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Abstract. In this paper we discuss reachability analysis for infinite-
state systems in which states can be represented by a vector of integers.
We propose a new algorithm for verifying reachability properties based
on canonical representations of solutions to systems of linear inequations
over integers instead of decision procedures for integer or real arithmetic.
Experimental results demonstrate that problems in protocol verification
which are beyond the reach of other existing systems can be solved com-
pletely automatically.

1 Introduction

Reachability properties arise is many applications of verification. In this pa-
per we discuss reachability analysis for infinite-state systems in which state can
be represented by vectors of integers. We propose a new algorithm for verifying
reachability properties based on canonical representations of solutions to systems
of linear inequations over integers instead of decision procedures for integer or
real arithmetic. Experiments carried out with our infinite-state model checker
BRAIN demonstrate that hard problems in protocol verification which are beyond
the reach of other existing systems can be solved completely automatically.

This paper is organized as follows. In Section 2 we introduce our model of
transition systems over integers and their symbolic representation. We define the
reachability problem and a special kind of transition systems used in BRAIN,1

called the guarded assignment systems. In Section 3 we introduce the so-called
local backward reachability algorithm. In Section 4 we define the notion of basis
of a constraint which is used in all main operations on constraints in BRAIN. In
Section 5 we explain how, using bases, we implement all these operations, for
example, entailment-checking for constraints. In Section 6 we give experimental
evidence that our approach results in an efficient model-checker. In Section 7 we
discuss related and future work.

The system BRAIN and all the examples of this paper can be found on the
Web page www.cs.man.ac.uk/~voronkov/BRAIN/.
1 BRAIN is an acronym for Backward Reachability Analysis with INtegers.
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2 Preliminaries

We use a formal model of transition systems presented in [15]. In this model
symbolic representations of transition system are formulas interpreted over a
first-order structure, whose domain is the set of values for the state variables
of the transition system. In this section we recall the main definitions of [15]
specialized to the domain of integers and a particular first-order structure with
this domain. We also define the reachability problem and guarded assignment
systems used in our system BRAIN.

Denote by I the set of integers. We will formalize transition systems as fol-
lows. A transition system has a finite number of integer-valued variables. A state
is a mapping from variables to integers. Transitions may change values of vari-
ables. A symbolic representation of such a system uses first-order formulas in-
terpreted in a structure with the domain I.

We call an integer transition system a pair S = (V , T ), where V is a finite
set of state variables . A state of the transition system S is a function s : V → I.
We define the second component of transition systems as follows: T is a set of
pairs of states, called the transition relation of S. In the sequel we assume a
fixed integer transition system S = (V , T ). We call a transition any set of pairs
of states.

Consider the structure I = (I, >, <,≥,≤,+,−, 0, 1, 2, . . .), where all the func-
tion and predicate symbols (for example >) have their standard interpretation
over the integers.

A valuation for a set of variables V in I is any mapping s : V → I. We will use
the standard model-theoretic notation I, s � A to denote that the formula A is
true in the structure I under a valuation s. When we use this notation, we assume
that s is defined on all free variables of A. A formula A with free variables V is
said to be satisfiable (respectively, valid) in I if there exists a valuation s for V
in I such that I, s � A.

A formula A is called quantifier-free if A contains no quantifiers. A formula A
is called a simple constraint if A is a conjunction of atomic formulas, that is linear
equations and inequations over integers.

We will often use the following simple property of I.

Lemma 1. In I every quantifier-free formula A is equivalent to a disjunction of
simple constraints.

In addition to the set of state variables V , we also introduce a set V ′ of next
state variables of the same cardinality as V . We fix a bijection ′ : V → V ′ such
that for all v ∈ V we have v′ ∈ V ′. We can treat the variables in V ∪ V ′ also as
logical variables. Then any mapping s : V → I can be considered as both a state
of the transition system S and a valuation for V , and similarly for s′ : V ′ → I.

