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Abstract. We propose an extension of the model of Broadcast Proto-
cols in which individual processes are allowed to have unbounded local
data and to communicate via value passing. Our specification language
is based on multiset rewriting over first order atomic formulas enriched
with a mechanism for global synchronization to model broadcasts, and
constraints to model the relations over internal data and value passing.
For this new class of parameterized systems, we provide a symbolic val-
idation procedure for checking safety properties, and termination condi-
tions defined on special classes of multiset rewriting systems with linear
constraints. We report here on practical experiments with coherence pro-
tocols for virtual shared memory, and multiprocessors systems in which
the number of processors, pages or cache lines are left as parameters.

1 Introduction

Broadcast protocols [15] represent a very natural formalism to specify abstrac-
tions of invalidation-based protocols. In [16], Esparza, Finkel and Mayr have
defined automated verification procedures to check parameterized safety prop-
erties (safety properties that are supposed to hold for any possible number of
individual processes) for this class of infinite-state systems. The techniques of [16]
exploit the property that the operational semantics of Broadcast Protocols can
be given via extensions of Petri Nets with transfer arcs. Backward reachability
always terminates for this class of Petri Nets when the seed of the computa-
tion consists of an upward-closed set of markings. The previous property reveals
however a limitation of this model: processes must be represented here as in-
distinguishable black tokens. Thus, the algorithm of [16] can be applied only to
analyze functional properties that can be formulated over finite-state abstrac-
tions of individual processes. As an example, in the models of cache coherence
protocols given in [15,16] each individual process (cache) is modeled via a finite-
state automata, obtained by forgetting cache identifiers and by considering a
single cache line and a single memory location. However, the original formula-
tion of these protocols (see [5]) as well as of other invalidation-based protocols
(see [20]) depends on several parameters like cache lines or entries in a page
table. To obtain more concrete models, we need specification languages in which
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individual processes are allowed to carry along information ranging over a pos-
sibly infinite domain, as in the formal models proposed in [18,21]. In order to
specify and validate these class of protocols, we will combine three different lines
of research: multiset rewriting [11], constraints [14], and the theory of well-quasi
orderings of [1,17].

Multiset rewriting over first-order atomic formulas (MSR) [11] naturally ex-
tends the connection between rewriting and Petri Nets to nets with colored to-
kens, the colors being first-order terms attached to atomic formulas representing
tokens. If we annotate rules with constraints, as proposed in [14], we achieve
a clear separation between process structure and declaration of data relations,
with advantages that will become clearer later. In this setting shared variables
play the role of communication channels as shown in [10].

Suppose now we try to apply this paradigm to atomically specify invalidation
phases as in the Broadcast Protocols model. We first note that the number of
processes involved in a broadcast cannot be fixed a priori (it depends on the
current configuration). However, by the locality of rewriting, a multiset rewriting
rule allows us to specify only the behavior of a fixed number of processes.

As first contribution, we propose here an extension of the MSR specification
language of [11] in which we introduce a mechanism for global synchronization
that can be used to model broadcasts. To explain our idea, let us consider the
invalidation phase caused by a write miss in the model of the M.E.S.I. cache
coherence protocol (with a single cache line and memory location) given in [15].
In this example, every cache is modeled via a finite-state net. A token in a
given place (inv, modified, exclusive, etc.) represents a cache in that state. On
a write miss, the cache requesting to write its (unique) line first broadcasts a
signal to invalidate all other caches (all other tokens move to place inv). In a
Broadcast Protocol this behavior is captured by associating a set of reactions
(e.g. cache invalidation) to a given action (e.g. broadcast sending). We obtain
a similar effect in the MSR setting as follows. Let us model an action via a
multiset rewriting rule, and any of the corresponding reactions as a rewriting
rule A — B defined over two atomic formulas A and B. A reaction describes
the behavior of a process in state A upon the reception of the broadcast. Using
the syntax that we will formally introduce in Section 2, we formulate then the
M.E.S.I. invalidation phase via rule like

v — dirty [ shared — inv, dirty — inv,... |

(the set of reactions associated to an MSR rule is written between square brack-
ets). Furthermore, we will extend the operational semantics so as to enforce the
application of reactions to the maximal multiset of atomic formulas matching
their left-hand side.

