
CS Freiburg 2001�

Thilo Weigel1, Alexander Kleiner1, Florian Diesch1, Markus Dietl1,
Jens-Steffen Gutmann2, Bernhard Nebel1, Patrick Stiegeler1, and Boris Szerbakowski3

1 Institut für Informatik, Universität Freiburg
79110 Freiburg, Germany

{last-name}@informatik.uni-freiburg.de
2 Digital Creatures Laboratory, Sony Corporation

141-0001 Tokyo, Japan
gutmann@ieee.org

3 Optik Elektronik, SICK AG
79183 Waldkirch, Germany

boris.szerbakowski@sick.de

Abstract. The CS Freiburg team has become F2000 champion the third time in
the history of RoboCup. The success of our team can probably be attributed to its
robust sensor interpretation and its team play. In this paper, we will focus on new
developments in our vision system, in our path planner, and in the cooperation
component.

1 Introduction

Although the general setup, the hardware and software architecture of CS Freiburg at
the RoboCup 2000 competition [16] turned out to be quite satisfactory, there appeared
to be room for improvements. First of all, the hardware was not as reliable as it used
to be when the robots were bought in 1997. Secondly, there were quite a number of
software components in the system that could be improved.

For this reason, we invested in new hardware, which led to a significant improve-
ment in robustness. In fact, the final game against the Osaka Trackies was partially won
because our hardware was very reliable.

On the software side, a number of improvements were made on the system level,
such as integrating a new camera system. Furthermore, we worked on components that
we considered as critical, such as the vision system, the path planning module, and
the module for cooperative play. The improvements of these components, which are
described below, did indeed give us the competitive edge. However, it also became
clear that the reactiveness by the Osaka Trackies is hard to match with our team.

� This work has been partially supported by Deutsche Forschungsgemeinschaft (DFG), by
Medien- und Filmgesellschaft Baden-Württemberg mbH (MFG), by SICK AG and Sony Cor-
poration

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 26–38, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



CS Freiburg 2001 27

2 Hardware

When we first participated at RoboCup in 1998 we used Pioneer-1 robots as manufac-
tured by ActivMedia. To recognize the ball ball we employed the Cognachrome vision
system manufactured by Newton Labs which was available installed in the Pioneer-
1 robots. Our effort in hardware development was limited to mounting a SICK laser
range finder for self localization and object recognition and building a simple kicking
device with parts from the Märklin Metallbaukasten. For local information processing
the robots were equipped with Libretto 70CT notebooks and they used the Wavelan
radio ethernet from Lucent Technologies to communicate with each other [6].

Even though we maintained the same general hardware setup, we virtually replaced
every part of this setup in the past four years. In 1999 we replaced the laser range find-
ers with the SICK LMS200 model. They provide depth information for a 180◦ field of
view with an angular resolution of 0.5◦ and an accuracy of 1 cm [9]. For RoboCup 2000
we started to make major mechanical and electronical modifications to our robots. We
installed nickel-cadmium batteries because of their light weight and high speed charg-
ing capability. To improve the ball handling and shooting capability of our robots SICK
AG assisted us in building a new kicking device with movable ball steering flippers,
which can be turned to an upright position and back. The kicking device is strained by
a wind-screen wiper motor and released by a solenoid [16].

Fig. 1. A CS Freiburg Player

This year we made further hardware
modifications in order to increase the per-
formance of our team. Figure 1 shows one
of our robots as it competed this year. We
installed Pioneer-2 boards, which now al-
low the robots to move considerably faster
with the same Pittman motors that we
have been using during the past years. For
more precise movements we substituted
the rear caster wheel by a caster roller. To
be able to develop our own vision soft-
ware we replaced the old vision system
by a Sony DFW-V500 digital camera and
switched to Sony Vaio PCG-C1VE note-
books because of their IEEE 1394 inter-
face. We also upgraded the WaveLan cards

to the new 11 Mbit/s (2.4 GHz) cards. To get our laser range finders to work via the USB
port we had to find a circuit diagram for a RS422-USB converter board, capable of a
500Mbaud rate1, which SICK AG then manufactured for us. For an artificial intelli-
gence research group hardware development and maintenance isn’t a trivial task at all
and would certainly not have been possible without the help of SICK AG. Even only
adapting our software to the new hardware consumed a lot of our preparation time for
this year’s tournament.

