such that if it is satisfied, the whole original
system is satisfied.

The reduction fromMQ2 with (t,m) to the problem with
(

t
40+40/ log2 q

, m− 40
)

can be iterated. Therefore, we see that we can solve MQ2 for any m as long as

t ≥ (40 + 40/ log2 q)m/40

The complexity of the algorithm is about 240 ·t, which is essentially linear in t: for
each group of (40+ 40/ log2 q) variables we solve a small MQ2 in 240, remaining
parts can be neglected. Moreover, if t > (40 + 40/ log2 q)

m/40, we ignore the
remaining variables and the complexity will be only 240 (40 + 40/ log2 q)

m/40.

Conclusion for odd characteristic. Now we combine our result for MQ2

with the reduction from MQ to MQ2 that works for n ≥ (m + 1)t = m(m + 1)
described in 4.
Therefore, a massively underdefined system MQ with

n ≥ (40 + 40/ log2 q)m/40 (m+ 1)
can be solved in time about

240 (40 + 40/ log2 q)
m/40

.

In practice we have usually log2 q > 4 and therefore:

n ≥ (50)m/40(m+ 1) ≥ 2m/7(m+ 1)

Example 1: Let q ≈ 28, m = 40. The exhaustive search for such MQ is in 2320,
whatever is n. Now, if there is enough variables, n > 1845, our new algorithm
gives about 246 instead of 2320.

Example 2: Let q = 127, m = 80. The exhaustive search for such MQ is in 2559,
whatever is n. Now, if there is enough variables, n > 136000, our new algorithm
gives about 251 instead of 2559.

224 Nicolas Courtois et al.

5 Application: Cryptanalysis
of Certain Multivariate Signature Schemes

For several recent signature schemes, the public key consists of a system of m
quadratic equations in n variables and where n� m (cf. e.g., [4], [9]). For these
systems, signatures can be forged if this system of quadratic equations can be
solved. Therefore as an immediate cryptographic application, our results lead to
new criteria for the choice of the security parameters of such systems.
Due to the parameters chosen for the signature schemes Quartz, Flash and

Sflash submitted to Nessie call for primitives, the security of these schemes is
not affected by our results. However for some “bad” choices of the parameters,
the Unbalanced Oil and Vinegar signature scheme (cf. [4]) can be broken. Note
however that the UOV scheme is not broken for the parameters proposed in [4].
We give below two examples of such “bad” choices for the parameters:
Let F = GF (24), and let m = 16 be the number of public equations. Fur-

thermore let either n = 48 or n = 64. Then q = 2s = 16, and t in the notation
of subsection 3.2 is either 2 or 3. The public key is given in terms of a set of
elements in F, describing the coefficients of the public system of quadratic equa-
tions. The length of the public key is 9 Kbytes for t = 2 and 16 Kbytes for t = 3.
The number m = 16 of equations has been chosen to defeat Gröbner bases algo-
rithms to solve MQ, and q16 = 264 has been chosen in order to prevent from an
exhaustive search. Moreover t ≥ 2 was chosen to escape from an attack as given
in [5] and [4], which exploits the trapdoor in Oil and Vinegar signature schemes,
and which does hold for n ≈ m.
Our attack does not rely on the fact that a trapdoor is hidden in the construc-

tion of the public polynomials. Rather we directly apply algorithms A and C to
show that the complexity of solving MQ with these parameters is significantly
lower than 264 trials for exhaustive search. Interestingly, for the chosen param-
eter sizes the complexities of the two algorithms come quite close. Let n = 48.
Then the complexity of algorithm A is of order 248 whereas the complexity of
algorithm C is about 246 (see subsection 3.3).
If n = 64, k = 5 satisfies 2k2 ≥ n − 2k and is thus a suitable parameter

for algorithm A. Hence the complexity of algorithm A is 244. The complexity of
algorithm C for n = 64 is upper bounded by a value between 242 and 245. If for
m = 16 and n = 48 one wants to increase the security at the cost of a moderate
increase of the size of the public key, one could choose a larger subfield, say
q = 26 instead of 24. Then algorithm A has complexity 266 but the complexity
of algorithm C is at most 256. Hence the security increase is insufficient. As a
consequence of our algorithms, for a multivariate signature scheme with n = t·m,
t ≥ 2, the number m has to be 24 or larger. This shows that the choice of the
parameters for Unbalanced Oil and Vinegar must be made carefully.

Solving Underdefined Systems of Multivariate Quadratic Equations 225

References

1. N. Courtois, A. Klimov, J. Patarin, A. Shamir, Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations, Advances in Cryptol-
ogy – EUROCRYPT’2000, Proceedings, B. Preneel (Ed.), Lecture Notes in Com-
puter Science, Springer Verlag, vol. 1807, pp. 392 - 407.