In the formalism we will propose in this paper, that we call “"MSR/(C), we will
extend this idea to tokens colored with data. We achieve this aim by annotating
an action and its reactions with a constraint (over a constraint system C that is a
parameter of the language) defined over variables occurring in the corresponding
atomic formulas. For instance, we refine the previous invalidation phase leaving
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the number of cache lines as a parameter as follows
inv(p,m) — dirty(p,m) [ shared(q,n) — inv(g,n),... |:p#qgm=n,...

where p,q,m,n,... denote universally quantified variables (ranging over inte-
gers), indicating the identifiers of processors (p, ¢) and memory addresses (m,n).

Following [1], the method we use to check parameterized properties for the
resulting models is based on symbolic backward reachability. In this paper we will
focus on safety properties whose violations can be expressed via upward-closed
sets of configurations. Our symbolic representation is based on the notion of
constrained configuration introduced in [14], i.e., multisets of first-order atomic
formulas annotated with constraints. Multisets represent minimal requirements
over the distribution of tokens in the net, whereas constraints provide a natural
symbolic representation for relations over data of different processes. Based on
this rich assertional language, we provide symbolic operations needed to imple-
ment backward reachability, namely we define a symbolic predecessor operator for
“MSR(C)-specifications, which is sound and complete for any constraint sys-
tem. Furthermore, we will show that it is possible to algorithmically verify safety
properties for a class of " MSR-specifications equipped with a subclass of lin-
ear integer constraints. Under the previous hypotheses and following the general
theory of [1,17], we obtain an extension of Broadcast Protocols with unbounded
local data and value passing for which we can check algorithmically interesting
safety properties.

Our work enlarges the target of the method presented in [10] as well as of its
predecessors [16,13] to new or simply more concrete examples of invalidation-
based protocols. We report here on an interesting experiment with a coherence
protocol for virtual shared memory proposed by Li and Hudak in [20] and pre-
viously analyzed in [I18]. Using our technique, we have automatically verified
the protocol in which the number of threads, processors, and pages of virtual
memory are unbounded parameters. Finally, we have automatically validated
coherence protocols for multiprocessors systems (M.S.I., M.E.S.I., Synapse) in
which number of processors, cache lines and memory locations are left as param-
eters. In the following sections we will turn the previous intuitions into formal
definitions.

2 Synchronous Multiset Rewriting

A constraint system is a tuple C = (V,L,D,S) where: V is a denumerable set
of variables; L is a first-order language with variables in V and closed with
respect to existential quantification, conjunction, and with equality; ¢ € L is
called a constraint; D the domain of interpretation of constraints; a solution of
a constraint ¢ is a mapping V ~ D that satisfies ¢; finally, S(¢) is the set of
solutions of ¢. A constraint ¢ is satisfiable whenever S(p) # 0. Given a solution
o, we will use o)y to indicate the restriction of o to the variables in V' C V.

Let P be a set of symbols, an atomic formula p(x1,...,x,) is such that p € P,
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and x1,...,2, € V are distinct variables. A ground atomic formula p(dy, ..., d,)
is obtained by applying a solution o to p(xi,...,x,) so that o(x;) = d; for
i:1,...,n. A multiset of atomic formulas is indicated as Ay | ... | Ax, where A;

and A; have distinct variables, | is an associative and commutative constructor,
and e denotes the empty multiset.

Definition 1. A configuration is a multiset of ground atomic formulas.

Intuitively, a configuration denotes a multiset of colored tokens. In the rest of
the paper will use M, N, H, B, ... to denote multisets of atomic formulas.

Definition 2. An action is a rewrite rule H — B, where H and B are two
multisets of atomic formulas with distinct variables. A reaction is a rewrite rule
A — B where A and B are two atomic formulas with distinct variables.