Let S be a set of states and A be a formula with free variables in V . We say
that A symbolically represents, or simply represents S if for every valuation s
for V we have s ∈ S ⇔ I, s � A. Likewise, we say that a formula B with free
variables in V ∪ V ′ (symbolically) represents a transition T if for every pair of
valuations (s, s′) for V and V ′ respectively we have (s, s′) ∈ T ⇔ I, s, s′ � B.
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drinks > 0
∧ customers > 0 ⇒ drinks := drinks − 1 (* dispense-drink *)

true ⇒ drinks := drinks + 64 (* recharge *)

true ⇒ customers := customers + 1 (* customer-coming *)

customers > 0 ⇒ customers := customers − 1 (* customer-going *)

Fig. 1. Guarded assignment system

In the sequel we will follow the following convention. We will often identify
a symbolic representation of a transition with the transition itself. For example,
when T is a formula with free variables in V∪V ′ we can refer to T as a transition.

Let us introduce an important special case of transition systems, called
the guarded assignment systems. The current version of BRAIN works with
quantifier-free guarded assignment systems. To define guarded assignment sys-
tems, let us first introduce a syntax sugar for representing transitions. We assume
that the set of state variables of the transition system is V .

We call a guarded assignment any formula (or transition) of the form

P ∧ v′1 = t1 ∧ . . . ∧ v′n = tn ∧
∧

v∈V−{v1,...,vn}
v′ = v,

where P is a formula with free variables V , {v1, . . . , vn} ⊆ V , and t1, . . . , tn are
terms with variables in V . We will write guarded assignments as

P ⇒ v1 := t1, . . . , vn := tn. (1)

The formula P is called the guard of this guarded assignment.
A guarded assignment is quantifier-free if so is its guard. A guarded assign-

ment is called simple if its guard is a simple constraint.
Formula (1) represents a transition which applies to the states satisfying P

and changes the values of variables vi to the values of the terms ti before the
transition. Note that a guarded assignment T is a deterministic transition: for
every state s there exists at most one state s′ such that (s, s′) ∈ T . Moreover,
such a state s′ exists if and only if the guard of this guarded assignment is true
at s, i.e., I, s � P .

A transition system is called a guarded assignment system, or simply GAS
if its transition relation is a union of a finite number of guarded assignments.
A GAS is called quantifier-free (respectively simple) if every guarded assignment
in it is also quantifier-free (respectively simple). An example integer guarded
assignment system for modelling a drink dispenser is given in Figure 1. This
GAS is simple.

Note that a guarded assignment system may represent a non-deterministic
transition system because several guards may be true in the same state.
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Theorem 1. One can effectively transform every quantifier-free guarded assign-
ment over I into an equivalent union of simple guarded assignments. Hence, every
integer quantifier-free GAS is also a simple GAS. ✷

The notion of a guarded assignment system is not very restrictive. Indeed, broad-
cast protocols of Esparza, Finkel, and Mayr [9] and Petri nets can be represented
as integer simple guarded assignment systems. All transition systems for cache
coherence protocols described in Delzanno [7] are integer simple GAS. Not ev-
ery transition system is a GAS. Indeed, every GAS has the following property:
for every state s there exists a finite number of states s′ such that (s, s′) ∈ T .
Evidently, there are systems which do not satisfy this property.

We say that a state sn is reachable from a state s0 w.r.t. a transition T if
there exists a sequence of states s1, . . . , sn−1 such that for all i ∈ {0, . . . , n − 1}
we have (si, si+1) ∈ T . In this case we also say that sn is reachable from s0 in n
steps and that s0 is backward reachable from sn in n steps. When T is clear from
the context (for example, when T is the transition relation T of a transition
system) we will simply write “reachable”.

The reachability problem can now be defined as follows. We call the (integer)
reachability problem the following decision problem. Given formulas In,Fin, and
Tr such that (i) In represents a set of states, called the set of initial states ; (ii)
Fin represents a set of states, called the set of final states ; and (iii) Tr represents
the transition relation of a transition system S, do there exist an initial state s1

and a final state s2 such that s2 is reachable from s1 w.r.t. Tr?
When we discuss instances of the reachability problem, we will call the formu-

las In and Fin the initial and final conditions , respectively, and Tr the transition
formula.

