
Team Description

Mainz Rolling Brains 2001

A. Arnold, F. Flentge, Ch. Schneider, G. Schwandtner, Th. Uthmann, and
M. Wache

Department of Computer Science
Johannes Gutenberg-University Mainz

D-55099 Mainz, Germany

1 Introduction

The Mainz Rolling Brains 2001 team is based on our last year’s team. Our
modular design as described in [1] has proved to be efficient and flexible. Thus
the team could easily be adopted to the soccerserver’s new features and some of
the weak spots of our team could be eliminated.

We use a three-layers concept for our agents: a technical layer (purely tech-
nical matters like server communication), a transformation layer (the tools and
skills a player might use) and the decision layer. The decision layer consists of
various modules for different tasks (goal shot, pass, ballhandling, positioning and
standard situation). These modules rate the adequateness of their respective ac-
tions and compete for the control over the player. More detailed information
about our team architecture can be found in [1] and [2].

One of this year’s main focuses was positioning which has been completely
revised. We will describe our new position module below. We made extensive
use of our new tool ”FUNSSEL“ (a debugging tool including an extended soccer
monitor) which made it possible to further improve our technical skills and
some of our modules as well. Due to the lack of space we will concentrate in
the following on the new positioning module, FUNSSEL and our method of
self-localisation.

2 Self-Localisation

As the agents in the simulation league do not know their absolute position on
the field, they have to calculate it from the visual data they get. This data
contains information about distance and angle (relative to the agent’s body
orientation) of the objects in the agent’s field of vision. There are several flags
in and around the field (of which the exact positions are known) we can use to
calculate the position of the agent. Visual data is not exact, i.e. the soccerserver
provides distances and angles only with an intentionally added error. Therefore,
our position is in an area with its borders given by these errors. To calculate the
position of our agents we create polygons with five corners approximating this

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 531–534, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



532 A. Arnold et al.

flag error margin for distance

error margin for angle

corner of approximating polygon

Fig. 1. A polygon approximating the area of the player’s position

area as shown in Figure 1 for each visible flag. Since the error depends on the
distance these polygons get the smaller the closer the flag is.

We intersect each two polygons and intersect the resulting polygon with the
next. Polygons are intersected by iterating over the edges of the second polygon
and keeping that part of the first polygon being inside the half-plain which is
generated by the current edge and contains the second polygon. Finally, we
calculate the agent’s position inside the resulting polygon as the average of the
polygon’s corners. If there is no intersection of all polygons we use the weighted
sum of the positions derived from all visible flags.

3 Positioning

We introduced a new positioning module this year giving each agent a very well
defined role during a game. This should ensure that at least one agent feels
responsible for an area of the field and that an attacking opponent is always
attacked by at least one agent. The different roles of the agents are divided into
four major groups: the defense, the defensive midfield, the offensive midfield and
the attack. Currently we play with 3 defenders, 2 agents belong to each defensive
and offensive midfield and 3 attackers.

Each agent has two standard positions, one in a more defensive, the other
in a more offensive context. Depending on the ball position he places himself
somewhere between these two positions. Positions are described as coordinates
in a virtual 100 x 100 area. To get the actual position the player should take
on the field these position values are projected onto a certain area of the soccer
field. This area is determined by ball position, the opponent’s offside line and
a given minimum and maximum value for the area. This positioning system al-
lows to generate certain tactical behaviours. For example, in defensive situations
defensive midfield players are always placed in one line with the ball and there-
fore these players will almost always feel responsible for attacking the opponent
with the ball while the whole defense stays covering the area between ball and
own goal. In specific situations additional rules are triggered, e.g. if the defensive
midfield agents fail to get the ball, the positioning behaviour is switched, i.e. one
of the defenders attacks the opponent, and a defensive midfield tries to get be-
hind the attacking defender to back him up. These rules have to be chosen very



Team Description Mainz Rolling Brains 2001 533

Agent

Logfile

Soccerserver
Controller

(e.g. FUNSSELMon)

Filter

FUNSSEL

Proxy

From Soccerserver to Agents and Monitor
From Agent to Soccerserver and Monitor
From Monitor to Soccerserver

Fig. 2. Scheme of FUNSSEL functionality

carefully, so that they altogether lead to a complex behavior with well organized
interactions between the players.

