
Biter: A Platform for the Teaching and Research

of Multiagent Systems’ Design Using RoboCup

Paul Buhler1 and José M. Vidal2

1 College of Charleston, Computer Science, 66 George Street, Charleston, SC 29424
pbuhler@cs.cofc.edu,

2 University of South Carolina, Computer Science and Engineering,
Columbia, SC 29208

vidal@sc.edu

Abstract. We introduce Biter, a platform for the teaching and research
of multiagent systems’ design. Biter implements a client for the RoboCup
simulator. It provides users with the basic functionality needed to start
designing sophisticated RoboCup teams. Some of its features include a
world model with absolute coordinates, a graphical debugging tool, a set
of utility functions, and a Generic Agent Architecture (GAA) with some
basic behaviors such as “dribble ball to goal” and “dash to ball”. The
GAA incorporates an elegant object-oriented design meant to handle the
type of activities typical for an agent in a multiagent system. These activ-
ities include reactive responses, long-term behaviors, and conversations
with other agents. We also discuss our initial experiences using Biter as
a pedagogical tool for teaching multiagent systems’ design.

1 Introduction

The field of multiagent systems traces its historical roots to a broad array of spe-
cialties and disciplines in the fields of AI, logics, cognitive and social sciences,
among others. Within the academic setting, pedagogical approaches are needed
that provide opportunities for students to perform meaningful experimentation
through which they can learn many of the guiding principles of multiagent sys-
tems development. The Biter framework was designed to enable a project-based
curricular component that facilitates the use of the RoboCup simulator within
the classroom setting.

The RoboCup simulator has many qualities that make it an excellent test-
bed for multiagent systems’ research and for teaching multiagent systems’ design.
First, the simulator presents a complex, distributed, and noisy environment. Sec-
ond, in order to win a game, it is necessary to foster cooperation and coordination
among the autonomous agents that compose a team. Third, students are engaged
by the competitive aspect of RoboCup and many are highly motivated by the
prospect of defeating their classmates in a game of simulated soccer. Finally, the
RoboCup initiative has generated a wealth of research materials that are easily
located and consumed by students.

A. Birk, S. Coradeschi, and S. Tadokoro (Eds.): RoboCup 2001, LNAI 2377, pp. 299–304, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



300 Paul Buhler and José M. Vidal

While all these characteristics make the RoboCup simulator a great platform,
there are several aspects which make it difficult for a beginner researcher to use
productively.

1. There is a large amount of low-level work that needs to be done before
starting to develop coordination strategies. Specifically:
(a) Any good player will need to parse the sensor input and create its own

world map which uses absolute coordinates. That is, the input the agents
receive has the objects coordinates as relative polar coordinates from
the player’s current position. While realistic, these are hard to use in
the definition of behaviors. Therefore, a sophisticated player will need to
turn them into globally absolute coordinates.

(b) The players need to implement several sophisticated geometric functions
that answer some basic questions like: “Who should I be able to see
now?”.

(c) The players also need to implement functions that determine the argu-
ment values for their commands. For example: “How hard should I kick
this ball so that it will be at coordinates x, y next time?”.

2. It is hard to keep synchronized with the soccerserver’s update loop. Specif-
ically, the players have to make sure they send one and only one action for
each clock “tick”. Since the soccerserver is running on a different machine,
the player has to make sure it keeps synchronized and does not miss action
opportunities, even when messages are lost.

3. The agents must either be built from scratch or by borrowing code from one
of the existing RoboCup tournament teams. These teams are implemented
for competition, not to be used as pedagogical tools. Their code is often
complex, documentation scarce and they can be hard to decipher.

The Biter system addresses each of these issues in an effort to provide a pow-
erful yet malleable framework for the research and study of multiagent systems.

2 The Biter Platform

Biter provides its users with an an absolute-coordinate world model, a set of
low-level ball handling skills, a set of higher-level skill based behaviors, and
our Generic Agent Architecture (GAA) which forms the framework for agent
development. Additionally, many functional utility methods are provided which
allow users to focus more directly on planning activities. Biter is written in Java
2. Its source code, Javadoc API, and UML diagrams are available at [1].

2.1 Biter’s World Model

In the RoboCup domain it has become clear that agents need to build a world
model [3]. This world model should contain slots for both static and dynamic
objects. Static objects have a field placement that does not change during the
course of a game. Static objects include flags, lines, and the goals. In contrast,



Biter: A Platform for the Teaching and Research 301

dynamic objects move about the field during the game; they represent the players
and the ball.