The integer reachability problem for infinite-state systems is, in general, un-
decidable, even for simple GAS with three variables (because such GAS can
easily represent two-counter machines, see, e.g., [15]). Various results on reach-
ability are discussed in many papers, including Esparza, Finkel, and Mayr [9],
Abdulla et.al. [1], Kupferman and Vardi [13].

3 Local Backward Reachability Algorithm

There are various (semi-decision) procedures for checking reachability. For exam-
ple, a classification of reachability algorithms is undertaken in [15]. The current
version of BRAIN uses an algorithm called the local backward reachability algo-
rithm. The algorithm is called local because it is based on a local entailment test
rather than a global one. For a discussion of local algorithms see [8,15].

Before defining these algorithms, let us discuss symbolic representations of
reachable states. We assume fixed initial and final conditions In(V), Fin(V) and
the transition formula Tr(V ,V ′).

Let A(V) be a formula which represents a set of states S. It is not hard
to argue that the set of states reachable in one step from a state in S can be
represented by the formula ∃V1(A(V1) ∧ Tr(V1,V)).
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Likewise, the set of states backward reachable in one step from a state in S
is represented by the formula ∃V1(A(V1) ∧ Tr(V ,V1)). The last formula can be
considerably simplified when the transition Tr is a guarded assignment. Let u
be a guarded assignment of the form P (v1, . . . , vn) ⇒ v1 := t1, . . . , vn := tn.
For simplicity we assume that V = {v1, . . . , vn}. This can be achieved by adding
“dummy” assignments v := v for every variable v ∈ V − {v1, . . . , vn}. Let also
A(v1, . . . , vn) be a formula whose free variables are in V . For every term t denote
by t′ the term obtained from t by replacing every occurrence of every state
variable vi by v′i.

Define the following formulas:

Au(v1, . . . , vn)
def= ∃V ′(A(v′1, . . . , v

′
n) ∧ P (v′1, . . . , v

′
n) ∧ v1 = t′1 ∧ . . . ∧ vn = t′n);

A−u(v1, . . . , vn)
def= P (v1, . . . , vn) ∧ A(t1, . . . , tn).

Lemma 2. Let a formula A(v1, . . . , vn) represent a set of states S. Then (i) the
formula Au(v1, . . . , vn) represents the set of states reachable in one step from S
using u; (ii) the formula A−u(v1, . . . , vn) represents the set of states backward
reachable in one step from S using u. ✷

These formulas explain the choice of backward reachability in BRAIN: the for-
mula A−u contains only quantifiers which are already contained in P (v1, . . . , vn)
and A(v1, . . . , vn). In particular, if P (v1, . . . , vn) and A(v1, . . . , vn) are simple
constraints then A−u is a simple constraint too.

The local backward reachability algorithm LocalBackward is given in Figure 2.
It is parametrized by a function select which selects a simple constraint in a set
of simple constraints. The function pdnf(A) returns a set S of simple constraints
such that A is equivalent to

∨
C∈S C in I. To apply this algorithm to a quantifier-

free GAS, we first transform it to a simple GAS using Theorem 1.

Theorem 2 (Soundness and Semi-completeness). LocalBackward has the
following properties:

1. there is a final state reachable from an initial state if and only if the algorithm
returns “reachable”;

2. if the algorithm returns “unreachable”, then there is no final state reachable
from an initial state. ✷

On some inputs the algorithm does not terminate.
Note that termination of the local algorithms may depend on a the selection

function select. Let us call the selection function fair if no formula remains in
unused forever.

Theorem 3. If the local forward (respectively backward) algorithm terminates
for some selection function, then it terminates for every fair selection function.

