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Abstract. The following paper describes the ChaMeleons-01 Robocup
2001 simulation league team. Development was concentrated in two main
areas: the design and implementation of an action-selection architecture
and the development of the online coach. The architecture was designed
in such a way to support the integration of advice from an external
agent. Currently, the only external agent the ChaMeleons-01 support
is an online coach offering advice using the standard coach language.
The online coach offers advice in the form of passing rules, marking
assignments, and formation information.

1 Introduction

The ChaMeleons-01 team is a new team developed for the Robocup 2001 sim-
ulated robotic soccer competition. Although two members remain from past
Carnegie Mellon simulation teams, the addition of new team members and the
desire to pursue new research directions prompted the decision to start a team
from scratch. The ChaMeleons-01 coding effort started with the world model
from the CMUnited-99 publicly released source code. Although some time was
spent on the skills development, most of the effort was focused on building a
team that is highly coachable and able to easily adapt to different opponents.
Implementing a coachable team requires not only the development of a coach
but also considerations in the design of the team with regards to how advice will
be integrated into the action selection process. In section two, the architecture
designed and implemented to support the coach will be described and in section
three, the implementation of the coach will be described.

2 Action-Selection Architecture

The ChaMeleons-01 use a hierarchical, behavior-based architecture. The major
feature of the design is that it facilitates the addition of advice from outside
sources. This is accomplished through the use of a Behavior Manager (BM) and
different Behavior Arbitrators. Presently, the only advice the players use is from
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Fig. 1. Action Selection Architecture

the online coach but other players or human operators could potentially provide
advice. Figure 1 shows how each of these components are related.

A behavior generates all of its children when it begins execution. For example,
every time passBall executes, it generates a passToPlayer behavior for every
teammate whose position is known. If a behavior from the list of coach advice
matches one of the children types of the executing behavior, the BM attaches it
to the list of children.

All behaviors inherit from the same abstract behavior class. Each behav-
ior provides several methods to aid in the action selection process. Most of the
agents decision making rely on a behavior’s isApplicable method. For example,
the handleBall behavior is applicable only if the ball is kickable. Other meth-
ods include isChildOf which returns whether or not a given behavior has the
same type as one of its children and probabilityOfSuccess which estimates the
probability that a behavior will execute successfully. Behaviors range from the
lowest level behaviors like dash, kick, and turn to higher level behaviors such as
dribbleBall, passBall, and shootBall.

The BM creates and executes behaviors while also attaching the matching
coach advice when appropriate. Because players will tend to consider a lot of
the same actions from one cycle to the next, the BM maintains a pool of the
most recently used behaviors. When a behavior attempts to execute another
behavior, the call goes through the BM. The BM first checks if the behavior
currently exists in memory before it allocates a new behavior. The BM logs
each request to execute a behavior and whether or not the behavior executed
successfully. Logging the entire call chain aids in locating bugs while debugging.

The Behavior Manager also integrates all advice from the coach. For an
executing behavior, the BM searches through the coach advice and adds to the
list of children any behaviors that match one of the children types. For example,
if a coach recommends that player seven pass to player ten, when player seven
begins to execute the passBall behavior, the action recommended by the online
coach, passToPlayer corresponding to pass to player ten, will be added to the
list of children it considers. The BM also flags the behavior as originating from
the pool of advice behaviors. It is important to note that simply because a
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coach offers advice to a player, there exists no obligation on the player’s part to
follow the advice. A behavior arbitrator ultimately decides among the considered
behaviors.

A behavior arbitrator selects which behavior to execute when more than one
behavior is applicable. The arbitration method can be any heuristic and it does
not have to be the same for all behaviors. Simple heuristics include executing
the first behavior it considers that is applicable or always executing coach advice
before considering anything else.

The handleBall behavior uses a much more complex arbitration scheme. In
this case, behaviors are classified by descriptors such as passForward, passBack,
passToMostOpen with each descriptor having its own priority. Behaviors that
could potentially result in a goal have the highest priority, e.g., shooting the
ball, passing to someone that has a great shot, while other behaviors have lower
priorities. The prioritization is currently done by hand but it is feasible to learn
the priorities using machine learning techniques.

Whether or not to actually execute a behavior or to consider the behavior at
the next highest priority level depends on the behavior’s probability of success.
Each priority level contains a threshold for the probability of success; if the
threshold is not met, the next highest level is considered.

The handleBall arbitration method can also determine whether or not to en-
able a particular behavior that has not met the required threshold. For example,
if a player has the ball near the opponents goal and the probability of success
for a shot is just below the threshold, the best thing to do may be to hold the
ball for a few cycles to see if a better shot develops. Although the capability of
enabling behaviors exists, it was not used in Robocup-2001.

3 Online Coach

The ChaMeleons online coach (also known as OWL) competed in the online
coach competition as well as providing coaching for the ChaMeleons team during
the team competition. Besides substitution of heterogeneous players, the coach
generates advice using the standard coach language as described in the Soccer
Server Manual[5].

OWL uses a simple heuristic approach to choose heterogeneous types. Based
on empirical data gathered in a fixed training environment as well as the role of
the agent, the coach evaluates the player types on their kicking ability, intercep-
tion ability, and affect on stamina. The player types with the highest heuristic
value are substituted for the default players. All substitutions are made at the
beginning of the game.

As far as the opponent’s types, the coach carefully tracks error bounds in
order to evaluate whether each opponent agent’s actions (dashes and kicks) are
consistent with a particular type. If a type is not consistent, that information is
transmitted to the player through ’info’ messages in the standard coach language.
Similar analysis is done based on the player size, since (in normal cases), two
object cannot overlap.
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Based on the setplays planning developed for ATTCMUnited2000[2], the
coach creates a plan for ball and player movement for each setplay situation.
The primary difference is that the plan is expressed as a set of condition-actions
rules using the standard coach language. Further information about setplays can
be found in [3, 4].

OWL also has the ability to learn formations based on observations of a
team playing. The learning is done in two stages. First, for each player, a small
rectangle is found which encloses most of the points in which that player was
throughout the game. Then the rectangles are shifted in a hillclimbing search
on the field. The evaluation function favors positions where the average distance
between the rectangles for players are close to the same as the average distance
observed throughout the game.

OWL can then send this formation to the team using the ’home’ action of the
standard coach language. In addition, if OWL is given the expected formation
for the opposing team, OWL can assign marks to the defenders.

The final important module of the coach deals with learning to imitate an-
other team’s passing behavior. First, a team to imitate is chosen by hand. In
the online coach competition, we chose to imitate Brainstormers as they played
against Gemini. OWL extracts all of the successful passes made by both teams
when playing each other. Then, using C4.5, rules are extracted to predict where
a pass will go to. The input conditions are the starting location of the pass and
the distance and angle of all players. Note that the starting and ending locations
of the passes are discretized using Autoclass C[1].

These rules are then translated into coach language advice in the following
fashion. For the team to be imitated (Brainstormers for the coach competi-
tion), the rules are translated into ’pass to region’ actions with the appropriate
conditions. For the opponent (Gemini for the coach competition), the rules are
translated into ’mark line region’ directives instructing the team to try and block
the predicted pass.
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