2. J.-Ch. Faugère, A new efficient algorithm for computing Gröbner bases
(F4), Journal of Pure and Applied Algebra 139 (1999), pp. 61-88. See
www.elsevier.com/locate/jpaa.

3. M. R. Garey, D. S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-completeness, W. H. Freeman and Company, New York, 1979.

4. A. Kipnis, J. Patarin, L. Goubin, Unbalanced Oil and Vinegar Signature Schemes,
Advances in Cryptology – EUROCRYPT’99, Proceedings, J. Stern (Ed.), Lecture
Notes in Computer Science, Springer Verlag, vol. 1592, pp. 206 - 222.

5. A. Kipnis, A. Shamir, Cryptanalysis of the Oil and Vinegar Signature Scheme,
Advances in Cryptology – CRYPTO’98, Proceedings, H. Krawczyk (Ed.), Lecture
Notes in Computer Science, Springer Verlag, vol. 1462, pp. 257 - 266.

6. A. Kipnis, A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by
Relinearization, Advances in Cryptology – CRYPTO’99, Proceedings, M. Wiener
(Ed.), Lecture Notes in Computer Science, Springer Verlag, vol. 1666, pp. 19 - 30.

7. R. Lidl, R. Niederreiter, Finite fields, Encyclopedia of mathematics and its appli-
cations, vol. 20, 1997.

8. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of applied cryptogra-
phy , CRC Press, 1996.

9. J. Patarin, N. Courtois, L. Goubin, FLASH, a Fast Multivariate Signature Al-
gorithm, in Progress in Cryptology–CT-RSA 2001, D. Nacchache, ed., vol 2020,
Springer Lecture Notes in Computer Science, pp. 298-307.

10. J. Patarin, L. Goubin, N. Courtois, Quartz, 128-bit long digital signatures, Cryp-
tographers’ Track RSA Conference 2001, San Francisco 8-12 Avril 2001, LNCS2020,
Springer-Verlag. Also published in Proceedings of the First Open NESSIE Work-
shop, 13-14 November 2000, Leuven, Belgium.

Appendix A: Deriving Theorem 1

In order to derive Theorem 1, a few preparatory steps are explained. For simulta-
neously reducing the number of product terms in two polynomials Gi, first ignore
linear and constant parts and concentrate on homogeneous (degree two) parts.
Let n > 2 be even (the case n odd is similar) and let Q1 = f1f2 + f3f4 + ...+ q1
and Q2 = g1g2 + g3g4 + ...+ q2 be reduced representations of the homogeneous
parts of G1 and G2 (which are assumed to be nondegenerate). Depending on
the case, qi, i = 1, 2, is an abbreviation for 0 or f2

n−1 + a′f2
n (or for g

2
n−1 + a′′g2

n

respectively) for some a′, a′′ ∈ F.
Restrict first to reducing the number of product terms in Q1 and Q2, and

deal with squares of linear terms later. To start with, both Q1 and Q2 have n
2

product terms.
Consider, e.g., the relation imposed by setting f1 = b, b ∈ F arbitrary. This

relation is applied to every polynomial Gi and obviously reduces the number of
product terms in Q1 by one, as Q1 = f3f4 + ... + bf2 + q1. For iterating our

226 Nicolas Courtois et al.

procedure in later steps, we need to see the explicit effect this linear relation
has on Q2. Recall (cf. Lemma 1, a)) that the coefficient vectors g i of gi, i =
1, ..., n, are a basis in Fn. Therefore the coefficient vector f

1
can be written (use

Gaussian elimination) as a linear combination f 1 =
∑n
i=1 αig i for suitable αi ∈

F, i = 1, ..., n, where not all αi’s are 0. Thus we get the identity of linear forms∑n
i=1 αigi = f1. Suppose, e.g., that α1 �= 0. Use the relation

∑n
i=1 αigi = f1 = b

to express g1 as g1 =
∑n
i=2 α

′
igi + b′, where α′i =

αi
α1
, i = 1, ..., n and b′ = b

α1
.

Thus substituting g1 in Q2 we get

Q2 = (
n∑
i=2

α′igi+ b′)g2+ g3g4+ ...+ gn−1gn+ q2 = (g3+α′4g2)(g4+α′3g2)+ (2)

+...+ (gn−1 + α′ng2)(gn + α′n−1g2) + (α
′
2 + α′3α

′
4 + ...α′n−1α

′
n)g

2
2 + b′g2 + q2,

where the last expression has n2 −1 products of n−2 linear forms g′j , j = 3, ..., n
(we still focus only on product terms and not on squares). Note that using (2)
the simultaneous reduction of product terms in Q1 and Q2 with a given linear
relation can be carried out efficiently. After eliminating one variable xi using the
relation f1 = b, Q1 has n − 1 variables and n