Definition 3 (Rules). Given C = (V,L, D, S), an ~"MSR(C) rule has the form
H — B [A; — Bi,...,Ar — Byl : ¢, where

1. H — B is an action, and A; — B; is a reaction for i : 1,..., k; action and
reactions have distinct variables from each other;

2. the constraint ¢ € L is such that ¢ = @s A1 A...Apg, where ¢, is defined
over the variables of the action, and the constraint ¢; € L is defined over
the variables of the action and of the i-th reaction A; — B; fori:1,...,k;

3. the constraint A; = Bj is not satisfiable for i # j;

4. the constraint A; = A; A pq A p; A ; is not satisfiable for i # j.

In the following H — B : ¢ will denote a rule without reaction. The variables
shared between an action and a reaction, and occurring in ¢; are the communi-
cation channels between the sender and a receiver. Condition 3 rules out cyclic
reactions, and condition 4 ensures the determinism of reactions.

For instance, let be R the following invalidation step of a coherence protocol
invalid(p, m) — modified(p’,m’) [modified(q,n) — invalid(q',n’)] : ¢, where
@ is defined as p # ¢,m’ =m =n' =n,p’ = p,q¢ = q; p,q can be interpreted as
processor identifiers, and m,n as addresses of data stored in the local caches.

Definition 4. An “MSR(C) specification is a tuple (P,C,I,R), where P is a
set of predicate symbols, C is a constraint system, I is a set of configurations
(initial configurations), and R is a set of “MSR(C) rules built over P.

Let @ and & denote multiset union and difference, respectively. Furthermore, let
< indicate the multiset ordering: M < N if (4(M) < (a(N) for every ground
atom A, where (4 (M) is the number of occurrences of A in M. The operational
semantics of an “MSR/(C) specification (P, C,I,R) is defined as follows.

Definition 5 (Enabling a Rule). A rule H — B [4; — By, ..., A — Byl :
¢ from R is enabled at a configuration M via o € S(p) if o(H) < M.

Definition 6 (Firing a Rule). Suppose the rule R defined as = H—B[A4; —
Bi,..., A — Bg| : ¢ is enabled at M via o € S(i). Firing it at M yields the
configuration M’, written M = M’ if there exists n > 0 such that
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I.M=0cH)DC1]|...|Ch)@Q,and M = o(B)d(C}| ... | CL)® O;

2. Cy | ... | Cy is the mazimal multiset contained in M & o(H) such that: for
every i : 1,...,n there exists o; € S(p) with oy, = oy, V C V being the
set of variables of the action H — B, and there exists a reaction Aj, — Bj,
ji € {1,...k}, such that 0;(A;,) = C; and 0,(Bj,) = C/.

The values associated to the variables occurring in the action are fixed by condi-
tion 1. Condition 2 allows the same reaction to be applied to different processes
(atomic formulas) with possibly different values of the variables not in V', the
only constraint being for the resulting mapping to satisfy the constraint ¢. From
condition 2, it follows that @) has no occurrences of atomic formulas that can be
unified (so that all the resulting constraints are satisfied) with the left-hand side
of a reaction, in other words every process ready to react must react.

Let M be invalid(5,2) | modified(1,2) | modified(1,3) | modified(3,2). The
rule R of the previous example is enabled at M, and, since the reactions can be
applied only for m = n = 2, when fired, it yields the new configuration defined
as modified(5,2) | invalid(1,2) | modified(1,3) | invalid(3,2).

We conclude this section defining the predecessor operator.

Definition 7 (Pre-Image). Let S be a set of configurations. The predecessor
operator Pre is defined as Pre(S) = {M | M=zg M, M' €S, ReR}.