1 http://www.ftdichip.com/Files/usb-422.zip



28 Thilo Weigel et al.

3 Vision

The implementation of our new vision system consists of two major software parts,
one for region segmentation by color and one for the mapping from image coordinates
to positions of objects on the field. The region segmentation by color is carried out
on 320x240 Pixels in YUV color space using the CMVision library.2 Due to the fast
algorithm [3], our system is capable to work with even two cameras at a rate of 30Hz.
From the segmented regions the world coordinates are computed. For this purpose we
implemented two alternative solutions, described below.

3.1 Tsai Camera Calibration

Tsai’s camera model [15] is based on the pinhole model of perspective projection, and
consists of six extrinsic and five intrinsic parameters. The extrinsic parameters describe
the translation (Tx, Ty, Tz) and rotation (Rx, Ry, Rz) from the world coordinate frame
W to the camera coordinate frame C. The intrinsic parameters include the effective focal
length f , the radial lens distortion κ1, a scale factor sx and the image center (Cx, Cy),
also known as principal point. Generally, the objective of calibration is to determine
optimal values for these parameters from a set of known points in the world coordinate
frame (xw, yw, zw) and their corresponding pixels in the sensor plane (xu, xv). Once
the intrinsic parameters are determined, they can be used for different positions and
orientations of the camera. The extrinsic parameters, however, have to be re-calibrated
when the camera moves relatively to the world coordinate frame origin.

With the calibrated parameters, one can predict the pixel (xu, xv) in the sensor plane
from a given point (xw , yw, zw) in W by three transformations:

1. Rigid body transformation Transformation from the world coordinate frame to
the camera coordinate frame:

[
xc yc zc

]T = R
[
xw yw zw

]T +
[
Tx Ty Tz

]T
,

where R = Rot(Rx)Rot(Ry)Rot(Rz)
2. Perspective projection Due to the pinhole model, the undistorted pixel coordi-

nates can be calculated by the theorem of intersecting lines: xu = f xc

zc
, xv = f yc

zc

3. Distortion transformation Transformation from undistorted pixels to distorted
ones with the distortion factor κ1: xu = xd(1 + κ1ρ

2), yu = yd(1 + κ1ρ
2) , where

ρ =
√

x2
d + y2

d

Since the ball is usually located on the field plane, a coplanar calibration was used.
As mentioned above, the calibration process can be divided into two parts, which are
intrinsic and extrinsic parameter calibration. For the intrinsic parameter calibration a
small dot matrix was placed on different positions in front of the camera. Data for
extrinsic parameter calibration was generated from a large dot matrix, which was placed
on the soccer field plane in front of the robot.

Another possibility to generate calibration data is to take snapshots of the ball on
the field directly. This comes with the advantage that the error from calculating the blob
center on the image is reflected in the data. However, it turned out that the data was too
noisy for the Tsai optimization procedure, which was indicated by a high calibration
error.

2 http://parrotfish.coral.cs.cmu.edu/cmvision/



CS Freiburg 2001 29

3.2 Interpolation

Besides the analytical Tsai method, we also used a method from the last years team
for linear interpolation [13]. The method interpolates the position of the ball based
on triangles generated from a priori collected world to image correspondences. The
mapping takes place by identifying the triangle which encloses the considered pixel.
This triangle can be mapped to a triangle on the field which then is used to interpolate
the objects position.

For a uniform distribution of the triangles the Delaunay triangulation has been used.
Figure 2 shows the generated triangles on the image and the field respectively. The
dense occurrence of samples at the bottom of both pictures indicates that more sam-
ples have been collected from positions in the vicinity of the robot than from distant
positions.

The collection of adequate samples has been carried out by assistance of our accu-
rate self-localization. The ball has been placed on a fixed position on the field, which
has been taken as reference. Subsequently, snapshots of the ball from different robot
position have been taken and converted to samples in the camera coordinate frame.
Finally, a triangulation algorithm produced a list of triangles, such as shown in figure 2.