2 − 1 product terms and is now of
the form (renaming f ′i by fi) Q1 = f3f4 + ...+ fn−1fn+ linear terms + squares
of linear terms, and similarly for Q2.
To simultaneously eliminate further product terms in Q1 and Q2, consider

the system of n− 1 linear equations with unknowns αi, βj ∈ F, i, j = 3, ..., n,
n∑
i=3

αif i +
n∑
j=3

βjg j = 0, (3)

We still have 2(n−2) unknowns, and thus many solutions, from which we choose
a nontrivial one. Furthermore, the f i’s, as well as the g i’s, can be assumed to
be linearly independent. Hence not all αi’s and not all βj ’s are 0.
Then both sides of the identity of linear forms

∑n
i=3 αifi =

∑n
j=3 βjgj are

of the form
∑n
i=1 aixi for suitable ai ∈ F, i = 1, ..., n. So let

∑n
i=1 aixi = b,

b ∈ F arbitrary, be the relation to be fixed. Then we can eliminate one product
term in Q1 and one in Q2 as before, and in the same time eliminate one further
variable xi. This procedure can be repeated while the linear system (3) has a
nontrivial solution. After we have fixed r relations, n − 2r linear forms remain
involved in products in each of Q1 and Q2, and the number of variables after
elimination has decreased to n− r. Therefore system (3) has a solution as long
as (n− 2r)+ (n− 2r) > n− r. This simplifies to r < n

3 . As soon as r+1 >
n
3 for

some r > 0, consider, e.g., polynomials G1 and G3 and simultaneously eliminate
product terms in G1 and G3 and so on.
Finally fix linear forms occurring in squares. As squaring is a linear bijective

operation in characteristic 2, sums of squares simplify to a single square of a
linear relation and we need only fix one linear relation in each polynomial Gi in
which we have eliminated product terms.

Solving Underdefined Systems of Multivariate Quadratic Equations 227

Proof of Theorem 1 (Sketch): The proof proceeds in three steps. (In subsequent
equalities between integers and fractions, either floors or ceilings should be taken.
These operations depend on divisibility properties of n and can be ignored as far
as their effects cancel out in book-keeping of terms.) Let Q1, Q2 and Q3 denote
the homogeneous parts of the polynomials G1, G2 and G3.

Step 1: Simultaneously eliminate product terms in Q1 and Q2 by fixing appro-
priate linear relations between the variables as described. We can eliminate r+1
products, where the condition r < n

3 holds. Thus r + 1 =
n
3 , and in each of Q1

and Q2 there remain n
2 − n

3 =
n
6 product terms with

n
3 linear forms as factors

involved. Moreover, using the fixed linear relations, eliminate n3 unknowns in all
polynomials Gi. Thus all Gi’s are polynomials of n − n

3 =
2n
3 variables and for

i > 2, Gi has at most n3 product terms with at most
2n
3 linear forms as factors.

In a similar way, in Steps 2 and 3 the numbers of product terms in Qi,
i = 1, 2, 3, are further reduced: In Step 2, product terms in Q1 and Q3 are
simultaneously eliminated, whereas Step 3 deals with simultaneously eliminating
product terms in Q2 and Q3. Book-keeping of the number of remaining nonlinear
summands in theQi’s leads to the simplified system ofm equations inm variables
as stated in Theorem 1. Details are omitted here due to space limitation.

A refinement. In all three steps of the proof of Theorem 1, a number r + 1 is
computed, which is the number of products that can simultaneously be elimi-
nated in reduced representations of two quadratic forms. The number r has been
limited by the condition that the sum of the numbers of linear forms occurring
in products in both quadratic forms exceeds the number of components of the
coefficient vectors of the linear forms. This was to assure that a linear system
of equations similar to (3) has nontrivial solutions. However, with a probability
p > 0, these coefficient vectors are linearly dependent even if not enough of them
are available to satisfy the above condition. It can be shown that this probability
is about 0.63. By trying Step 1 a few times, each time choosing different linear
relations to be fixed, one can increase this probability to close to 1. This applies
also to the other steps and allows to eliminate a few more nonlinear terms than
stated in Theorem 1.

	Solving Underdefined Systems of Multivariate Quadratic Equations
	1 Introduction
	2 The Problem MQ
	3 Solving MQ for Underdefined Systems of Equations
	3.1 Algorithms for Solving MQ over Any Finite Field
	3.2 An Algorithm for Solving MQ over Fields of Characteristic 2
	3.3 Comparing Efficiency of the Algorithms

	4 Solving MQ for Massively Underdefined Systems of Equations
	4.1 When F Has Characteristic 2 and ≥ m(m+1)
	4.2 When the Characteristic of F Is Odd and n = O(m^2)

	5 Application: Cryptanalysis of Certain Multivariate Signature Schemes
	References
	Appendix A: Deriving Theorem 1