3 A Consistency Protocol for Virtual Shared Memory

In this section we will focus our attention on the broadcast distributed manager
protocol for maintaining a virtual shared memory consistent, proposed by Li and
Hudak in [20]. In [18], Fisler and Girault modeled this protocol as a Colored Petri
Net (CPN) parametric on numbers of threads, processors, and pages. They man-
ually validated the parametric model, and they automatically validated some of
its finite-state instances. Our aim will be to automatically validate a parametric
model. In this protocol the virtual shared memory is organized into pages. Every
processor has a page table used to maintain the status of each page relative to the
processor. The status indicates the processor access rights to the page, namely
nil, read, or write (that includes read), and whether or not the processor is the
owner of the page. Intuitively, the owner is the last one that modified the page.
Several processors may have read access to a page at once, whereas write access
is exclusive. An important feature of this case-study is that the owner changes
over time. The owner takes care of providing the page contents to any other
processor that requests them and keeps track of all other processes that have
read access to the page in a copy-set. Every processor must be told to invalidate
its own copy before a write to the page occurs. Following [18], we consider a sys-
tem in which: processors may contain several threads, but only one thread per
processor is capable of faulting (this thread has it own handler); each processor
has a single server; furthermore, broadcast is atomic (broadcast messages arrive
before all other messages). When a processor wants to gain privileges it does not
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Read and Write Faults
1. e — rf(i,p) : true 2. e — wf(i,p) : true
Read Handler

3. rf(i,p) | pt(j,q,1,0,a) — hrp(i,p) | pt(j,q,1',0,a)
i=7j,p=gq,l=-lck,o0=—-own,a = nil,l’ =lck

4. hT‘p(Z,p) | pt(k7 q, l7 o, a) B hre(z’,p) | pt(k7 q, l/7 0, a) | S'I"(k)7p)
k+#i,p=gq,l=-lck, o=own,l =Ick
5. hre(i,p) | pt(4,q,1,0,a) — pt(j,q,p,l';0,a")
i=jp=gql=1ck, I'=-lck, o’ =rd
Read Server
6. s7(i,p) | pt(4,q,1,0,a) — pt(j,q,U',0,a")
i=jp=gql=1ck, I'=-lck, o’ =rd
Write Miss

7. wf(i,p) | pt(4,q,1,0,a) — hwp(i,p) | pt(j,q,l',0,a)
i=7j,p=gq,l=-lck, a=nil, I'=1ck

8. wf(i,p) | pt(4, q,1,0,a) — hwp(i,p) | pt(j,q,1',0,a)
i=7j,p=gq,l=-lck, o =-own, a=rd,l' =lck

9' wf(747p) | pt(]7 q, l7 o, CL) — hwl(%l’) | pt(]7 q, l,7 0, a)
i=7j,p=gq,l=-lck, o =own, a =rd,l' =Ick
10. hwp(7‘7p) | pt(k7 q, l7 0, a) I h’LUZ(Z,p) | pt(k7 q, l/7 o, a‘) | sw(k, q)
k+#i,p=gq,l=-lck, o=own,l =Ick
Invalidation
11' hw(l:(([:7p) | pt(j7 q7l7 07 a) Hpt(]}q? l,70,7a,) [pt(k7 r7m7 87 b) c—)I)t(]€7 q7 m7 87 b,)] :
i=74,p=gq,l=1ck,l' = -lck, o' =own, o’ =wrt,k#i, p=r, b’ =nil
‘Write Server

12. sw(i,p) | pt(j,q,1,0,a) — pt(j,q,l',0',a’)
i=14, p=gq, | =Ick, o =own,l’ = =lck, o’ = —own, a' = nil

Fig. 1. Broadcast distributed manager

have, it faults and invokes a handler to request the page. Requests are broadcast
to all other processors. The owner responds running a server while entries in
the page table are locked to avoid conflicts between handlers and servers on the
same processor.

In Fig 1 we illustrate an “"MSR-~specification based on linear arithmetic con-
straints where conjunctions are like x > z,x > y,t = 3. The logic of the specifi-
cation follows the CPN model of [18] from which we borrow the names of some
places as described below. Faulting threads (the only one being interesting) are
represented via atomic formulas r f(i,p) (a read fault on processor i relative to
page p) and wf(i,p) (a write fault). Furthermore, entries in the page table of
processor i will be represented via the atomic formula pt(i, p, 1, 0,a), p being the
page identifier, I € {lck, —lck} denoting whether the page entry for p is locked
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on i; o € {own, ~own} denoting whether or not processor i is the owner of p;
and a € {nil,rd,wrt} denoting the access rights of ¢ for page p. Page con-
tents are not relevant for the properties we consider here (mutual-exclusion). All
free variables range over integers and may get unbounded values in a derivation
starting from init, whereas the previous constants (lck etc.) must be read as
fixed integer values. In the CPN model of [18] each entry of a page table has a
local copy-set. However, as formally proved on the CPN model in [18], only the
copy-set of the owner is of interest for the logic of the protocol. Taking this as-
sumption, we model the copy-set via the multiset of entries with rd access rights
contained in the current configurations. Only the current owner can modify it.

