
Symbolic Localization Reduction with Reconstruction
Layering and Backtracking

Sharon Barner, Daniel Geist and Anna Gringauze

IBM Haifa Research Lab, Haifa Israel

Abstract. Localization reduction is an abstraction-refinement scheme for model
checking which was introduced by Kurshan [12] as a means for tackling state
explosion. It is completely automatic, but despite the work that has been done
related to this scheme, it still suffers from computational complexity. In this
paper we present algorithmic improvements to localization reduction that
enabled us to overcome some of these problems. Namely, we present a new sym-
bolic algorithm for path reconstruction including incremental refinement and
backtracking. We have implemented these improvements and compared them to
previous work on a large number of our industrial examples. In some cases the
improvement was dramatic. Using these improvements we were able to verify
circuits that we were not previously able to address.

1 Introduction
The directions in which contemporary research is tackling the state explosion problem
are quite diversified. Structural model reductions are performed, various optimizations
are published, and bounded model checking [4] is gaining momentum. Formal verifi-
cation activity has also somewhat shifted from verification to falsification or as it is
popularly called “bug hunting”. This paper concentrates on a method which is called
localization reduction or iterative abstraction refinement. The strength of this method
is in verification and therefore it is complimentary to the methods such as bounded
model checking and partial search whose main strength is in falsification.
Localization reduction with counterexample guided refinement was introduced by
Kurshan [12]. Localization reduction is an iterative technique that starts with an
abstraction of the model under verification and tries to verify the specification on this
abstraction. When a counterexample is found a reconstruction process is executed to
determine if it is a valid one. If the counterexample is found to be bogus (or spurious),
then the abstract model is refined to eliminate the possibility of this counterexample in
the next verification iteration. The details are described in Section 2.
Note that the localization technique either leaves a variable unchanged or replaces it by
a non-deterministic abstraction. A similar approach is described by Balarin and San-
giovanni-Vincentelli [2]. Another refinement technique has been proposed by Lind-
Nelson and Andersen [14]. They use under and over-approximation in order to handle
all CTL. Their approximation techniques enable them to avoid rechecking the entire
model after each refinement step while guaranteeing completeness.
There are abstraction-refinement techniques that do not use counterexamples to refine
the abstraction [13, 16]. A technique proposed by Govindaraju and Dill [10] uses
under approximation techniques and counterexamples to verify the specification. The
refinement technique used there is different - it randomly chooses a concrete state cor-
responding to the first spurious state in the abstract counter example and tries to con-
struct a real counterexample starting with the image of this state under the transition
relation. Furthermore, the paper is limited to handling of safety properties and non-
cyclic counterexamples.

D. Brinksma and K. G. Larsen (Eds.): CAV 2002, LNCS 2404, pp. 65-77, 2002.
c Springer-Verlag Berlin Heidelberg 2002

A general abstraction method using a counterexample guided refinement was recently
proposed by Clarke et al. in [7]. Wang et al. have reported the use of an ATPG solver
for reconstruction [19]. Clarke et al. [9] have reported similar work where they used
the GRASP [18] SAT solver to perform reconstruction. Gupta and Clarke have used
spectral analysis to perform refinement[11]. The algorithms reported in this paper are
implemented using BDDs but some of them can be implemented otherwise and can be
used in conjunction with SAT or ATPG based implementations.
The steps of the abstraction refinement process described in this paper are no different
than those described by Clarke et al. [7]. However an implementation of the methods
described in Clarke et al. resulted for the most part with state explosion when they
were attempted on our current industrial examples. We therefore improved the algo-
rithms described by Clarke et al. and as result achieved dramatic improvements in
some cases of real industrial examples.
Our improvements are described in Section 4. Most of the improvements were on path
reconstruction and we also changed the way refinement is done. Since localization
reduction is most effective when a property passes (as can be seen in the results in Sec-
tion 5), it may seem that concentration on the refinement process would be more
appropriate. However, since the refinement is guided by the counterexample, the
reconstruction phase also calculates information that is crucial for the refinement
phase. Therefore, improving reconstruction also improves refinement.
We have implemented the changes to localization reduction and used them on some of
our designs. The new algorithms enabled us to verify circuits which we could not han-
dle previously and in some cases the improvement was dramatic.
The rest of the paper is organized as follows. The next section describes localization
reduction in detail. Section 3 defines the notation we use. Section 4 describes our algo-
rithms. Section 5 details experimental results. We conclude in Section 6 with some
suggestions for future work.

