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Abstract. This paper describes an application of a vision system based on the
use of both an omnidirectional vision sensor and a standard CCD camera. Such a
hybrid sensor permits implementation of peripheral/foveal vision strategies, that
can be very useful for navigation tasks. This paper focuses particularly on the use
of the device as a stereo vision system to locate obstacles in a semi-structured
environment through a perspective removal algorithm.

1 Introduction

Omni-directional vision systems are usually based on a catadioptric sensor, consist-
ing of an upwards-oriented camera that acquires the image reflected on a convex mir-
ror hanging above it [1}, [2]. Such systems are very efficient as concerns target detec-
tion, but critical from the point of view of the accuracy with which the target is de-
tected. For these reasons, in several cases, the omni-directional vision sensor has been
integrated with different kinds of sensors (see, for example [3, 4 [5]). In this paper
we present results obtained using a vision system prototype (called HOPS, Hybrid
Omnidirectional/Pin-hole Sensor), that consists of an omni-directional sensor coupled
with a standard CCD camera. HOPS was designed with the main intent to assist navi-
gation tasks. This paper focuses on an obstacle detection method that was implemented
for use with the hybrid sensor.

HOPS (see figure ) integrates omnidirectional vision with traditional pin-hole vi-
sion, to overcome the limitations of the two approaches. It can be best described as a
color CCD camera mounted on top of an omnidirectional catadioptric sensor. Its lower
part consists of an omnidirectional sensor that consists of a color CCD camera pointing
upwards at a convex mirror (see [6] for details). The omnidirectional sensor provides a
base for the more traditional CCD-camera based sensor that leans on it. The CCD cam-
era is fixed, looks down with a tilt angle of 60° with respect to the ground plane and
has a field of view of about 80°. For the application described in this paper, to allow
for a higher stereo disparity between the two images, it is positioned slightly off the
center of the device. An example of the images that can be obtained by the two sensors
is provided in fig.[1l

2 Hybrid Stereo Vision for Obstacle Detection

Inverse perspective mapping for obstacle detection was first introduced in [7]. If one
applies the inverse perspective mapping transform with respect to the same plane to a
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Fig.1. The HOPS prototype (left) and an example of images that can be acquired
through the omni-directional sensor (center) and the top CCD camera (right).

pair of stereo images, everything that lies on that plane looks the same in both views,
while everything that does not is distorted differently. This property is particularly use-
ful for tasks in which a relevant reference plane can be easily found. The steps required
to detect obstacles based on stereo vision include: i) applying the inverse perspective
transform to the two images; ii) subtracting one transformed image from the other one
to detect differences; iii) labelling pixels of at least one of the acquired images as free
space or obstacles.

Stereo vision is usually obtained by two cameras slightly displaced from each other
or by a single moving sensor that can move to obtain the same effect. In the case of
HOPS such a displacement is not constant, since the angle between the optical axis of
the camera and the plane that is tangent to the mirror surface is different for each point
of the mirror. If the traditional camera were positioned on the axis of the omnidirectional
sensor, disparity would be close to zero in a few points. Positioning the pin-hole sensor
off the omnidirectional sensor axis ensures that a different perspective be obtained from
the two sensors for all points.

The problem dealt with by the inverse perspective transform (IPT) consists of com-
puting a correspondence function P, , = C(I; ;) that maps the pixels belonging to
image I onto points of a new image P that shows a bird’s view of a reference plane.
From the view obtained by applying C(I) information about the relative positions of
objects (e.g., distances) that lie on the plane can be extracted.

If all parameters related to the geometry of the acquisition systems and to the dis-
tortions introduced by the camera were known, the derivation of C could be straightfor-
ward [7} 8]. However, this is not always the case, most often because of the lack of a
model of the camera distortion. However, assuming an ellipsoidal model for the camera
lens usually allows for an easy empirical derivation of the related parameters anyway.

In computing C,, the IPT for the catadioptric omnidirectional sensor, while, on one
side, the problem is complicated by the non-planar profile of the mirror, on the other side
the simmetry of the device is such that it is enough to compute the restriction of C, along
a radius of the mirror projection on the image plane to be able to compute the whole
function. However, in doing so, one must take into account possible manufacturing
flaws, that affect both the shape of the mirror and the smoothness of the mirror surface.
In addition to “regular” flaws, that can be found all over the surface and can be included
in the radial model of the mirror, a few other minor “random” flaws can be found. These
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Fig. 2. Results of perspective removal (right) from the omnidirectional image (left).

require that the IPT be derived empirically, or at least that the ideal model be corrected
in flawed points.