(a) (b)

Fig. 2. Distribution of triangles on the camera image (a) and on the field (b) after the Delaunay
triangulation

3.3 Evaluation

Figure 3 shows the measured accuracy in estimating the ball distance and ball angle
by the two approaches. While both approaches perform well in estimating the direc-
tion of the ball, the Tsai method seems to be inaccurate in estimating larger distances.
We assume that this is partially caused by a poor coverage of the field by calibration
dots during the calibration of the extrinsic parameters. A larger matrix would probably
improve the quality of the calibration. However, this is not always practicable during
RoboCup competitions.

In contrast, data collection for the interpolation is handled easier. The robot is pro-
grammed to take samples at particular positions autonomously. Furthermore, the quality
of the collected data can be evaluated directly by considering the triangle distribution



30 Thilo Weigel et al.

as shown in figure 2. Also the effect of noisy measurements is not as critical as it is
for the analytical method, which uses non-linear optimization to estimate the model
parameters.

For most demands in the RoboCup domain, however, the resulted accuracy of both
methods suffice, since in most cases the direction of the ball is more important than an
accurate distance estimation beyond three meters.

-60 -40 -20 0 20 40 60
True angle [Deg]

-60

-40

-20

0

20

40

60

80

E
st

im
at

ed
 a

ng
le

 [
D

eg
]

Interpolation
Tsai
Reference

Robot to ball angle

0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000
True distance [mm]

0

1000

2000

3000

4000

5000

E
st

im
at

ed
 d

is
ta

nc
e 

[m
m

]

Interpolation
Tsai
Reference

Robot to ball distance

(a) (b)

Fig. 3. Accuracy in estimating the direction (a) and distance (b) of the ball by interpolation and
the Tsai method

4 Path-Planning

The robotic players of our team are equipped with a rich set of basic soccer skills such
as GoToBall, GetBall, MoveShootFeint, ShootGoal, etc. Details about these skills can
be found in our last year’s team report [16]. Some of these skills, e.g. GoToBall which
enable a player to move around obstacles close to the ball, require the planning of a
path from the robot’s current position to a target position. In addition, more team ori-
ented skills like moving to a strategic position on the field, or the automatic positioning
procedure before game start need the ability to find collision-free paths, too.

A prerequisite for planning paths is the existence of a model of the world. Although,
a crude world model can already be used for generating paths, the integrity and accu-
racy of the world model has a big influence on the quality of the computed paths. Fortu-
nately, our robots have access to a comprehensive and accurate world model built from
observations of the LRF and the vision system by the full team of robots [5, 6, 16].

Path planning has been well researched with a lot of interesting results found [8].
There are at least 3 basic categories approaches can be divided into: roadmaps, cell
decomposition, and potential fields. Recently, probabilistic approaches became popular,
in particular for finding paths in a high-dimensional configuration space [7]. As our
robots only move in a 2 dimensional world and are able to turn on the spot, plus all
objects can be reasonably represented as circles, we can restrict the configuration space
to only two dimensions. Thus, a deterministic approach can be employed.



CS Freiburg 2001 31

Roadmap algorithms are a popular way for finding paths in the RoboCup environ-
ment, e.g. the All Botz RoboCup team in the small size league developed a variant of
the extended visibility graph for finding paths around other players [2]. We also im-
plemented a version of the extended visibility graph for our first participation in 1998
[6]. However, this approach has the drawback that it depends on the chosen minimum
distance the robot should keep to obstacles. If chosen small, the algorithm can generate
paths that are too close to the robots. Especially for soccer this can be disadvantageous
as obstacles like opponent robots are moving and collisions are likely to happen. On
the other hand, a large value for the minimum distance might cause the planner to fail
finding a path. Since it is difficult to find a good trade off we developed a new path
planning approach based on a combination of potential fields and cell decomposition.
We will show a comparison of the two approaches at the end of this section.