2 Overview of Localization Reduction Process
The process of localization reduction is depicted in Figure 1. Given a model and an
ACTL [8] formula

 where the model checking problem , is too large for a
model checker to handle, the localization reduction method works as follows: first a
heuristic process is executed in order to obtain an abstract model of such that

 where \ is the simulation relation. Next, the model checking problem ,
is submitted to a model checker. Note that although may contain more behavior
than , it’s structure and description are much simpler so the model checker is able to
resolve the problem without reaching state explosion. The resolution may result in a
“pass” or a “fail”. In the case of a “pass” (i.e. is true), the process can terminate

because and this implies that . However, in the case of a “fail”, the
counter-example path, generated is valid for but may not have a corresponding
execution path in . In this case it is necessary to validate that there is a corre-
sponding path in . This process is called “reconstruction”. If a path is successfully
reconstructed then the process terminates. However, if reconstruction is not possible
then is considered to be “spurious and the next iteration is started by heuristically

M

ϕ M ~ ϕ

M′ M

M \ M′ M ′~ ϕ

M′

M

M ′~ ϕ

M \ M′ M ~ ϕ

π′ M′

π M

M π

π′

66 Sharon Barner et al.

refining and replacing with such that . This process of iterative
refinement continues until a “pass” is returned, or reconstruction of a “fail” is success-
ful, or eventually state explosion is reached during model checking.

2.1 Improvements
Aside from state explosion in model checking, the abstraction refinement has two
additional difficulties:
1. The reconstruction operation can in itself explode.

2. When reconstruction fails, the refinement operation is usually guided by trying to
determine from the path , what are the inconsistencies of this path and the model

. This is usually defined as a NP hard problem [7].

The methods of Clarke et al. explore all concrete paths which correspond to a certain
abstract path starting from the initial states. In case there is no such concrete path they
refine the model. Since these algorithms still suffer from state explosion we improved
them in the following ways:
1. The path reconstruction was significantly changed:

a. Incremental reconstruction: Instead of trying to reconstruct directly on model
, our algorithm performs successive reconstructions on model

where .
b. Partial search and backtracking: Instead of trying to find all paths that corre-

spond to the algorithm selects a subset of such paths and continues recon-
struction. It is therefore possible to backtrack when a dead end is reached. The
details are described in Section 4.2.

2. The refinement criterion is essentially the same as in Clarke et al. [7] however the
method of computation takes advantage of the fact that we are handling a restricted
class of abstractions (as described next).

We chose to restrict the class of abstractions we support to a subset of those supported
in Clarke et al. While Clarke et al. support very general abstraction we confined our-
selves to variable projection because with the general abstraction you need more
refinement iterations and the benefit is small. Overall, our new method is entirely auto-

M′ M′′ M \ M′′\M′

Fig. 1. The localization reduction process

passed

failedM localize verify

reconstruct

re
fin

e

M M'

M''

ππππ'

ππππ

π′
M

π′
M Mi i, 1…k=

M Mk\…M1\M=

π′

67Symbolic Localization Reduction with Reconstruction Layering and Backtracking

matic and symbolic. However, some of the improvements we report can also be
applied to the more general class of abstractions.

3 Background and Definitions
A model has finite set of variables . Each variable in is called a
state variable. Each state variable can be equal to one of a finite set of values . A
particular value assignment to the variables defines a state in . Expres-
sions are built from variables in , constants from , and function symbols (e.g.

 or). Atomic formulas are constructed from expressions and rela-
tion symbols (e.g. or). The set of all atomic formulas
are called Atoms(M). The Support of an atomic formula f is the set of state variable

 that explicitly appear in f (e.g. ,
).

A model can be defined by a program written in SMV [15] and translated into a
Kripke structure Where , is a set of states, , is a
set of Initial states , is a transition relation and : is a labeling
of the states in S given by ={ | s f}. Based on the Kripke structure

 of , formulas of the ACTL temporal logic can be constructed and evaluated (i.e.
model checked). For a detailed definition of ACTL see [8].
Localization reduction involves abstraction of the model M (and its associated struc-
ture). There is more than one way to obtain an abstract model of . We now
describe the type of abstraction used in this paper.
 Definition 1 (State projection) Given a state and a subset of the state
variables where

1. .