A player receives sensory input, relative to his current position, consisting
of vectors that point to the static and dynamic objects in his field of view.
Since static objects have fixed positions, they can be used to calculate a player’s
absolute location on the field of play. The absolute location of a player is used to
transform the relative positions of the dynamic objects into absolute locations.

As sensory information about dynamic objects is placed into Biter’s world
model it is time stamped. World model data is discarded after its age exceeds
a user-defined limit. Users can experiment with this limit. Small values lead to
a purely reactive agent, while larger values retain a history of environmental
change.

Access to world model data should be simple; however, approaching this
extraction problem too simplistically leads to undesirable cluttering of code.
This code obfuscation occurs with access strategies that litter loop and test logic
within every routine that accesses the world model. Biter utilizes a decorator
pattern [2] which is used to augment the capabilities of Java’s ArrayList iterator.
The underlying technique used is that of a filtering iterator. This filtering iterator
traverses another iterator, only returning objects that satisfy a given criteria.

Biter utilizes regular expressions for the selection criteria. For example, de-
pending on proximity, the soccer ball’s identity is sometimes reported as ’ball’
and other times as ’Ball’. If our processing algorithm calls for the retrieval of
the soccer ball from the world model, we would initialize the filtering iterator
with the criteria [bB]all to reliably locate the object. Accessing the world model
elements, with the aid of a filtering iterator, has helped to reduce the overall
complexity of student-authored code. Simplification of the interface between the
student’s code and the world model, allows students to focus more directly on
building behavior selection and planning algorithms.

2.2 The Generic Agent Architecture

Practitioner’s new to agent-oriented software engineering often stumble when
building an agent that needs both reactive and long-term behaviors, often set-
tling for a completely reactive system and ignoring multi-step behaviors. For
example, in RoboCup an agent can take an action at every clock tick. This ac-
tion can simply be a reaction to the current state of the world, or it can be
dictated by a long-term plan. Biter implements a GAA [4] which provides the
structure needed to guide users in the development of a solid object-oriented
agent architecture.

The GAA provides a mechanism for scheduling activities each time the agent
receives some form of input. An activity is defined as a set of actions to be per-
formed over time. The action chosen at any particular time might depend on the
state of the world and the agent’s internal state. The two types of activities we
have defined are behaviors and conversations. Behaviors are actions taken over
a series of time steps. Conversations are series of messages exchanged between



302 Paul Buhler and José M. Vidal

agents. The ActivityManager determines which activity should be called to han-
dle any new input. A general overview of the system can be seen in Figure 1.

Activity ActivityManager

Activity()
Activity(am : ActivityManager, wm : WorldModel)
canHandle(i : Input) : boolean
handle(i : Input) : boolean
busy() : boolean
inhibits(a : Activity) : boolean

Behavior

Behavior(am : ActivityManager, wm : WorldModel)
canHandle(i : Input) : boolean
handle(i : Input) : boolean
busy() : boolean

RobocupBehavior

RobocupBehavior()
dashToPoint()
kickBallToPoint()
distance()
dribbleBallToPoint()
isStraightKick()
findInterceptPoint()
playersInRect()
playersInCone()
changeView()
senseBody()
catchBall()

DribbleToGoal IncorporateObservationDribbleAroundPlayer DashToBall

ObjectInfoObjectInfoContainer

parse()

ProcessSensoryInput

DynamicObjectInfo

SensorInput Message

time : long

Event

Input()

timeStamp : long

Input

ActivityManager(agent : PlayerFoundation)
addActivity(a : Activity) : void
removeActivity(a : Activity) : void
handle(input : Input) : boolean
run() : void
addEvent(name : String, time : long) : void

pq : PriorityQueue
currentCycle : long
activities : Vector

Conversation

canHandle(i : Input) : boolean
handle(i : Input) : boolean

PlayerFoundation

WorldModel

Player

Goalie

-agent

#manager

+player

#wm

1

n

Fig. 1. Biter’s UML class diagram. We omit many of the operations and at-
tributes for brevity. Italic class names denote abstract classes.

The Activity abstract class represents our basic building block. Biter agents
include a collection of activities that the activity manager schedules as needed.
A significant advantage of representing each activity by its own class is that
we enforce a clear separation between behavior and control knowledge. This



Biter: A Platform for the Teaching and Research 303

separation is a necessary requirement of a modular and easily expandable agent
architecture.