The basic algorithm is described in detail in Topor’s work [14]. Due to limited space
we will only give a brief overview and present extensions that improved the perfor-
mance of the algorithm. The path planning algorithm uses a potential field for finding
its way through the obstacles. This potential field consists of an attracting force towards
the target position and repulsive forces arising from other players, the ball (optionally),
and the field boundaries. An additional potential field directs the search into the robot’s
current heading. In our approach we approximate the world into a grid of 10 × 10 cm
cells.

The search algorithm maintains a grid of the world where each cell holds a boolean
indicating if the cell has already been visited. Furthermore, a priority queue is used with
elements consisting of a cell index and its corresponding potential value. The algorithm
starts with the target position and follows the negative gradient of the potential field
to the robot. In each iteration the potential and gradient value of the cell referring to
the current position are computed by summing up pre-computed potential and gradient
fields of the individual forces. Cell index and potential value of cells that are not already
visited are inserted into the priority queue. Note, that although we discretize the world
into a grid, the algorithm still computes positions with floating point precision.

Figure 4(a) illustrates how this algorithm finds a path around an obstacle. Note that
we search from the target towards the robot and not vice versa, since otherwise the
robot would first move directly in direction of the obstacle before turning to the side.
In each cycle of the robot control program (every 100 ms), a new path is computed and
the robot smoothly moves around the obstacle (Figures 4(b) and (c)). The example also
shows that in our algorithm re-using a previously computed path like in the approach of
Baltes and Hildreth [2] is not possible without major modifications.

Figure 5 displays two features we added to the original algorithm. If a player is
in possession of the ball and is heading towards the opponent goal, we surely do not
want other robots to interfere with it. This can be achieved by adding additional, virtual
potentials in front of the ball-owning robot (Figure 5(a)).

A problem in path planning in general is that of oscillation. A situation where an
obstacle is in between robot and target can lead to such a problem (see Figure 4(a)).
If the position of the obstacle is noisy, e.g. because the sensors delivers noisy data,
the path planning algorithm might find paths around the obstacles on both sides with
equal chance. Since paths are re-planned every 100 ms, the robot might continuously



32 Thilo Weigel et al.

(a) (b) (c)

Fig. 4. Path planning around an obstacle using potential fields: initial plan (a), plan after robot
moved closer to obstacle (b), and final straight-line path to target (3). Potential values are indi-
cated by grey-scale levels where lower potentials appear darker.

(a) (b) (c)

Fig. 5. Extra potential fields are added in front of the active player (a). To reduce oscillation the
center of gravity of an obstacle is shifted according to the path computed in the last cycle: without
(b) and with hysteresis shift (c).

choose the other way. This could be observed in experiments in our laboratory including
the robot bumping into the obstacle because it wasn’t able to decide which way to go
around.

A directional potential field that prefers the robot’s current heading helps avoiding
such scenarios. However, if the robot is far from the obstacle, the algorithm still can
oscillate. For RoboCup 2001 we added a new technique for directing the search into
the right way. Based on the path computed in the previously cycle a hysteresis shift is
applied to the individual potential fields of the obstacles. This shift moves the center of
gravity of a potential field while still retaining the shape at the border of the obstacle,
i.e. the center of the obstacle is shifted while the obstacle still occupies the same space.
Due to this shift, the gradient changes and forces the search to go around the obstacle
in the same way as in the previous cycle. Figures 5(b) and (c) give an example.

Potential field methods can be trapped in local minima. In our approach this can be
detected by examining the visited flag of the cell that refers to the current position. If a
cell is visited for the second time, a best first search is started beginning with the cell
that has the lowest potential in the priority queue. In best first search, the current cell is
removed from the queue and its 4 neighbors are examined and inserted into the priority
queue if not already visited. This leads to a wave-front search in the potential field until
the negative gradient of a cell points towards a non-visited cell where the algorithm can
follow steepest decent again. Figure 6 shows an example.

For evaluating the path planner, we conducted several experiments using random
start, target and object positions in a simulated environment of size 81×45. In average,



CS Freiburg 2001 33

(a) (b)

Fig. 6. Evaluation of the path planner. Best first search in local minima (a). Dark cells indicate
steps where best first search has been applied, light cells refer to steepest decent iterations. Com-
parison of path planning methods (b). Dashed line refers to shortest path as computed by the
extended visibility graph, solid line reflects path generated by our new potential field method.

the running time was less than 1.5 msec on a Pentium MMX 233 MHz. In 35 out of
5000 cases, the algorithm needed more than 15 msec and the maximum run time was
about 29 msec. Thus, the approach is well suited for continuous path planning.