2. Let be the indices in increasing order of the state variables that belong to
, then .

The state projection of s on is the m-tuple which satisfies
 and denoted by .

Intuitively, the state is projected onto the coordinates of the variables contained in
V’.
 Definition 2 (Set projection) Given a set of states and a set of state variables ,
The set projection of the set on is defined as .

 Definition 3 (Model projection) Given a Kripke structure which represents a model
 and a subset of the state variables we define a model projection of

with respect to which represents a model as follows:

1. is the set of state variables of .

2. where:

.

.

.

={ | s ~ f}.

M V v1 … vn,{ , }= V
vi Di

v1 … vn,{ , } M
V Di

v1 1 v2 v5⁄()+ + v16
v1 1 v2 v5⁄()+ + 12= v16 20<

V′ V⊆ Support v1 1 v2 v5⁄()+ + 12=() v1 v2 v5, ,{ }=
Support v16 20<() v16{ }=

M
K S I R L, , ,()= S D1 …× Dn×= I S⊆

R S S×⊆ L S 2
Atoms M()

→
L s() f Atoms M()∈

K M

K M

s v1 … vn, ,()=
V′ V⊆

m V′=

i1 … im, ,
V′ v′1 vi1

v′2, vi2
… vm, , v′im

= = =

V′ s′ v1′ … vm′, ,()=
s′ V V′⁄()s V()∃= proj s V′,()

s

S V′
S′ S V′ S′ proj s V′,() s S∈{ }=

K
M V′ V⊆ K′ K

V′ M′

V′ M′

K′ S′ I′ R′ L′, , ,()=

S′ proj S V′,()=

I′ proj I V′,()=

R′ s′1 s′2,() s′1 proj s1 V′,()= s′2 proj s2()=, s1 s2,() R }∈,{ }=

L′ s′() f Atoms M′()∈ ′

68 Sharon Barner et al.

where is the subset of where only variables that belong to
appear.
Note that its easy to see that by definition of model projection, and that model
projection defines a family of model abstractions for that has a partial order with
respect to \\\\.
From here on and throughout the paper, the term abstraction will mean projection type
of abstraction. The choice of projection as an abstraction is intuitive when working
with Binary Decision Diagrams (BDDs). Projection of a set can be calculated by exis-
tential quantification which is a standard operation of BDD packages [6].
 Definition 4 (Path projection) The projection of path on a set of
variables is a set of paths , where for all i, .
We denote .

Note that a projection of a path has a set of states as path elements, so it corresponds to
a set of paths in the original model. We make this distinction by denoting a set of paths
(and its elements) with capital letter.
Since the Kripke structures we handle are derived from hardware implementations the
transition relations obtained can be partitioned according to the state variables as fol-
lows: where , is a projection of onto some and

 is a projection of onto . We call the support of variable . Intu-
itively the next value of each state variable in the model is independent of the next val-
ues of other variables of the model and the support is the state variables which appear
in the atomic formula that describes the next state behavior (in practice some variables
may be optimized out if the formula is equivalent to one that does not contain them).
The support induces a graph on the state variables, where each variable is a node and
there is an edge between and if .
The Support of a set of state variables is defined to be the union of the supports of the
variables belonging to the set.
We are now ready to describe the abstraction refinement algorithms we improved.

4 The Abstraction Refinement Process
As mentioned in Section 1 our abstraction-refinement process follows the same

steps as described in Clarke et al. We now describe the differences that make it more
practical.

4.1 Initial Abstraction
Given a Model M and a model checking problem , our initial abstraction is
obtained by projection of M onto the set of state variables that are in the Support of the
atomic formulas of . Then we utilize a model checker to resolve . In the case
where a false answer is returned, we continue the process with reconstruction.