To implement the LocalBackward one has to implement procedures for the
following problems:



Using Canonical Representations 391

procedure LocalBackward
input: quantifier-free formulas In,Fin,

finite set of simple guarded assignments U
output: “reachable” or “unreachable”

begin

IS := pdnf(In); FS := pdnf(Fin)
if there exist I ∈ IS , F ∈ FS such that I� ∃V(I ∧ F ) then return “reachable”
unused := FS ; used := ∅
while unused 
= ∅

S := select(unused)
used := used ∪ {S}; unused := unused − {S}
forall u ∈ U
(* backward application of u *)

N := S−u

(* satisfiability-check for the new constraint N *)

if I� ∃V(N) then
(* intersection-checks *)

if there exists I ∈ IS such that I� ∃V(N ∧ I) then return “reachable”
(* entailment-checks *)

if for all C ∈ used ∪ unused we have I 
� ∀V(N → C) then
unused = unused ∪ {N}
forall C′ ∈ used ∪ unused
(* more entailment-checks *)

if I� ∀V(C′ → N) then remove C′ from used or unused
return “unreachable”

end

Fig. 2. Local backward reachability algorithm used in BRAIN

1. Backward application of guarded assignments : given a simple constraint S
and guarded assignment u, compute S−u.

2. Satisfiability of simple constraints : given a simple constraint C, is C satisfi-
able in I?

3. Entailment of simple constraints: given simple constraints N and C, is the
formula N → C valid in I?

To implement the reachability algorithm efficiently, one has to implement effi-
ciently these three procedures. As our experimental data show, for hard prob-
lems the number of entailment-checks is considerably larger than the number of
transition applications and satisfiability-checks. Therefore, entailment-checking
should be implemented especially efficiently.

A simple constraint over I can be considered as a system of linear equations
and inequations over integers with variables in V . Since ever equation uV+ l = 0
can be equivalently replaced by two inequations uV + l ≤ 0 and −uV − l ≤ 0, in
the sequel we will only discuss inequations. Satisfiability of simple constraints is
known to be NP-complete and entailment coNP-complete. If one uses relaxation
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(see Delzanno [7] or [15]) to use real numbers instead of integers, then both
problems can be solved in polynomial time.

4 Hilbert’s Basis

In this section we present some properties of the set of non-negative solutions to
a simple constraint. Proofs can be found in, e.g., Schrijver [16]. In this section
we consider V as a vector of variables rather than a set and restrict ourselves
to simple constraints with the variables V . Denote by 0 a vector of 0’s. Every
simple constraint C with variables in V can be written as a system of linear
inequations with integer coefficients:

LV + l ≤ 0. (2)

where L is a matrix with integer coefficients and l is a integer vector. We call a
solution to such a system any vector V of non-negative integers which satisfies
all inequations in the system. Let us emphasize that in this section we will only
consider non-negative solutions. We will show below in Section 5 how to treat
arbitrary integer solutions. For every system C of the form (2) denote by Chom

the corresponding system of homogeneous linear Diophantine inequations

LV ≤ 0. (3)

We call a solution v to (2) non-decomposable if it cannot be represented in the
form v1 + v2, where v1 is a solution to (2) and v2 is a non-zero solution to (3).
Likewise, we call a solution to (3) non-decomposable if and only if it cannot be
represented as a sum of two non-zero solutions to (3).

A pair of sets of vectors (N, H) is called a basis for a simple constraint C if
the following conditions hold.

1. Every vector in N is a non-decomposable solution to C.
2. Every vector in H is a non-zero non-decomposable solution to Chom .
3. Every solution v to C can be represented as a sum v = w +

∑
i=1...k miwi,

where w ∈ N , k ≥ 0 and for all i = 1 . . . k mi is a non-negative integer
and wi ∈ H .

4. Every solution v to Chom can be represented as a sum v =
∑

i=1...k miwi,
where k ≥ 0 and for all i = 1 . . . k mi is a non-negative integer and wi ∈ H .
✷

This definition is a modification of the standard definition of Hilbert’s basis [12]
for the case of systems of linear inequations.

Theorem 4. Every simple constraint has a basis, and this basis is unique.

Algorithms for finding the basis of systems of linear Diophantine inequations
are described in, e.g., Contejean and Devie [6], Ajili and Contejean [2], and Tomas
and Filgueiras [17]. BRAIN uses a novel algorithm [18]. This algorithm, as well as
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other algorithms for funding Hilbert’s basis, is too complex to be described here.
In general, it is more difficult to find the basis of a simple constraint than to
check its solvability.2 The solvability problem is NP-complete, but the number of
vectors in the basis can be exponential in the size of the system. Nevertheless, we
will show that the construction of the basis may speed up reachability-checking.