A last experiment was conducted to compare the performance of the new algorithm
to the extended visibility graph approach we employed for our first participation [6].
Figure 6 (b) shows the setup. The extended visibility approach has the property that
it computes shortest paths and for the given scenario it returned the path that goes
through the middle of the field. In contrast, our new approach leads the robot around
the obstacles close to the wall. Although the length of the path at the wall is significantly
longer than the shortest one, our robots need much less time following the longer path
(13 s) than following the shorter one (24 s) because our motion controller allows for
higher speeds if obstacles are far.

5 Team Coordination

Soccer is a complex game where a team usually has to meet several requirements at the
same time. To ensure that in any game situation a team is prepared to defend its own
goal, but also ready to attack the opponent goal, the various team players have to carry
out different tasks and need to position themselves at appropriate strategical positions
on the field. In this section we describe our method for determining such positions
depending on the current game situation and illustrate how our players decide which
position they should occupy.

To express that a player has a task which is related to a position in the team forma-
tion we say a player pursues a certain role [12]. Distinguishing between different areas
of responsibility we established the following roles:

– active: the active player is in charge of dealing with the ball. The player with this
role has various possible actions to approach the ball or to bring the ball forward
towards the opponent goal.

– strategic: the task of the strategic player is to secure the defense. It maintains a
position well back in our own half.



34 Thilo Weigel et al.

– support: the supporting player serves the team considering the current game sit-
uation. In defensive play it complements the teams’ defensive formation and in
offensive play it presents itself to receive a pass close to the opponents goal.

– goalkeeper: the goalkeeper stays on its goal line and moves depending on the balls
position, direction and velocity.

As our goalkeeper has a special hardware setup for his task it never changes its
role. The three field players, however, are mechanically identical and switch their roles
dynamically whenever necessary.

5.1 Positions

Our approach to determine the target positions associated with the field player roles
is similar to the SPAR method of the CMU team in the small size league [11]. From
the current situation as observed by the players, a potential field is constructed which
includes repulsive forces arising from undesirable positions and attracting forces from
desirable ones.

Fig. 7. Potential field for determining the
active position

Figure 7 shows an example of a po-
tential field for the desired position of
the active player. Dark cells indicate very
undesirable positions whereas light posi-
tions represent very desirable positions.
The resulting position is marked white.
We consider the ideal position for the ac-
tive player to be at least a certain dis-
tance away from other players and at an
optimum distance and angle to the ball.

While the optimum distance is fixed, the optimum angle is determined by interpolat-
ing between a defensive and an offensive variant depending on the balls’ position. A
defending player should be placed between the ball and our own goal, but in offensive
play the ball should be between the player and the opponent goal.

Fig. 8. Potential field for determining the
strategic position

Figure 8 shows the potential field
for the desired position of the strategic
player. It is based on the same game sit-
uation and uses the same colors as the
example for the active player. We want
the strategic player to stay well behind all
players and the ball and prefer positions
close to the horizontal centerline of the
field. Only the active player is assigned a
repulsive force explicitly in order to en-

force staying out of its way. Other players are avoided implicitly by the path planner
which finds an appropriate position close to the desired one.



CS Freiburg 2001 35

Fig. 9. Potential field for determining the
support position

Figure 9 shows how in the same
game situation as above the defensive
support position is determined. We want
the supporter to stay away from all other
players and at a certain distance to the
ball. As the supporting player should
complement the teams’ defensive forma-
tion, we additionally prefer positions be-
hind and aside the active player.

Even though the resulting positions
are in general similar to the ones a human observer would establish, we needed to
make some restrictions in order to avoid ”hysteric” behavior resulting from ”overre-
acting” to the constantly changing environment. Because our robots are turning rather
slowly they need a lot of time for even minor position changes. We therefore favor a
players’ current position with a persistence value and are quite tolerant regarding how
close our defending players actually need to get to their positions. In order not to loose
too much of precision either, we adjust this tolerance dynamically depending on the
players current angle to its target position. By allowing large tolerances for large angles
but requiring small tolerances for small angles, we achieve that a player only starts to
update its position if the new position differs considerably from the old one. But once
the player is moving towards that position the player intends to approach it as close as
possible.