The first block of rules in Fig 1 non-deterministically simulates write and read
faults. The second and third block define the behavior of read handlers and
servers. On a read fault 7 f, the processor invokes the read handler (hrp=handler-
read-prepare) that takes care of contacting the current owner of the page. Before
terminating its execution, the (hre=handler-read-end) the handler modifies the
rights of the processor entry page. The read server (modeled as sr) takes care of
updating the rights of the owner entry page. The last blocks define the behavior
of write handlers and servers. On a write fault wf, we distinguish two cases.
If the processor on which the processor runs is the owner, then the thread di-
rectly goes to the invalidation state hwi (this avoids Error 2 of [18]). Otherwise,
the processor invokes a write handler (hwp=handler-write-prepare) and locks
the entry of the page table, while the handler moves to the invalidation-phase
(hwi=handler-write-invalidate). At this stage the handler acquires the ownership
of the page, updates his rights to write, while invalidating all processors reading
that page. We model the invalidation-phase atomically using an action-reaction
rule. The write server (modeled as sw) of the owner downgrades its rights to
the page, relinquishes the ownership (this avoids Error 1 of [18]) of the page and
then terminates. The initial states I are the configurations in which one proces-
sor is the owner (with read access) of all pages. Note that in our specification
the values of the processor identifiers and pages are left unbounded.

The safety property we would like to establish on our specification is mutual
exclusion. Specifically, we would like to ensure that the write access is exclusive
for any number of threads, processors, and pages. We will come back to this verifi-
cation problem after describing our method to handle this kind of parameterized
invalidation-based protocols with unbounded local data.

4 Symbolic Verification Procedures

A parameterized safety property like mutual exclusion for our case study holds
if and only if I N Pre*(U) = 0, where U is the infinite collection of unsafe
configurations (infinite because of the number of processes and values of local
data). In our example (as in many other practical situations [1,16,13]) unsafe
states turn out to be upward-closed w.r.t. multiset inclusion <.

Definition 8. A set of configurations S is upward-closed whenever Up(S) = S,
where Up(S) = {N | M N, M e S}.



302 Marco Bozzano and Giorgio Delzanno

To finitely represent the generators of an upward closed set of configurations,
in [14] we introduced the notion of constrained configuration whose rich denota-
tion consists of the upward closure of its ground instances. As an example, the
violations to readers-writers mutual exclusion for Li-Hudak’s protocol can be
represented via

pt(iapalaoaa’) |pt(k7%ma5ﬂb) : i#kap:(ba:rdabzwrt

whose denotations are: (pt(u,v,w,y,rd) | pt(u/,v",w’,y’,wrt)) & M for any
integers u,v,u’, v, ... € Z, with u # «/, and for any other configuration M. This
example explains the reason why we introduced constraints in our specification
language: they provide a natural symbolic representation for relations over data
of different processes. Constrained configurations are defined as follows.

Definition 9 (Constrained Configuration). A constrained configuration has
the form py(211,...,%16,) | --+ | Pn(@n1y. .o Znk,) : @ where p1,...,p, €
P, zi1,...,zik; € Viore:1,...n and ¢ € L; the variables z;1,... are dis-
tinct each other.

The set of ground instances of a constrained configuration M : ¢ is defined as
Inst(M : p) = {o(M) | 0 € S(p)}. The previous definition can be extended to
sets of constrained configurations with disjoint variables, written S, S’, etc., in
the natural way. Rich denotations are built as follows.