The Activity class has three main member functions: handle, canHandle,
and inhibits. The handle function implements the knowledge about how to
accomplish certain tasks or goals. The canHandle function tells us under which
conditions this activity represents a suitable solution. Meanwhile the inhibits
function incorporates some control knowledge that tells us when this activity
should be executed.

Biter defines its own behavior hierarchy by extending the Behavior class,
starting with the abstract class RoboCupBehaviorwhich implements many useful
functions. The hierarchy continues with standard behaviors such as DashToBall,
IncorporateObservation and DribbleToGoal. For example, a basic Biter agent
can be created by simply adding these three behaviors to a player’s activity
manager. The resulting player will always run to the ball and then dribble it
towards the goal.

The Conversation class is an abstract class that serves as the base class
for all the agent’s conversations. In general, we define a conversation as a set of
messages sent between one agent and other agents for the purpose of achieving
some goal, e.g., the purchase of an item, the delegation of a task, etc. A GAA
implementation defines its own set of conversations as classes that inherit from
the general Conversation class.

The ActivityManager picks one of the activities to execute for each input
the agent receives. That is, an agent is propelled to act only after receiving a new
object of the Input class. The Input class has three sub-classes: SensorInput,
Message, and Event. A SensorInput is a set of inputs that come directly from
the agent’s sensors. The Message class represents a message from another agent.
That is, we assume that the agent has an explicit communications channel with
the other agents and the messages it receives from them can be distinguished
from other sensor input. The Event class is a special form of input that represents
an event the agent itself created. Events function as alarms set to go off at a
certain time.

Biter implements a special instance of Event which we call the act event.
This event fires when the time window for sending an action to the soccer server
opens. That is, it tries to fire every 100ms, in accordance with the soccerserver’s
main loop. Since the messages between Biter and the soccerserver can be delayed
their clocks can get skewed over time; therefore, the actual firing time of the act
event needs to be constantly monitored. Biter uses an algorithm similar to the
one used in [3] for keeping these events synchronized with the soccerserver.

3 Experiences with Biter

The University of South Carolina has taught a graduate-level course in multia-
gent systems for several years. The RoboCup soccer simulation problem domain
has been adopted for instructional, project-based use. Without the Biter frame-
work, students spent the majority of their time writing support code that could



304 Paul Buhler and José M. Vidal

act as scaffolding from which they could build a team of player agents. Multia-
gent systems theory and practice took a backseat to this required foundational
software construction. At the end of the semester, some teams competed, how-
ever the majority of these were reactive agents due in part to the complexity of
creating and maintaining a world model.

With Biter available for student use, the focus of development activities has
been behavior selection and planning. The GAA allows students to have hands-
on experience with both reactive and BDI architectures. Students are no longer
focused on the development of low-level skills and behaviors, but rather on ap-
plying the breadth and depth of their newly acquired multiagent systems knowl-
edge. Biter provides a platform for flexible experimentation with various agent
architectures.

4 Further Work

Biter continues to evolve; new features and behaviors are added continuously.
We expect the pace to quicken as more users start to employ it for pedagog-
ical and research purposes. One of our plans is the addition of a GUI for the
visual development of agents. We envision a system which will allow users to
draw graphs with the basic behaviors as the vertices and “inhibits” links as the
directed edges. These edges could be annotated with some code. Our system
would then generate the Java code that implements the agent. That is, the be-
haviors we have defined can be seen as components which the programmer can
wire together to form aggregate behaviors. This system will allow inexperienced
users to experiment with multiagent systems’ design, both at the agent and the
multi-agent levels. We also believe the system will prove to be useful to expe-
rienced multiagent researchers because it will allow them to quickly prototype
and test new coordination algorithms.

References

[1] Biter: A robocup client. http://source.cse.sc.edu/biter/ .
[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns

: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[3] Peter Stone. Layered Learning in Multiagent Systems: A Winning Approach to

Robotic Soccer. The MIT Press, 2000.
[4] José M. Vidal, Paul A. Buhler, and Michael N. Huhns. Inside an agent. IEEE

Internet Computing, 5(1), January-February 2001.

http://source.cse.sc.edu/biter/

	Introduction
	The Biter Platform
	Biter's World Model
	The Generic Agent Architecture

	Experiences with Biter
	Further Work