Statistics based on the log files of our Seattle games show that the balance between
teams is reflected in the average distances between the target positions of our three
field players. Against strong teams our players intended to stay in a rather compact
formation with average distances of 2051mm against Trackies (1:0) or 2270mm against
Fusion (2:0). When our team was clearly dominant, the players were spread wider over
the field with average distances of 3000mm against CMU or 3657mm against Robosix
(16:0).

The fact that in the Seattle games the active player was on average only 973mm
away from its target position indicates that our players managed to maintain a forma-
tion where always at least one robot was close to the ball. Also the fact that the area
for possible strategic positions is quite restricted is reflected in the respective average
distance of only 892mm. As the support position differs considerably in offensive and
defensive play, the corresponding player showed the largest offset to its target position
(1857mm). Evaluating the log files also showed that there is still room for improve-
ment. As it is a tedious task to test and evaluate team behavior online with real robots,
we intend to rely more on the simulator that we are currently implementing.

5.2 Roles

After a field player has determined the best active, strategic and support position from
its perspective, it calculates utilities which are basically a heuristic for the time it would
take the player to reach the corresponding position. The following criteria are taken into
account:



36 Thilo Weigel et al.

– The (euclidian) distance to the target position
– The angle necessary to turn the robot towards the target position
– The angle necessary for the robot to turn at the target position in order to face in

direction of the ball
– The angle between the robot and the ball (it is more desirable, especially for the

active player, to approach the target position already facing in direction of the ball)
– Objects between the player and the target position

The total utility is now computed as the weighted sum of all criteria. In order to decide
which role to take a player sends these utilities to its teammates and compares them
with the received ones.

Following a similar approach taken by the ART team [4],3 each player’s objective
is to take a role so that the sum of the utilities of all players is maximized. In contrast
to the ART approach a player doesn’t take its desired role right away, but checks first
if not another player currently pursues the same role and considers that role best for
itself as well. As the world models of our players are not identical, the perspectives
of our players can in fact differ. Therefore a player only takes a role if either no other
player is currently pursuing that role or the pursuing player signals that it actually wants
to change its role. That way we reduce with only little extra communication effort the
number of situations where more than one player owns the same role.

A problem for this approach are situations, where different players come up with
very similar utilities for a certain role and the roles might oscillate. However, by adding
a hysteresis factor to the utility of a player’s current role we ensure that a player only
gives up a role if its real utility for that role is clearly worse than the one of its teammate.

Goalkeeper Active Strategic Support

Role kept 986.9 s 5.4 s 5.7 s 8.1 s
Role not unique % of playing time 0 % 2.17 % 1.23 % 1.06 %
Role not unique average time 0 s 0.203 s 0.218 s 0.206 s

Table 1. Evaluation of role assignment method

Table 1 displays a statistics evaluating our role assignment method. All values are
averaged over the games played at RoboCup 2001 in Seattle. In the first line the times
our players kept a certain role are listed. Interestingly the values for the field players
are similar to the average role switch time of 7 seconds stated by the ART team [4]. The
second line shows how much of the total playing time a role was pursued by more than
one player. The fact that for the active player this happened in only 2.17% of the total
playing time and in even less cases for the other roles, demonstrates, that our method to
avoid such situations works successfully. The average values for the times, a role was
not unique (in line three), gives further evidence for this.

When evaluating the log files of our Seattle games we also noted that the roles were
usually quite equally distributed between our players. However, in games where we

3 Note, however, that our approach was developed independently.



CS Freiburg 2001 37

scored a lot of goals, the player with the most offensive starting position held the active
role considerably longer than its teammates.