Definition 10 (Rich Denotation). Given a set S of constrained configura-
tions (with disjoint variables), its denotation is defined as [S] = Up(Inst(S)).

We will define next a symbolic pre-image operator Pre working on our asser-
tional language according to the rich denotation of constrained configurations.
Let us first introduce the notion of unification between two multisets of atomic
formulas (with disjoint variables). The relation (A1]...|A4,) =¢ (Bi]...|Bm)
holds provided m = n and the constraint § = /\ZL=1 A; = By, is satisfiable,
J1s---,Jn being a permutation of 1,...,n. Finally, a variant of an formula is
obtained by renaming its free variables with fresh names. We are ready now to
define the operator Pre.

Definition 11 (Symbolic Pre-image). Let S be a set of C-constrained con-
figurations. The symbolic predecessor operator Pre is defined as follows: (N :
&) € Pre(S) if and only if there exists a variant (M : 1) of a constrained con-
figuration in S, a variant H — B [ A1 < Bi,...,Ar < Bk ] : ¢ of a rule in
R (recall that ¢ = ¢4 A w1 A...A gk as from Def. 3), and multisets M’, B, Q
and n > 0 such that

ILM=M o (Ci ] ... |Cn)®Q;

2. B Band M =4 B';

3. for all i : 1,...,n there exist j; € {1,...,k} and variants A}, — B} and
¢}, of a reaction Aj;, — Bj, and of the associated constraint ¢j;, (both

obtained via the renaming ¢;) such that: Cj, =y, B’ holds, the constraint

Yi = Y AON@a A A0 is satisfiable;

i
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4. @ does not contain occurrences of atomic formulas D for which there exist
q € {1,...,k} (i.e. a reaction A, — B,) such that D =, A, holds, and
WAON @ N\ pg AT is satisfiable;

5. N = H ¢ (A;-1 | ... |A3) e 9;
6. the constraint & defined as dxq..... Jxy.y1 A ... Ay is satisfiable, where
Z1,...,%, are all the variables of 71, ..., 7, that do not occur in NV.

The symbolic operator Pre returns a set of constrained configurations and it is
correct and complete with respect to Pre, i.e., [Pre(S)] = Pre([S]) for any S.

As an example, consider the constrained multiset M = (M : ¢), where M is
the multiset modified(p, m) | modified(q,n), and ¢ is the constraint m = n
and the rule R we introduced in previous examples. Then, by selecting M’ = ¢
and B’ = ¢ in Def. 11, we obtain M itself. However, all other attempts of match-
ing R with M fail (M does not satisfy the maximality of reaction applications).
Contrary, (invalid(r,1) | invalid(p,m) | modified(q,n) : | = m = n) has several
predecessors like (modi fied(r,1) | modified(p,m) | invalid(q,n) : 1 = m,m = n)
as well as (invalid(r,1) | modified(p, m) | invalid(q,n) : | = m = n); the latter
expresses the fact that cache r was already invalid before firing R.

To define a symbolic reachability algorithm, we still need a comparison operator
between constrained configurations.

Definition 12. An entailment C between constrained configurations is a rela-
tion such that M T N implies [N] C [M].

We can now rephrase backward reachability as follows. Let U be a set of con-
strained configurations. We first compute Pre*(U): starting from U, we repeat-
edly apply Pre to all stored constrained configurations. We stop when it is not
possible to store new constrained configurations (i.e. for each new constrained
configuration M we already computed N such that N T M). If the fixpoint
computation terminates we check that the initial configurations representing the
initial states of the system are not contained in the denotation of the resulting
set of constrained configurations (e.g. init ¢ [Pre*(U)]).