4 FUNSSEL - A Visualisation and Debugging Tool

FUNSSEL (”Flexible Utility for Network based Soccer Simulation using Ex-
tended Language“) developed by the Mainz Rolling Brains is a powerful utility
to debug simulation league agents. It consists of two single programs, FUNSSEL
and FUNSSELMon.

FUNSSEL is a kind of proxy server that is placed between the soccerserver
and both the agents and the monitor. FUNSSEL passes standard soccerserver
commands in the usual way, while special commands allow redirection of com-
mands directly to the monitor (e.g. FUNSSELMon) without sending anything to
the soccerserver. All this is implemented using an extended version of the stan-
dard soccerserver protocol to make it easy to use the special monitor commands.
It enables the players to report information about their current worldmodel and
tactics or even to control the game. The whole communication is logged through a
filter for a later replay. The logging of the players additional output may increase
the logfile size dramatically. That means filtering out unneeded information from
the soccermonitor protocol and compressing the data is necessary to reduces the
logfile to a normal size. For a structural overview of FUNSSEL and the related
processes, have a look at Figure 2 showing the data flow of different command
types.

To use all the features described above, a special monitor is needed - the
FUNSSELMon. Acting like a normal Soccermonitor it also offers extended func-
tionality to control FUNSSEL and to gain more information about the game.
Using special player commands FUNSSELMon can display some agent’s world-
model and special tactical information as graphics on the playing field as well



534 A. Arnold et al.

as simple logfile entries. While watching a game or logfile different colors can be
assigned to players to display data of several agents simultanously. Other com-
mands allow players to pause the game, do a drop ball or a freekick or to use the
Soccermonitor set player command, all being useful for training or debugging
certain game situations. To have a closer look at some technical issues during
the game, a zoom function is available which allows to open separate windows
for different regions, each at its own scale. FUNSSELMon can display technical
information like the heterogenous player types, stamina values for all players,
the kickrange and a viewcone showing the current vision of one or more players.

The main advantage of this concept is that it is nearly independent of the
soccer server version used. FUNSSEL is not dependent on FUNSSELMon, there-
fore other monitor programs could be designed to provide for example a batch
mode to train the agents and run games automatically.

5 Conclusion and Outlook

The newly developed debugging tool FUNSSEL offers a lot of assistance in mo-
nitoring and analysing soccer simulation league agent’s behaviour. It clearly has
improved our understanding of what the agents “see”, on how they decide what
to do and last but not least why they do not act like they are supposed to.
Thus it helps to increase the strength of our agents’ soccer team. For the next
future we are planning to make use of machine learning techniques (e.g. Kohonen
Feature Maps) for analysing games and changing tactical behaviour.

Acknowledgements: We wish to mention all current members of the Mainz
Rolling Brains: Axel Arnold, Jochen Ditsche, Felix Flentge, Manuel Gauer,
Marc Hoeber, Christian Knittel, Claudia Lautensack, Christian Meyer, Birgit
Schappel, Christoph Schneider, Goetz Schwandtner, Thomas Uthmann, Martin
Wache. We also would like to thank our former team leader Daniel Polani and
our sponsors SerCon and F 3G.

References

1. Schappel, B., Schulz, F.: Mainz Rolling Brains 2000. In: Stone, P., Balch, T.,
Kraetzschmar, G. (ed.): RoboCup 2000: Robot Soccer. World Cup IV. Lecture Notes
in Computer Science, Vol. 2019. Springer-Verlag, Berlin Heidelberg New York (2001)

2. Uthmann, Th., Meyer, C., Schappel, B., Schulz, F.: Description of the Team Mainz
Rolling Brains for the Simulation League of RoboCup 2000.
http://www.rollingbrains.de/mrb2000/MainzRollingBrains2000.ps


	Introduction
	Self-Localisation
	Positioning
	FUNSSEL - A Visualisation and Debugging Tool
	Conclusion and Outlook