6 Conclusion

The development of robotic soccer during the last five years was quite impressive. In
1997 the robots hit the ball only occasionally – and often kicked it in the wrong direction
(or even into the own goal). In 2001, the games looked much more interesting. The
development of our team followed this general path. In 1998, our main advantage was
that our robots knew their own position – which helped to avoid own goals. Over the
last four years, we concentrated on the improvement of our hardware, on the sensor
interpretation process, on cooperative sensing and on team play. As demonstrated, this
gave CS Freiburg the chance to win the championship three times. However, having
watched the final game against Osaka Trackies, we got the impression that a point is
reached where it is hard to improve our robots so that they are able to dominate a game
against a fast, reactive team such as the Trackies.

References

[1] M. Asada and H. Kitano, editors. RoboCup-98: Robot Soccer World Cup II. Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1999.

[2] Jacky Baltes and Nicholas Hildreth. Adaptive path planner for highly dynamic environ-
ments. In Stone et al. [10], pages 76–85.

[3] J. Bruce, Tucker Balch, and Maria Manuela Veloso. Fast and inexpensive color image
segmentation for interactive robots. In Proceedings of the 2000 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’00), volume 3, pages 2061 – 2066,
October 2000.

[4] Claudio Castelpietra, Luca Iocchi, Maurizio Piaggio, Alessandro Scalzo, and Antonio Sgor-
bissa. Communication and coordination among heterogeneous mid-size players: ART99.
In Stone et al. [10], pages 149–158.

[5] Markus Dietl, Jens-Steffen Gutmann, and Bernhard Nebel. Cooperative sensing in dynamic
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’01), Maui, Hawaii, 2001.

[6] Jens-Steffen Gutmann, Wolfgang Hatzack, Immanuel Herrmann, Bernhard Nebel, Frank
Rittinger, Augustinus Topor, Thilo Weigel, and Bruno Welsch. The CS Freiburg robotic
soccer team: Reliable self-localization, multirobot sensor integration, and basic soccer
skills. In Asada and Kitano [1], pages 93–108.

[7] L.E. Kavraki and J.C. Latombe. Probabilistic roadmaps for robot path planning. In
K. Gupta and A. del Pobil, editors, Practical Motion Planning in Robotics: Current Ap-
proaches and Future Directions, pages 33–53. John Wiley, 1998.

[8] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.
[9] Bernhard Nebel, Jens-Steffen Gutmann, and Wolfgang Hatzack. The CS Freiburg ’99 team.

In M. Veloso, E. Pagello, and H. Kitano, editors, RoboCup-99: Robot Soccer World Cup
III, Lecture Notes in Artificial Intelligence, pages 703–706. Springer-Verlag, 2000.

[10] P. Stone, G. Kraetzschmar, T. Balch, and H. Kitano, editors. RoboCup-2000: Robot Soccer
World Cup IV. Lecture Notes in Artificial Intelligence. Springer-Verlag, Berlin, Heidelberg,
New York, 2001.



38 Thilo Weigel et al.

[11] P. Stone, M. Veloso, and P. Riley. CMUnited-98: Robocup-98 simulator world champion
team. In Asada and Kitano [1], pages 61–76.

[12] Peter Stone and Maria Manuela Veloso. Task decomposition, dynamic role assignment, and
low-bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
1999.

[13] Maximilian Thiel. Zuverlässige Ballerkennung und Positionsschätzung (in German).
Diplomarbeit, Albert-Ludwigs-Universität Universität Freiburg, Institut für Informatik,
1999.

[14] Augustinus Topor. Pfadplanung in dynamischen Umgebungen. Diplomarbeit, Albert-
Ludwigs-Universität Freiburg, Institut für Informatik, 1999.

[15] Roger Y. Tsai. An efficient and accurate camera calibration technique for 3D machine
vision. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 364–374, 1986.

[16] Thilo Weigel, Willi Auerbach, Markus Dietl, Burhard Dümler, Jens-Steffen Gutmann, Ko-
rnel Marko, Klaus Müller, Bernhard Nebel, Boris Szerbakowski, and Maximiliam Thiel.
CS Freiburg: Doing the right thing in a group. In Stone et al. [10].


	Introduction
	Hardware
	Vision
	Tsai Camera Calibration
	Interpolation
	Evaluation

	Path-Planning
	Team Coordination
	Positions
	Roles

	Conclusion