5 Sufficient Conditions for Termination

As shown in Section 3, our examples make use of arithmetic constraints. Thus,
the termination of the symbolic backward reachability procedure cannot be guar-
anteed in general. To obtain sufficient conditions for termination, we need severe
restrictions on the form of constraints and rewrite rules we allow in the spec-
ification. Let us first introduce the class NC of linear constraints defined as
conjunctions of atomic formulas either of the form = > y or x = y. Let us as-
sume that all predicates in P have arity n. Given a constrained configuration
M : ¢ let V; be the set of variables occurring in position ¢ in atoms of M for
i:1,...,n. Finally, let Var(p) be the set of variables occurring in ¢. Then, we
further restrict NC-constrained configurations as follows.
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Definition 13. An NC-constrained configuration (M : ¢) is k-separable if ¢
can be partitioned into ¢1,. .., p, such that Var(p;) CV; for i : 1,...,n, and
x =y follows from ; for all x,y € V;, i # k.

Without loss of generality, we restrict our attention to k-separable constrained
configurations in which all variables in position & (thus, the corresponding atomic
formulas) are totally ordered w.r.t. to the = and > relations induced by ¢y. Given
a k-separable constrained configuration C' defined as (M : ¢), C can be uniquely
represented as a string Str(C') of multisets of symbols in P built as follows. We
first group together all atomic formulas in which the corresponding variables
in position k are related via equality constraints. Then, we order the resulting
groups according to the > relation induced by ¢j. Since ¢ is satisfiable, we
obtain an acyclic path. Finally, we represent every group of atomic formulas as
the multiset obtained by selecting the corresponding predicate symbols.

For instance, given C' = p(a,x) | p(b,y) | q(c,2) : a=b=c,x >y,y =2z we
first group together the atomic formulas as follows: Cy = {p(a,z)}, and Cy =
{p(b, 2),q(c,y)}. S(C) is then the string of multisets: p - pq.

Definition 14. Given two k-separable constrained configurations C' and D such
that S(C) = My ... - My and S(D) = Nj-...- N, let C C* D iff there
exists an injective mapping h from 1,...,k to 1,...,r such that if ¢ < j then
h(i) < h(j), and M; < Ny for i :1,... k (< denotes multiset inclusion).

It turns out that C* is an entailment. Furthermore, following from the properties
of the multiset and string embeddings [19], C* is a well-quasi-ordering. Now, let
us impose the following restriction on ~MSR(NC)-specifications.

Definition 15. A k-separable specification is such that the multisets occurring
in the action and reactions of a rule H — B [A; < Bi,..., A, — Byl : ¢,
are k-separable constrained configurations w.r.t. ¢q, p1,...,Pn.

Then, we obtain the following results.

Theorem 1. The class of k-separable constrained configuration is closed un-
der applications of Pre associated to a k-separable specification. The symbolic
backward reachability algorithm always terminates when taking in input a k-
separable specification and a set of k-separable constrained configurations.

6 Experimental Results

We have implemented the backward reachability algorithm using the SICStus
term manipulation and constraint solving libraries (e.g. for linear constraints).
We used our prototype to analyze the Li-Hudak protocol of Fig. 1. We recall
that our specification is a reformulation of the CPN model of [18] formally val-
idated via static analysis and model checking. However, as shown in Fig. 2, we
automatically discovered after 11 steps the following error-trace:

1. on a read fault a thread ¢ (not running on the owner) invokes its handler
and then suspends;
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the server of the owner grants the request and updates its entry page;

a thread s running on the owner faults for write access;

the owner grants it;

the handler of s invalidates all other processors and the owner’s rights up-
grade to write;

6. finally, the suspended thread ¢ updates its entry page to read.

CU o

This error trace uncovers a violation to writer exclusivity in the CPN model
of [18]. From personal communication, Kathi Fisler informed us that this model
was validated only manually (via static analysis). The analysis uncovered other
errors but not the previous critical one. The models automatically verified with
Cospan and Mur¢ in [18] were based instead on different assumptions on inter-
processor communication. Interestingly, the error we uncovered matches the Er-
ror 3 of [18] that Fisler and Girault only discovered using a more refined CPN
model with explicit queue channels. However, the previous error occurs even in
the more abstract model: it is caused, in fact, by a missing synchronization be-
tween handlers and servers. The nature of this error also reveals an ambiguity
in the original, informal specification [20]: the notation used by Li and Hudak
does not clarify, in fact, whether or not a broadcast should be blocking for the
sender. This case study reveals once again the difficulties in using manual ab-
stractions (i.e. to pass from the CPN model to another one) when modeling
complex protocols.

