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Abstract. A nonlinear control law to steer the unicycle model to a
static or dynamic target pose is presented. If the target is static the
control signals are smooth in their arguments and the solution guarantees
exponential convergence of the distance and orientation errors to zero.
The major advantages of the proposed approach are that there is no
need for path planning and, in principle, there is no need for global self-
localization either.

1 Introduction

The most simple kinematic model of an underactuated wheeled robot is given
by the so called unicycle model, namely:

ẋ = u cosφ
ẏ = u sinφ
ω = φ̇


 (1)

where x, y are the cartesian coordinates of the center of mass of the robot, φ
is its orientation with respect to the x axis and u, ω are its linear and angular
velocities. The major difficulties in designing motion control laws for underactu-
ated mobile robots are captured by the above (1) simple kinematic model as it
is subject to Brocketts Theorem [1]. For a detailed description of nonholonomic
car-like system motion control issues refer to [2] [3] [4].

This paper is organized as follows: in section (2) the addressed problem is
formally stated, in section (3) a solution for the most simple case (still ball)
is described, in section (4) the more general solution is outlined. Section (5)
contains some simulation examples and conclusions are drawn in section (6).

2 Problem Statement

Given the unicycle model (1) design a feedback law for the linear and angu-
lar velocities u and ω such that asymptotically the q = (x, y)T position of the
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Fig. 1. The model

robot is driven to a given target one qb = (xb, yb)T (the ball) along a possibly
time-varying reference direction ψ(t). The control law will be designed adopt-
ing a polar-like representation of the unicycle kinematic model (1), namely with
reference to figure (1) the following variables are introduced: q = (x, y)T : ab-
solute cartesian robot position; qb = (xb, yb)T : absolute cartesian ball position;
Vb : ball velocity vector; Vb = ‖Vb‖ : norm of the ball velocity vector (assumed
constant); η : absolute direction (assumed constant) of Vb; e = ‖qb − q‖ : robot
- ball distance; ie = qb−q

‖qb−q‖ : unit vector pointing from the robot to the ball;
e = ie e : robot - ball “distance” vector; je = k∧ ie : unit vector normal to ie and
to the z axis unit vector k; g : ball - target (by example, the center of the goal)
distance; iu : unit vector parallel to the robot heading; u : robot linear velocity;
u = iu u : robot linear velocity vector; ω = φ̇ : robot angular velocity; ψ(t) :
desired asymptotic robot heading. Time varying if Vb �= 0; α = îu, ie : angle
between iu and ie; other relevant angular variables defined similarly to α and
depicted in figure (1) are φ, θ, β and δ. Notice that α and θ are not defined when
e = 0 and ψ is not defined when g = 0. The relevant dynamic equations for the
above defined variables may be deduced starting from the cartesian model (1)
yielding:

ė = −u cosα+ Vb cos(η − θ − ψ) (2)
φ̇ = ω (3)

α̇ = −ω +
u

e
sinα+

Vb

e
sin(η − α− φ) (4)

θ̇ =
u

e
sinα+

Vb

e
sin(η − α− φ) +

Vb

e
sin(η − ψ) (5)

ψ̇ = −Vb

g
sin(η − ψ) (6)

ġ = −Vb cos(η − ψ) (7)

β = δ + α ; β ≡ ̂iu,vh (8)
φ+ α = θ + ψ (9)

η̇ = V̇b = 0 (assumption) (10)
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The above allow to give a more formal statement of the problem, namely find
u and ω such that limt→∞(e, α, θ)T = (0, 0, 0)T . It should be noticed that given
the equations (2-6) the above problem statement is well posed if and only if
Vb = 0. It will be then shown that in the case Vb �= 0 the same design method
adopted for the case Vb = 0 allows to compute bounded control laws that drive
the vehicle in a neighborhood of (e, α, θ)T = (0, 0, 0)T although not exactly in
(0, 0, 0)T . The singularities occurring when e = 0 may be avoided by a proper
choice of the control inputs as will be discussed in the following sections.

3 Still Ball Case

The controller designed for this case is based on the one reported in [5]. The
idea is quite simple and originates from the following observation: if one wanted
to drive a fully actuated, i.e. not subject to any nonholonomic constraint, ideal
point to a fixed (Vb = 0) target it would be sufficient to impose to this point the
velocity:

vh = γe e ie + γθ θ e je : γe, γθ > 0 (11)

which is given by the superposition of a linear velocity γe e ie that would drive
e exponentially to zero and an angular one θ̇ k = −γθ θ k that would drive θ
exponentially to zero. As outlined in [5], to cope with the unicycle nonholonomic
constraint and guarantee asymptotic convergence of e, α and θ to zero the linear
velocity may be chosen to be

u = iT
u vh =

√
γ 2

e + γ 2
θ θ 2 e cosβ. (12)

and the angular one such that β̇ = −γβ β : β = ̂iu,vh, yielding:

ω = γβ β +
(

γe γθ

γ2
e + γ2

θ θ
2

+ 1
)√

γ 2
e + γ 2

θ θ 2 cosβ sinα (13)

The cosβ term in (12) and (13) is responsible for possible backward driving, but
may be replaced by any smooth f(β) ≥ 0 : f(0) = 0 without affecting the
convergence properties [5]. Interestingly this design may be extended to 3D [6].