4.2 Trace Reconstruction

Given a path in the abstract model , the purpose of trace reconstruction is to find
a path of such that is a projection of .
Let M be the original model and denote the original set of vari-
ables. Assume that we have model M’ which is projection of the original model on the

Atoms M′() Atoms M() V′

M \ M′
M

π s0 s1 … sk, , ,{ }=
V′ Π′ S0′ S1′ … Sk′, , ,{ }= Si′ proj si V′,()=
Πi′ Si′≡

R Ri∩
= Ri Si Vi× ′⊆ Si S Suppi V⊆

Vi′ S′ vi′{ } Suppi vi

vi vj vj Suppi∈

M ~ ϕ M′

ϕ M ′~ ϕ

Π′ M′
π M Π′ π

V v0 v1 … vn, , ,{ }=

4.2.1 Reconstructing a Finite Path

69Symbolic Localization Reduction with Reconstruction Layering and Backtracking

set of variables , where . Let also be
the counter example for the original formula in the projected model.
Generally, the counter example (path) reconstruction algorithm analyzes the reachable
state space for the variables in , where all search steps are performed inside

. In [7], the algorithm iteratively performs consequent image computations
using the model , intersecting each i-th step with before the next image computa-
tion, till no further step is possible or the end is reached. In the former case we have a
spurious counter example, and in the latter case the counter example is proved real.
However, this algorithm often leads to state space explosion, because in many practical
cases is significantly greater than .
In this section we present some techniques to overcome the state space explosion prob-
lem. First, we introduce the notion of layer

4.2.2 The Layering Reconstruction Algorithm
 Definition 5 layer.

1. is a layer.

2. Any set is a layer.

With the notion of layer we can divide the variable dependency graph into disjoint sets
of variables (or layers), such that each variable in the layer is in the direct dependency
of some variable(s) in one of the previous layers.
We divide the set into layers, and perform the layer reconstruction algorithm
below iteratively, each time by computing an additional layer of variables and adding
it to the abstract model. On the i-th iteration, the partially reconstructed counter exam-
ple is produced.
Let be a path in the abstract model. Our algorithm for the path reconstruction is
shown on Figure 2. The function reconstruct accepts an abstract path , an abstract
model and a concrete model . The algorithm performs layer by layer reconstruc-
tion iteratively, each time reconstructing one more layer, till all the variables are recon-
structed ()or no further reconstruction is possible and the refinement is done
(). For layer computation (choose_n_variables), the next layer can be chosen

V′ v′0 v′1 … v′m, , ,{ }= m n≤ Π S0 S1 … Sk, , ,{ }=

V V′⁄
Si0 i k≤ ≤∪

M Si

V V′⁄ V′

reconstruct () {
 ;
 ;
 ;
 while () {
 := ;
 := project_model();
 := reconstruct_one_layer();
 if() return ; /*refinement needed */
 ;
 }
 return choose_one_counter_example();
}

Π′ M′ M, ,
Π0 Π′=
i 1=
U:=variables_of M′()

U ∅≠() Πi ∅≠()∧
U choose_n_variables support U() U⁄() U∪
M′′ M U,
Πi 1+ Πi

M′ M′′,,
Π

i 1+
∅= ∅

i i 1+=

Π
i

Fig. 2. Layered reconstruction

U0 V′=

Ui support Uk

0 k i 1–≤ ≤

∪ 
 
 

Uk

0 k i 1–≤ ≤

∪ 
 
 
⁄⊆

V V′⁄

Π
i

S0
i

S1
i
… Sk

i
, , ,{ }=

Π
Π′

M′ M

U ∅=
Π

i
∅=

70 Sharon Barner et al.

to be the entire support of the previous layer. However, on the first iteration of the loop
we give priority to the support of the variables that were added to the model in the last
refinement stage since they are the most suspect as ones that will force another refine-
ment. In further iterations we take the support of the entire set of variables in the cur-
rent model.
The advantage of layered reconstruction is twofold: first, we only reconstruct a few
variables at a time while the rest are restricted to a very small subset. This maintains
the state space we work on very small and avoid state explosion. Secondly, we can
detect that a refinement is required early, many iterations before we actually obtain the
entire concrete model.

Reconstruction of one layer is different depending if contains a loop or not. In the
case of a simple path (no loop) we have implemented two algorithms. As explained
above, the straightforward algorithm described in [7] suffers from state explosion.
Both our algorithms try to alleviate that problem. The first one is faster and in usually
good enough but when it fails due to the fact that too many variables are added back to
the model, we apply our second algorithm which employs backtracking.