To correct the error, the handler must wait for an acknowledgment from the
server. We have encoded the corrected model in our framework, and we have
automatically verified mutual exclusion (we computed the fixpoint in 7 steps
and 0.8s on a Pentium IT 450Mhz) as well as other properties (e.g. the owner (of
unlocked pages) is unique, there is only one page entry for each page and node),
whose violations can be naturally expressed in our assertional language) for an
arbitrary number of threads, processors, and pages.

Finally, we have also modeled and automatically verified mutual exclusion
for three cache coherence protocols for multi-processor systems (M.S.I., Synapse,
and M.E.S.I. see Fig. 2) that, differently from previous models given via Broad-
cast protocols [15,16,13], we formulated for an arbitrary number of cache and
memory lines (see the rule example of the introduction).

|Model [Verification Problem|Steps|Size|Time| Verified? |
Li-Hudak model Fig. 1 Read/write mutex 11 |3600|6609s |Error found
Correct Li-Hudak model Read/write mutex 7 24 | 0.8s Yes
M.S.I. with many cache lines|Read/write mutex 1 2 10.01s Yes
Synapse N+1 7 Read/write mutex 1 2 10.01s Yes
M.E.S.I. K Read /write mutex 3 7 | 0.1s Yes

Fig. 2. Experimental results on a Pentium II 450Mhz
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7 Conclusions and Related Works

With this work we have enlarged the scope of parameterized verification to
invalidation-based protocols formulated at a greater level of detail than Broad-
cast Protocols: processes may have here unbounded local data and communicate
via value passing. This way, we were able to analyze and observe interesting
properties in different formal models of cache coherence protocols.

The model presented here can neither be formulated nor analyzed in the
framework we proposed in [10], in which only rendez-vous is allowed as syn-
chronization mechanism for colored tokens. Furthermore, contrary to what we
claimed in [10], the class of separable specifications isolated in [10] must be futher
restricted (e.g. using the notion of k-separability) to obtain the termination of
backward reachability. Together with the automated analysis of a parameterized
formulation of the ticket algorithm considered in [10], the preliminary results of
our work show the potential interest of this line of research. Another possible way
to model invalidation-phases in multiset rewriting would be to introduce tests
for the emptiness of a place as in Gamma [21] or as in Petri Nets with inhibitor
arcs. However, in [21] the authors need to use conservative counting abstractions
to validate their Gamma specifications. In [21] they apply this method to ver-
ify a manually constructed abstract model of Li-Hudak protocol, in which, e.g.,
they do not distinguish between owners and writers. At this level of abstraction
it is not possible to uncover the ambiguities in the original informal specifica-
tion. In [8] a combination of manual abstractions, theorem proving (PVS), and
automated abstractions (PAX [7]) has been used to verify Li-Hudak’s protocol.
The authors considered assumptions different from those taken in the first CPN
model of [18]. Our work is inspired to the approach of [2,4], where existential
regions are proposed as symbolic representation of configurations for parameter-
ized Timed Petri Nets. In [3], Abdulla and Jonsson have used similar techniques
to prove termination for backward reachability of Unordered Channel Systems
in which messages can vary over an infinite name domain. However, they do not
provide any mechanism for invalidation-phases. Networks of finite-state processes
can be analyzed using the automata theoretic approach of [9,12,23], where sets
of global states are represented as regular languages, and transitions as relations
on languages. Symbolic exploration can then be performed using operations over
automata with ad hoc accelerations (see e.g. [9]), or with automated abstractions
techniques (see e.g. [7]).

Our work is complementary to the approach based on the deductive method
with énvisible invariants of [6], in which invariants are first generated and then
proved to be inductive. We follow here, in fact, the paradigm of symbolic model
checking with rich assertional languages [22]. The two approaches can be used
to attack similar problems using different point-of-views.

As future work we plan to investigate techniques for handling liveness properties,
more realistic broadcast with message queues, and more complex properties like
sequential consistency.
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