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Abstract. In this paper, we present a new method to decide the op-
timal robot’s motion with a quadruped robot of Sony Legged Robots
League. The method keeps the “observational cost” as small as possible.
The task we cope with is navigation. The robot can reach the destination
rapidly and robustly with this method in spite of under the unfavorable
conditions such as restricted sensor ability, limited CPU power, and in-
accurate locomotion. Finally the efficiency of our method is verified by
experiments.

1 Introduction

On the soccer field, the robot’s decision mainly depends on its location. There
are many researches about localization[1, 2, 3]. However, the task which should
be finally accomplished is not to localize accurately, but to decide the optimal
motion.

There are two researches which provide effective motion decisions with sim-
ple observations under the condition of Sony Legged Robots League[4, 5]. In
these researches, the robot decides its motion according to the appearance of
the landmarks and the ball. However, the relations between the location and the
decision are designed arbitrarily. Therefore, the optimality of the decision is not
guaranteed.

In this paper, we propose a method to decide the optimal motion with the
smallest observational cost. The task we cope with is navigation. This is a task to
make a robot reach a target position and orientation which has some allowance
called “target region”. This task is applicatory to other tasks such as occupying
a defensive position. In addition, we can evaluate the optimality by the time to
reach the target region.

In this research, we use ERS-1100 that is the unique hardware in Sony Legged
Robot League. Following characteristics of ERS-1100 make the task difficult.

– Restricted sensor ability: Insufficient information due to the narrow field of
view

– Limited CPU power: A calculation that needs high CPU power is not exe-
cutable.
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– Limited control ability: The discrete locomotion is not adapted for a small
move.

The approaches to accomplish the navigation are as follows. First, we use “Mo-
tion Planned Map(MPM)” to decide the optimal locomotion commands. Second,
as a localization method, we adopt “Sensor Resetting Localization[3] (SRL)”
which is developed for Sony Legged Robots League. By using “MPM” and
“SRL”, we propose a method that provides the motion decision that minimizes
the observational cost.

The rest of this paper is constructed as follows; Section 2 discusses the con-
trol method we propose in this research. Section 3 provides the results of the
experiments and discussions. Section 4 provides the conclusion and future works.

2 Methods

Here we summarize our method to navigate a robot to the target region(Fig.1).
At the beginning of every step, the robot’s estimated position is updated by
SRL. Then, the robot decides its motion by comparing the cost of observation
with the risk of moving without observation according to its estimated position
and MPM. And it executes the motion. This process is repeated until the robot
reaches the target region.

2.1 Motion Planned Map

MPM is a data base which has the information of optimal locomotion commands
at any robot’s position and orientation. We make this Map by the offline cal-
culation. Therefore, only a low computational power is required to the robot.
In this research, the map is represented by grid cells. We made this map with
Dynamic Programming. Fig.2 shows the MPM made under the conditions shown
in Table.1.

When making MPM, we can also calculate the expectations of the time from
each grid to the target region. We express the position-time relation by grid-
based form which is the same as MPM. We call this “State Value Map (SVM)”,
and use with the MPM.

2.2 Motion Decision Method

After updating the self-position, the motion to be executed is decided according
to MPM. In SRL, a set of finite discrete points called samples represents the
positional and orientational probabilistic distribution of the robot. When all
SRL samples are inside the single region as shown in Fig.3(a), the motion which
corresponds to the region on the map is selected. On the other hand, we must
decide to move or observe when the samples are distributed over more than two
regions as shown in Fig.3(b). This decision is made according to the rule shown
in Fig.4. That is “If the observational cost is smaller than the loss of time caused
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by non-optimal decision, then we decide to observe”. The expectation of the time
to the target region is calculable by the samples’ positions and orientation and
the value of the SVM there.

3 Experiments

3.1 Conditions of Experiments

The described method was implemented and evaluated under four different con-
ditions shown in Table.2. When the initial position is “fixed and known”, all
the samples are settled on the actual robot’s position on the soccer field. On
the other hand, “random and unknown” means that the samples are distributed
uniformly.