BRAIN uses an incremental algorithm for building the basis. We call an incre-
mental basis-finding function any function ibff of two arguments, such that for
every pair of simple constraints (C1, C2), if B is the basis for C1, then ibff(B, C2)
is the basis of C1 ∧C2. Essentially, an incremental basis-funding function uses a
basis computed previously for C1 to find a basis for C1 ∧ C2.

5 BRAIN

In this section we explain how BRAIN implements the three important proce-
dures used in the local backward reachability algorithm: backward application
of guarded assignments, satisfiability and entailment. All three algorithms are
implemented using repeated calls to an incremental basis-finding function ibff.
In order to use the basis incrementally, BRAIN stores the basis together with
every computed simple constraint. This technique is similar to a technique used
by Halbwachs, Proy, and Roumanoff [10] for real-valued systems. We assume
that all variables range over non-negative integers and show how to handle ar-
bitrary integers later. We call an augmented constraint a pair (C, B) consisting
of a simple constraint C and its basis B.

Entailment-checking. The algorithm for entailment-checking in BRAIN is
based on the following theorem.

Theorem 5. Let (C1, (N1, H1)) be an augmented constraint and C2 be a simple
constraint. Then I � ∀V(C1 → C2) if and only if the following two conditions
hold: (i) every vector v ∈ N1 is a solution to C2; (ii) every vector w ∈ H1 is a
solution to Chom

2 . ✷

This theorem gives us an algorithm for entailment-checking: to check the entail-
ment problem for augmented constraints, one has to check that the vectors of
the basis of C1 are solutions to C2 or to the corresponding homogeneous system
Chom

2 . Checking that a particular vector is a solution to a system can obviously
be solved in time polynomial in the size of the vector and the system. As a
consequence, we obtain the following theorem.

Theorem 6. Entailment of augmented constraints can be solved in polynomial
time. ✷

2 Strangely enough, our experiments have shown that the existing algorithms for
building the basis often outperform some well-known algorithms for checking solv-
ability taken from integer programming packages. This could probably be explained
by the fact that these packages are mostly intended for optimization and do not cope
well with systems having several unbounded variables.
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The algorithm implicit in Theorem 5 is used in BRAIN to check the entail-
ment. To check entailment in polynomial time one can use instead of the basis
any pair of sets of vectors (N, H) satisfying conditions (3) and (4) of the defini-
tion of basis, that is non-decomposability is not necessary. However, it is easy to
prove that every pair of vectors (N, H) with these properties contains the basis,
and thus using only non-decomposable vectors saves both space and time.

Satisfiability-checking. Evidently, a simple constraint C is satisfiable if for its
basis (N, H) we have N �= ∅. So satisfiability-checking for augmented constraints
is trivial. Note that the reachability algorithm makes two kinds of satisfiability-
checks:

1. checking whether the new formula N (i.e., S−u) is satisfiable;
2. intersection-checks , when we check satisfiability of the formula N ∧ I.

The latter kind of satisfiability-checking can be performed by any satisfiability-
checking procedure. But the first kind of satisfiability checks in BRAIN is com-
bined with the backward applications of transitions for the reasons mentioned
below.

Backward application of transitions. Repeated backward applications of
transitions in the reachability algorithm may create too large constraints. To
explain this, let us consider the formula for computing the set of states backward
reachable from the set states presented by a simple constraint C1(v1, . . . , vn). If
the guarded assignment u has the form C2 ⇒ v1 := t1, . . . , vn := tn, then by
Lemma 2 the formula C−u

1 is C2∧C1(t1, . . . , tn). The number of atomic formulas
in this simple constraint is the number of atomic formulas in C1 plus the number
of atomic formulas in C2. Every iteration of the reachability algorithm yields
longer constraints in which, for hard examples described below in Section 6, the
number of atoms may be over a hundred. It is often the case that a large number
of these atoms are a consequence of the remaining atoms in the constraint and
can be safely removed (in our hardest examples the number of non-redundant
atoms usually does not exceed ten). Redundant atoms in constraints do not
change the basis, but they slow down entailment, since our algorithm for checking
validity of (C1 → C2) is, roughly speaking, linear in the number of atoms in C2.