The function reconstruct_one_layer_no_loop1 accepts an abstract path an
abstract model and an intermediate model . We first try to reconstruct the path
for model . Note that we do not care what the values of those new variables will be
at each point of the reconstructed path except that the path has to be valid in and
its projection on the abstract model should be . We therefore iteratively perform for-
ward steps starting from , the initial set of and conjunct each step with the cor-
responding step in . This is no different so far than what is done in [7]. However, if
we reach a dead end (i.e. the conjunction becomes empty) instead of proceeding to
refine the model we try to modify to be consistent with .

Π′

Fig. 3. The Abstract Model Structure

M’ V’

free
M’’

M

Π′
M′ M′′

M′′
M′′

Π′
I′′ M′′

Π′

Π′ M′′

4.2.3 Reconstructing one Layer

4.2.3.1 Reconstructing without a Loop (Algorithm 1)

71Symbolic Localization Reduction with Reconstruction Layering and Backtracking

The choice of the specific is arbitrary and is done mainly to avoid state explosion.
Thus, we can modify it during reconstruction. Note that in addition to values of vari-
ables in , also contains values for the Support of . These variables are “cut”
from their behavior logic and have completely free (nondetermimistic) behavior as
shown in Figure 3. One can change the values of these free variables in as long as
this change is consistent with (and therefore, also). The resulting path will still
be a valid counter-example of the formula . Figure 4 details the algorithm: whenever

 is found to be inconsistent with , we project the offending state onto and
perform a preimage computation. That is, we preserve the values of and discard the
other values.We try to find other values for in order to make the state consistent
with the model. Notice that we avoid preimage computations of which tends to
explode.
In most cases the algorithm presented in this section gives good results. However, in
some of the hard cases we add backtracking to reconstruction.

Layering is not sufficient to avoid explosion because at each iteration, the counter
example is getting larger (because all the possible counter examples which comply
with are searched). However, only one such counter example would suffice, and
may be found in less effort than all of them. In order to exploit this, we combine under-
approximation of a partially reconstructed counter example with backtracking. The

Π′

V′ Π′ V′

Π′
M′′ M′

ϕ
Π′ M′′ V′

V′
V′′ V′⁄

M′′

reconstruct_one_layer_no_loop1 () {
 last = ;
 s := ;
 i := 0;
 := ;
 while (i < last) {
 next_s := ;
 new := ;
 if(new =) {
 /* try to see if the selection of values in can be changed */
 suspect := preimage(project(next_s,),) ;
 if () {
 /* check whether we can replace */
 new := ;
 if(new =)
 return ; /*refinement needed */
 else /* replace */
 := new;
 }
 else
 return ; /*refinement needed */
 }
 i := i+1;
 }
 return ;
}

Π′ M′ M′′, ,
Π′ 1–

S0

V′ variables_of M′()

Si 1+
e s M′′,() next_s∩imag

∅
V′′ V′⁄

V′ M′
suspect s∩() ∅≠

Si 1+
e s M′′,() project next_s V′,()∩imag

∅
∅

Si 1+
Si 1+

∅

Π

Fig. 4. The first reconstruction algorithm (without a loop)

Π
i

Π
i 1–

4.2.3.2 Reconstructing without a Loop (Algorithm 2)

72 Sharon Barner et al.

basic idea is, when reconstructing one layer of variables, to use subsets of real forward
steps (image computations), as long as possible, and try backtracking when a dead end
is reached.
Figure 5 shows the function reconstruct_one_layer_no_loop2 for reconstruction with
backtracking. The algorithm performs forward and backward steps (image and preim-
age computations) as long as possible. The forward step is done if the next step of the
path is consistent with the forward computation using the model , till the trace is
reconstructed and the bad states reached, or no forward step intersects the next state. In
the latter case, backtracking is done - the algorithm performs backward steps and
chooses different behavior for till the forward step is again possible or a back-
ward step cannot be performed anymore. This can happen if we checked all the possi-
ble values of for the current state, or there is no backward step from the current
state that intersects with the previous state. Note that we also employ underapproxima-
tion by doing subsetting [17] to avoid state explosion. In our experiments, we used
subsetting to reduce the BDD size down to 5000 BDD nodes.