In addition, we set other conditions as follows:

– Initial position and Target region: Shown in Fig.5.
– Number of samples: 100(fixed).
– Observational cost: 3.0[sec](fixed).
– Number of trials: 10 (on each condition)
– Terminative condition: Beyond 80% of all the samples are inside the

target region.
– Judgment of success: The robot actually reaches the target region in

180[sec].

3.2 Result and Discussions

Table.3 shows the result of the experiments. Fig.6 shows the overview of the
experiments.

The robot successfully reached the target region at the rate of about 70%
on each condition. In Experiment.1 and 3, the numbers of observations were
only three or four times. In Experiment 2 and 4, they were larger. This means
that the robot selected to observe according to its positional and orientational
probabilistic distribution.

In Experiment.1 and 3, the initial position and orientation were the same
on each trial. However, there were no two trials on which the robot crossed the
same path to the target region. This is due to the errors of robot’s locomotion
and the localization. The fact that the robot can reach the target region through
different paths indicates the robustness of our method.

In failure cases, the robot considered itself inside the target region based on
the distribution of samples even though it is located incorrect actual position.
This is due to the factors which are unconsidered or unable to model in SRL
such as the collision with the walls. In order to improve the success rate, we
must clear up the causes of localization errors and model them. This is also an
essential problem. One supposable approach is the practical use of information
about other objects in addition to the landmarks.
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4 Conclusion and Future Works

In this research, we proposed the method to decide the optimal motion with
the smallest observational cost. We need not to set the arbitrary rules to decide
the robot’s motions. The robot can select the optimal motion in spite of the
uncertain information of its location. The efficiency of our method was verified
by the results of the experiments.

In this method, it is assumed that the probabilistic distribution of the loca-
tion is modified well enough to select the optimal locomotion by an observation.
But the observation causes the loss of time if the robot is located where the
recognition of the landmarks is impossible. In this case, it is necessary to predict
the efficiency of the observation. In future, the prediction of the observational ef-
ficiency should be considered. Furthermore, improvement of localization method
and tasks with the ball or dynamic obstacles also will be our future works.
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Fig. 1. The flow chart of the control method.
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Table 1. The conditions to make Motion Planned Map

Locomotion commands Forward, Right turn, Left turn (3 motions)
Map size 5000[mm] × 5000[mm] × 360[deg]
Grid size 50[mm] × 50[mm] × 15[deg]

Target region (2500 ± 300[mm], 2500 ± 300[mm], 0 ± 30[deg]

Fig. 2. Motion Planned Map. This map shows the result between 0[deg] and
15[deg]. Actually each orientation creates different maps. That means we get 24
maps.

Fig. 3. The motion decision method with the positional probabilistic distribu-
tion. In case of (a), the robot move “Forward”, but in case of (b), it is needed
to decide to move or observe.

Variables

Number of the locomotion command : n

ID of the locomotion commands : i

Locomotion command : ai

Cost of the locomotion : ti

Cost of the observation : tobservation

Set of samples of the initial state : Ω0

Set of samples after the locomotion ai : Ωi

Number of samples : N

Sample j at the initial state : ωj,0

Sample j after the locomotion ai : ωj,i

SVM value of ωj,0 : vj,0

SVM value of ωj,i : vj,i

Expectation from Ω0 to the target region : E0

Expectation from Ωi to the target region : Ei

Algorism
E0 =

PN
j=0 pj,0vj,0

Ei =
PN

j=0 pj,ivj,i

tmax = max
1≤i≤n

(Ei − E0 + ti)

tmin = min
1≤i≤n

(Ei − E0 + ti)

d = arg min
1≤i≤n

(Ei − E0 + ti)

if(tmax ≤ tobservation) do ad locomotion
if(tmax ≥ tobservation) do observation

Fig. 4. The motion selecting algorism.
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Table 2. Conditions of experiments

Locomotion patterns Initial position
Experiment.1 3 fixed and known
Experiment.2 3 random and unknown
Experiment.3 5 fixed and known
Experiment.4 5 random and unknown

Fig. 5. The initial position and target region of this experiment.

Table 3. The results of the experiments.

Succeed times Average of the time[sec] The number of observation
Experiment.1 7/10 62.3 3.4
Experiment.2 6/10 65.2 5.0
Experiment.3 7/10 53.4 3.5
Experiment.4 7/10 100.4 7.4

Fig. 6. The overview of this experiment.
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