We can get rid of redundant constraints in C2 ∧C1(t1, . . . , tn) together with
checking satisfiability of this constraint and building a basis for it using an
incremental basis-finding function. The procedure for this is given in Figure 3.
The input to this procedure is the sequence of atoms in C2 ∧ C1(t1, . . . , tn) in
any order. When a new atom Ai should be added to the constraint, it is first
checked whether the addition of this atom changes the basis. If it does not, then
the atom is redundant.

The current version of BRAIN only works with variables ranging over non-
negative integers. Integers can be implemented using the same technology as
follows. If an integer-valued variable is restricted by v ≤ n (or respectively by
n ≤ v), then it can be replaced by a variable w = n− v (or respectively by w =
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procedure Basis
input: sequence of atoms A1, . . . , An,

output: pair (C, B), where C is equivalent to A1 ∧ . . . ∧ An,

and B is the basis for A1 ∧ . . . ∧ An

begin

C := true ; B := the basis of C
for i = 1 . . . n

B′ = ibff(B, Ai)
if B′ contains no solution then return (false, B′)
if B′ 
= B then(C,B) := (C ∧ Ai, B

′)
return (C, B)

end

Fig. 3. Incremental building of the basis

v − n) ranging over non-negative integers. For every unrestricted integer-valued
variable v one can introduce two variables w1, w2 ranging over non-negative
integers and replace all occurrences of v by w1 − w2.

6 Experiments

In this section we present the results of experiments carried out on a number
of benchmarks taken from several Web pages. The examples can be found on
the Web page www.cs.man.ac.uk/~voronkov/BRAIN/. We compare the perfor-
mance of our system BRAIN with that of the following systems: HyTech (Hen-
zinger, Ho, and Wong-Toi [11]), Action Language Verifier (Bultan [4]), and DMC
(Delzanno and Podelski [8]).

All benchmarks were carried out on the same computers (Sparc 300 with
2G of RAM memory). These computers are slow (about 8–10 times slower than
the modern PCs), but we did not have access to a network of PCs with large
RAM. The systems HyTech, Action Language, and BRAIN are implemented in
C++ or C, and were compiled using the same version 2.92 of the GNU C/C++
compiler. DMC is implemented in Sicstus Prolog. In several cases we had to
interrupt the systems because they consumed over 2G of memory. DMC never
consumed more than 14M of memory, but was interrupted after several weeks of
running. We were interested in hard benchmarks, but occasionally, for the sake
of comparison, included figures for relatively easy benchmarks, because only
HyTech and BRAIN could solve some of the hard ones. All runtimes are given in
seconds.

Note that HyTech and DMC use relaxation, i.e., they solve real reachabil-
ity problems instead of integer reachability problems. Therefore, they are cor-
rect only when they report non-reachability. Among the systems compared with
BRAIN only Action Language Verifier checks for integer reachability.
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We took most of the benchmarks presented in this paper from Giorgio
Delzanno’s Web page www.disi.unige.it/person/DelzannoG/. The problems
specified in these benchmarks were used to verify cache coherence protocols,
properties of Java programs, and some other applications. The results are pre-
sented in Table 1 For each we present the runtimes and memory consumption (in
megabytes). We write − when the compared system could not solve the problem
because of the time or memory limit.

The table shows that BRAIN is normally faster than HyTech, and sometimes
considerably faster. It also consumes less memory than HyTech. There are three
problems (with the suffix -inv in the name) on which HyTech was faster (de-
noted by negative numbers in the speedup column). We will comment on these
problems below. Considering that HyTech’s implementation uses a polyhedra
library based on [10] we cannot explain a considerable difference in the memory
consumption between BRAIN and HyTech.