To reconstruct an abstract path containing a loop (due to a liveness formula) we have
to additionally ensure that the concrete path contains one as well. The concrete model
sometimes contains some variable which acts like a “counter”. That is, it changes
cyclically independent of the abstract model and it is the root cause of our failure to

reconstruct_one_layer_no_loop2() {
 last = ;
 for(i := 0 to last -1) ;
 := ;
 := ;
 ;
 while (and){
 prev := project();
 new := project();
 step := preimage ;
 if () /* step forward */ {
 ;
 ;
 ;
 }
 else if () /* backtracking */ {
 ;
 if () return ;
 ;
 ;
 ;
 }
 else return ; / *refinement is needed */
 }
 return ;
}

Π′ M′ M′′,,
Π′ 1–

Si
all

∅=
V′ variables_of M′()
S0 I′′ project S0 V′,()∩
i 0=

i 0≥ i last<
Si V′,
Si 1+ V′,

new M′′,()
step Si∩ ∅≠
Si 1+ e step M′′,() Si 1+∩imag=
Si 1+ subset Si 1+()=
i i 1+=

step prev∧() ∅≠
Si (preimage Si 1+ M′′,() prev)∩ Si

all
⁄=

Si ∅= ∅
Si subset Si()=
Si

all
Si

all
Si∪=

i i 1–=

∅

Π

Fig. 5. Reconstruction with backtracking

M′′

V′′ V′⁄

V′′ V′⁄

4.2.3.3 Reconstruction of a path with a Loop

73Symbolic Localization Reduction with Reconstruction Layering and Backtracking

find a loop using the naive approach. However, if we look for a concrete path that
includes traversal of the abstract loop a few times, then we may succeed in finding one
which contains a concrete loop. It is possible to try a naive approach using one of the
algorithms in Section 4.2.3.1 or 4.2.3.2 and then test if the reconstructed path contains
a loop and if not proceed to refinement. However, in some cases we have found that
this leads to refinement right away although it is possible to find a loop using the
abstract path. In [7], the approach taken was to unwind the loop a sufficient number of
times and then reconstruct it. Our approach was to implement a fixed point algorithm.
The algorithm depicted in Figure 6 describes how this is done. The input path is
assumed to be the abstract loop without the tail leading to it from the initial state. The
algorithm performs a forward fixed point algorithm to find a loop with length that is a
product of . On termination of the fixed point, if , a concrete
loop exists. However, its possible that not all states in are on a loop and therefore
extract_loop_trace chooses an arbitrary state from and iteratively performs back-
ward steps from it until some state in is encountered more than once. This is similar
to the algorithm described in [5] by Biere et al. that proves a tableau construction by
showing how a concrete path can be constructed from path with a loop that satisfies the
tableau.

reconstruct_a_loop() {
 old := TRUE;
 new := ;
 last = ;
 while() {
 i := 1;
 new := ;
 old := new;
 step := new;
 while(i <= last) {
 step := ;
 if()
 refine;
 else {
 := step;
 i := ;
 }
 new := step;
 }
 }
 if() {
 := new;
 return extract_loop_trace();
 }
 else
 refine;
}

Π′ M′ M′′,,

S0
Π′ 1–

new old∩() ∅≠() new old≠()∧

new old∩

e step M′,() Si∩imag
step ∅=

Si
i 1+

new old∩() ∅≠
S0

Π′ M, ′

Fig. 6. Reconstruction with loop

Π′

Π′ 1– new old∩() ∅≠
S0

S0
S0

74 Sharon Barner et al.

4.3 Refinement
When reconstruction fails, it’s necessary to refine the model. In the family of abstrac-
tions we use, this means adding back state variables from the original model that were
eliminated in the previous abstraction. The decision which subset of variables to add
back can be formulated as an NP-complete problem [7]. We need to find a small set of
state variables that don’t belong to the set , for which values cannot be found such
that a path can be reconstructed from . We use the first element of that cannot
be reconstructed () and its preceding element () and try to find for which vari-
ables in the set we could not find valid values consistent with . We use a
heuristic function where The function tries to find the mini-
mal set of variables P s.t. . The actual implementation of
differ is heuristic. At first, . We randomly choose variables from to
eliminate until we no longer have . Since the result of this
algorithm depends on the order that we choose variables, we attempt this algorithm
with different variable sequences according to a predefined number of attempts.