4 General Case

In order to extend the above design to the general case Vb �= 0 first of all the field
vh must be re-designed: in particular one may chose vh to be the superposition
of the previously given vh (11) plus a velocity vr that, if implemented alone,
would allow the robot to view e and θ as constants. With this idea in mind it
follows that

vh = γe eie + γθ θ e je + vr (14)

vr = Vb + je
Vb e

g
sin(η − ψ) = (15)

= ie Vb cos(η − θ − ψ) + je

(
Vb sin(η − θ − ψ) +

Vb e

g
sin(η − ψ)

)
(16)
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By direct calculation it follows that:

vhx ≡ v T
h ie ; vhy ≡ v T

h je ⇒ δ̇ =
vhx v̇hy − vhy v̇hx

‖vh‖2
(17)

v̇hx = γe ė+ Vb sin(η − θ − ψ)(θ̇ + ψ̇) (18)

v̇hy = [γθ e− Vb cos(η − θ − ψ)] θ̇ +
(
γθ θ +

Vb

g
sin(η − ψ)

)
ė

−Vb

(
e

g
cos(η − ψ) + cos(η − θ − ψ)

)
ψ̇ − Vb e

g2
sin(η − ψ) ġ (19)

where the terms ė, θ̇, ψ̇ and ġ are given by equations (2), (5), (6) and (7). Notice
that δ̇ given above will not depend explicitly from ω. Wanting to impose once
again the closed loop dynamics β̇ = −γβ β on β equation (8) is differentiated
with respect to time yielding:

β̇ = δ̇ + α̇ = δ̇ − ω +
u

e
sinα+

Vb

e
sin(η − α− φ) ⇒ (20)

ω = γβ β + δ̇ +
u

e
sinα+

Vb

e
sin(η − α− φ) (21)
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Fig. 2. Static ball (Vb = 0) case: paths resulting from different initial positions
on a unit circle and initial orientation φ0 = π/2. Gains γθ = 0.3, γe = 0.1, γβ = 1.

where δ̇ is given by equations (17-19). As expected and anticipated in section
(2), the steering input is singular in e = 0: indeed while the singularity could
be “compensated” in the case Vb = 0 by a proper choice of u, i.e. u ∼ e in a
neighborhood of e = 0, when Vb �= 0 there is no way of compensating the terms
proportional to Vb/e with a bounded control action. Notice that such terms
are also present in the closed loop expression for δ̇. Nevertheless the steering
law given by equation (21) may be still adopted in practice and indeed it is
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Fig. 3. Vb �= 0 case. Refer to the text for details.

successfully implemented on the GMD RoboCup robots. A possible and simple
implementation is to keep the linear velocity u always constant and to clip ω to
zero once e ≤ ε for some threshold value ε > 0. As long as e > ε > 0 equation
(21) can be implemented without problems and it will steer the vehicle parallel
to vh given by equations (14) and (16); once in a ε-neighborhood of e = 0 the
angular velocity is kept null and the linear velocity u is kept constant. The net
effect will be to hit the ball along a direction “close” to ψ. The deviation in the
kicking direction with respect to the desired value ψ will be a function of the
relative speed of the vehicle and the ball, of the angle η and of ε.

5 Simulation Examples

The control laws (12) and (13) relative to the static ball case (Vb = 0) have
been simulated for several starting poses on a unit circle. Results are shown
in figure (2): the first four plots (first two columns from the left) refer to the
implementation of the control laws (12) and (13). As expected the linear velocity
may be negative (backward drive) resulting in cusps, i.e. points of the plane
where ω �= 0 and u = 0. The signals u, ω and β plotted refer to the path drawn
with a thicker line. To avoid driving backwards and thus the cusps, the cosβ term
in (12) and (13) has been replaced with f = 1 giving rise to the results shown in
the other two columns. Two different simulations of the general case (Vb �= 0) are
reported in figure (3). In both cases the robots linear velocity u was kept constant
and equal to u = 1m/s. The ball had velocity Vb = 0.1m/s and direction
η = 3π/4 rad = 135 deg starting from the initial x, y position −2m,−4m. The
goal was positioned in the origin (0, 0) in both cases. The steering law given by
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equation (21) has been implemented in the region e > ε with ε = 0.3m. As
soon as e ≤ ε the robots angular velocity ω was clipped to zero. The control
gains where γβ = 1, γθ = 0.8, γe = 1/2 in both cases whereas the initial robots
pose was (−4m, 0, 0) for the solid line case and (−4m, 1/2m,π/3 rad) for the
dashed line one. The solid line results refer to the ideal noise free case, while the
dashed line results refer to the case in which additive gaussian noise of standard
deviation σVb

= 0.0333m/s and σb = 0.05m where added respectively on the
robots Vb estimate and ball position. This last noise affects in particular g, ψ,
α, θ and their derivatives. For the sake of clarity, wanting to compare the two
simulations the path driven by the ball is plotted as if there was no impact. The
fact that indeed the impact takes place is clearly revealed by the plot of e versus
time. The variables e and β are computed and plotted versus time only up to
the impact and then set to zero. The high frequency action of ω in the vicinity
of the target in the dashed line simulation is to be related to the terms divided
by e in equation (21).

6 Conclusions

A nonlinear control law to steer the unicycle model to a desired pose has been
presented. If the target is static the control signals are smooth in their arguments
and the solution guarantees exponential convergence of the distance and orienta-
tion errors to zero. In the case of a moving target a solution has been presented
that guarantees exponential convergence of the β angle to a neighborhood of
β = 0.
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