For non-trivial problems BRAIN is normally several hundred times faster
than DMC, except for problems with invariants, where the difference is not so
high. On non-trivial problems BRAIN without invariants is also normally at least
500 times faster than Action Language Verifier, on problems with invariants the
difference is not so high. BRAIN also uses less memory than Action Language
Verifier.

The problems with invariants were obtained from the original problems by
adding invariants : some simple properties obtained by forward reachability anal-
ysis. A typical invariant has the form v1 + . . . + vk = m, where m is a natural
number. In fact, it bounds the variables v1, . . . , vk to a finite region. Such in-
variants cause a problem to BRAIN, because the basis for problems with such
an invariant usually contains all, or a large portion, of the points in this region
explicitly. We believe that this problem is not essential for the approach, but is
rather particular to the current implementation of BRAIN in which the basis is
stored explicitly, point-wise. A symbolic representation of this finite region, or
the use of suitable datastructures for presenting finite-domain variables should
solve this problem.

There are several problems which could only be solved by BRAIN, but not
by any of the other systems. However, we would like to note that all of these
systems are on some benchmarks more powerful than BRAIN since they can use
techniques such as widening or transitive closure which the current version of
BRAIN does not have. Examples are some versions of the ticket protocol.

To give the reader an idea of the complexity of the problems solved by BRAIN,
we present statistics about the number of operations such an entailment-checks
performed by BRAIN during each run. This statistics shows why DMC is hope-
lessly slow on some of these problems: for example, in the case of csm15 one can
hardly check almost 109 entailment problems in reasonable time using general-
purpose constraint-solving tools. BRAIN solves them in less than 2 hours (on a
fast PC with Intel this time would be less than 15 minutes). The table shows
that, for most of the benchmarks, entailment seems to be the most important
operation. It also demonstrates slowdown of BRAIN on the problems with in-
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variants: indeed the number of operations per second in these problems is much
smaller than that for their original formulations without the invariants.

7 Related and Future Work

In this section we briefly overview related work on systems for infinite-state
model checking and algorithms. We do not overview numerous papers related to
reachability analysis.

Our technique of using Hilbert’s basis is similar to a technique used to deal
with real-valued systems described in Halbwachs, Proy and Roumanoff [10]. They
represent convex polyhedra using systems of generators, i.e., two finite sets of
vectors (called vertices and rays). This representation allows one to perform
efficient entailment checks using a property similar to that of Theorem 5.

One can implement satisfiability- and entailment-checking using the decision
procedure for the first order theory of I. In some cases, one can even use off-the-
shelf decision procedures or libraries. For example, Bultan, Gerber, and Pugh [5]
use the Omega Library [14] for deciding Presburger arithmetic, Bultan [4] uses
the Composite Library (Yavuz-Kahveci, Tuncer and Bultan [19]), Delzanno and
Podelski [8] use the CLP(R) library of Sicstus Prolog. The use of decision pro-
cedures for Presburger arithmetic has several advantages, since formulas more
general than simple constraints can be handled. As a consequence, one can use
non-local reachability algorithms (see [15]), forward reachability, and apply tech-
niques such as widening and transitive closure which cannot be handled by the
current version of BRAIN. However, the use of general-purpose algorithms to
decide specific classes of formulas may be inefficient, which is confirmed by our
experiments.

Berard and Fribourg [3] report that HyTech shows better performance on
Petri nets than integer-based systems. Moreover, they prove that for Petri nets
using relaxation is exact. As we have shown, BRAIN is usually faster than HyTech
on integer problems, even without the use of relaxation.

In the future we are going to develop BRAIN into an advanced infinite-state
model-checker based on the implementation method proposed here, which will
be both faster and more flexible. In particular, we will include in BRAIN other
reachability algorithms and techniques such as widening. This will, however,
require an implementation of quantifier elimination and an extension of our
method, and especially Theorem 5, to constraints with existentially quantified
variables and divisibility constraints.

To cope with the problem of large finite regions, one has to introduce their
convenient symbolic representation, which may require reworking of all algo-
rithms. It would also be interesting to apply our method to real-valued systems,
or systems with both integer- and real-valued variables.
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