5 Results
The experimentation with the new algorithms was conducted using hard cases that we
accumulated from industrial design groups that use our model checker for the purpose
of their verification work. The cases were diverse: they were from different designs
from different design groups, and had a significantly different number of state vari-
ables. Comparing to easy cases did not seem meaningful as obviously localization will
not perform better on them because of the extra overhead. For example, we ran the
texas 97 benchmarks [1] but most of them completed in less than a second without
localization reduction. The tests were all done on a 375Mhz IBM pSereis 640 with a
PowerPC3-2 processor and a 4MB L2 cache and 1G of memory.
The results are divided into two tables of safety and liveness. The first column
describes the type of design the example was taken from. The second column gives the
number of state variables in the examples. The third column details wether the prop-
erty passed or failed. The rest of the columns detail the results of the different algo-
rithms run on the example - giving run time (sec) and memory requirement. A
"Memory" entry means that the run reached the limit of 1G. Some of these examples
were ones that we could not verify even with 2G of memory which is the current limit

V′
π Π′ Π′

Si 1+ Si
V′′ V′⁄ M′′

differ A B,() A B∩ ∅=()
proj A P,() proj B P,()∩ ∅=

refine() {
 := ;
 prev := ;
 := ;
 if() {
 new := ;
 := ;
 }
 return add_to_model(,);
}

Si Si 1+ M′ M′′, , ,

V′ variables_of M′()

project Si V′,()

D differ image prev M′′,() Si 1+,()

D V⊆

project Si 1+ V′,()

D differ pre e new M′′,() Si,imag()

M′ D

Fig. 7. Refinement

P V′′= V′′ V′⁄
proj A P,() proj B P,()∩ ∅=

75Symbolic Localization Reduction with Reconstruction Layering and Backtracking

of a 32 bit application on the IBM pSereis 640. We run all algorithms using dynamic
BDD reordering.
In Table 1 we compared 4 algorithms. All of the algorithms performed On-The-Fly
model checking [3]: without localization, with Clarke et al.’s algorithm, with Layering
and the algorithm in Section 4.2.3.1, and with layering and the algorithm in Section
4.2.3.2.

In Table 2 we compared 3 algorithms: without localization. With localization and no
fixed point, and with localization and the algorithm in Section 4.2.3.3.
The results in Table 1 indicate that when a safety property passes the improvement in
time and memory requirements can be 2 orders of magnitude. This is due to the fact
that the examples are verified using a much smaller model. When the property fails, it
usually requires much more iterations of refinement and the results are either compara-
ble to the result without localization or worse than it. There was only one case (Infini-
band 2) where the algorithm of Clarke et al. did better - in this case there were no
refinement iterations required, thus our improvements were unnecessary but even with
the overhead they added the example ran much faster than without localization.

Table 1: Results for safety formulas

Name No.
Vars

Verif.
Result

Without
Local.

Clarke
et al.

Layer+
Alg1

Layer+
Alg2

Infiniband 1 396 passed Memory Memory 54s/43M 134s/47M

Infiniband 2 377 passed Memory 0.95s/33M 4.32s/33M 4.19s/33M

Ethernet 1 86 passed 1601s/87M 657s/189M 243s/88M 287s/88M

CPU 1 123 passed 599s/92M Memory 85s/99M 335s/93M

Queue CRM 79 passed 148s/45M 75s/42M 34s/41M 28s/41M

Ethernet 2 156 passed Memory 14211s/185M Memory 9.4s/31M

CPU 2 105 failed 595s/62M N/A 405s/50M 229s/50M

CPU 3 167 failed 1943s/96M Memory 28963s/
192M

1096s/
103M

Table 2: Results for liveness formulas

Name No.
Vars

Verif.
Result

Without
Local.

Layer+
Naive

Layer+
Fixed
Point

Infiniband 3 366 passed Memory 7.87/33M 7.7s/33M

Ethernet 3 41 failed 1.57s/27M 10.9s/27M 8.9s/27M

CPU 4 66 passed 28s/132M 22s/99M 23s/98M

CPU 5 66 failed 35s/132M 534s/131M 349s/128M

76 Sharon Barner et al.

For liveness (Table 2), we also observed an order of magnitude improvement in some
cases (Infiniband 3 is an example) but the results were not as consistent as for safety.
There were cases where the result was significantly better than without localization.
Note also that the fixed point algorithm was not better than the naive approach (except
for example CPU 5). This indicates that perhaps doing more refinement can be easier
than trying to locate a concrete loop which traverses the abstract loop more than once.

6 Conclusions
We presented improvements to symbolic localization reduction that gave us dramatic
improvements in the verification of some hard industrial examples. The improvements
were mainly in the reconstruction process. The algorithms we presented were found to
be most effective in the cases where the property is a safety property and passes. How-
ever, we have also shown that it can give orders of magnitude improvement on live-
ness formulas that pass. Thus this method is complimentary to the bounded model
checking methods which generally work better when the property fails.
For future work we intend to investigate ways to improve counterexample reconstruc-
tion of liveness properties since our results in these cases are not as consistent as with
safety. We also intend to combine some of our algorithms such as layering with the sat-
isfiability based reconstruction techniques reported in [9,19] which we believe can fur-
ther speed-up the results described here.

 References
[1] The texas97 verification benchmarks. http://vlsi.colorado.edu/ vis/texas-97/.
[2] F. Balarin and A. Sangiovanni-Vincentelli. An iterative approach to language containment. In Computer
Aided Verification, pages 29–40, 1993.
[3]I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of rctl formulas. In Computer Aided
Verification, pages 184–194, 1998.
[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Proc. of
TACAS, 1999.
[5] A. Biere, E. M. Clarke, and Y. Zhu. Multiple state and single state tableaux for combining local and global
model checking. In Correct System Design, pages 163–179, 1999.
[6] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implentation of a BDD Package. In 27th ACM/IEEE
Design Automation Conference, pages 40–45. ACM/IEEE, 1990.
[7] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu., H. Veith. Counterexample-guided abstraction refinement. In
Computer Aided VerificationI, pages 154–169, 2000.
[8] E. M. Clarke, O. Grumberg, and D. Peled. MIT Press, 2000.
[9] E. M. Clarke, Y. Lu, P. Chauhan, and A. Gupta. Automatic abstraction by counterexample-guided refine-
ment. Private Communication.
[10] S. G. Govindaraju and D. L. Dill. Verification by approximate forward and backward reachability. In In-
ter. Conf.on Computer Aided Design, 1998.
[11] A. Gupta and E. M. Clarke. Using fourier analysis for abstraction-refinement in model checking. Private
Communication.
[12] R. P. Kurshan. Computer-Aided-Verification of Coordinating Processes. Princeton University Press,
1994.
[13] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi. Tearing based automatic abstraction for ctl mod-
el checking. In Inter. Conf.on Computer Aided Design, pages 76–81, 1999.
[14] J. Lind-Nielsen and H. Andersen. Stepwise ctl model checking of state/event systems. In Computer Aid-
ed Verification, pages 316–327, 1999.
[15] K. L. McMillan. The SMV System DRAFT. Carnegie Mellon University, Pittsburgh, PA, 1992.
[16] A. Pardo and G. Hachtel. Incremental ctl model checking using bdd subsetting. In IEEE DAC,, 1998.
[17] K. Ravi and F. Somenzi. High-density reachability analysis. In ICCAD, 1995.
[18] G. P. M. Silva and K. A. Sakallah. GRASP – a search algorithm for propositional satisfiability. IEEE
Trans. on Computers, 44:506–516, 1999.
[19] D. Wang, P. Ho, J. Long, J. Kukula, Y. Zhu, T. Ma, and R. Damiano. Formal property verification by
abstraction refinement with formal, simulation and hybrid engines. In 38th IEEE DAC, pages 35–40, 2001.

77Symbolic Localization Reduction with Reconstruction Layering and Backtracking

	Introduction
	Overview of Localization Reduction Process
	Improvements

	Background and Definitions
	The Abstraction Refinement Process
	Initial Abstraction
	Trace Reconstruction
	Reconstructing a Finite Path
	The Layering Reconstruction Algorithm
	Reconstructing one Layer

	Refinement

	Results