A first empirical derivation of C,, can be made by considering a set of equally-spaced
radii, on each of which values of C, are computed for a set of uniformly-sampled points.
To obtain the values of the function for a generic point F; located anywhere in the field
of view of the sensor, a bi-linear interpolation is made between the four points among
which P; is located, within a uniformly-sampled polar grid. This makes reconstruction
accuracy better close to the robot, as the area of the cells used for interpolation increases
with radial distance. Reconstruction quality increases with the number of radii, as the
angular sampling step of the grid decreases. However, distortions can still be noticed.
To limit the problem, a sixth-grade approximating polynomial is used to make the re-
striction of C, along each radius smoother. The approximating models are “manually
corrected” in the neighborhood of interpolating points in which the approximation error
is above a tolerance threshold, taking care not to affect smoothness. Results obtained
using eight radii are shown in figure 2l

After applying the IPT, two “bird’s view” images are obtained that can be compared
to detect obstacles. However, differences in the two sensors require that the two IPT
images be pre-processed. In particular, the two images differ in their pictorial features.
Since the region of interest is the same for both sensors, after identifying the region R
of the omnidirectional image O that matches the field of view of the image P acquired
by the upper camera, a punctual transformation is applied to O, such that

>0 Hocot(l,R) = >0 Hp,cot(l, P)  Vn,col,

H, co1(l,R) and Hy, 01 (1, P) being the discrete histograms of the col (col € R, G, B)
component for region R of O and for P, respectively. The variable [ represents the in-
tensity level of the color component. Since the input images are color images, the result
of the difference operator must combine information from all three color components.
We use a max operator followed by a thresholding to do so. Each pixel value of the
resulting binary image D is computed as:

0 if max(|R; ;(R) — R j(P)|,
|Gi;(R) — Gij(P)],
|Bi,j(R) = Bi;(P)]) > T
1 otherwise

D ;=

To make the algorithm less sensitive to light changes, the threshold 7" is a linear
function of the average lighting intensity of the acquired images. The difference image
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D computed as described is still affected by the presence of noise, either in the form
of isolated white pixels and thin lines, or of small gaps in the significant regions. These
artifacts are corrected using a majority-vote morphologic filter.

3 Obstacle Detection with HOPS

The white regions in D derive from two kinds of discrepancies. If they derive from
different pan angles or from a lateral displacement of the two cameras, they are located
to the left or right of obstacle projections in the IPT transformed images. With different
tilt angles or vertical displacements of the cameras, they are above and/or below the
obstacle projections. For HOPS aplications the reference plane is the ground plane on
which a robot that mounts the sensor is moving.

Thus: 1) lateral differences are almost symmetrical and not very large; ii) no differ-
ences can be detected at the base of obstacles, as obstacle bases lie on the reference
plane and their transforms are identical there; iii) vertical differences are more relevant
near obstacle top, and somehow proportional to obstacle height.

a b

Fig. 3. IPT images acquired by the omni-directional sensor (a) and the standard CCD
camera (c). The region of the IPT omnidirectional image corresponding to the field
of view of the standard camera (b) and the thresholded difference image (d) are also
shown.

Therefore, in the difference image, obstacle candidates are represented by regions
bounded by two thin roughly-vertical regions laterally and by a rather large blob ver-
tically. Sometimes one or more of the three region delimiters may be absent. Typical
exceptions are small roundish obstacles, for which a single blob is usually detected, or
cases in which the distortion of the matter that is located above the ground is such that
the obstacle (pseudo)projection extends beyond the common field of view of the two
cameras. This is the case shown in figure[Il The results of perspective effect removal
and the difference image D are shown in figure 3

The difference image D is the input of the obstacle-detection method, along with
color information from the input images. Segmentation is performed to detect image
regions having the features listed above. The analysis of D is a bottom-up process
in which segments of regions of interest are matched and merged together to obtain
larger regions corresponding to obstacles. First, low-level segmentation is performed
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Fig.4. Left: the results of the blob-coloring algorithm. The two regions evidentiated
with a square belong to class 3. The two elongated ones belong to class 2; all other
regions belong to class 4. Right: the obstacle regions detected by “closing” the re-
gions surrounded by, or corresponding to, the obstacle segments detected in the previous
steps.

to detect connected regions in D and label them using a blob-coloring technique. The
regions whose area is below a pre-set threshold are discarded. For all other regions, a
set of geometrical features is computed, to classify them into four possible categories
of interest, namely:

1. long vertically-elongated thick regions with two apices in their lower part, that
directly represent obstacles;

2. long vertically-elongated thin regions with a single lower apex, that may represent
one of the segments of the typical obstacle “footprint” in D and need merging to
form a class-1 region;

3. short vertically-elongated regions, a sub-class of class 2, to which lower signifi-
cance is attributed in the matching phase;

4. small roundish regions (i.e., characterized by a height/width ratio close to 1) that
may represent small obstacles, part of them or the upper blob of typical obstacle
representations in D.

Classification is based on simple empirically-derived rules, implemented as boolean
functions of the geometrical features. Although in most cases they can be interpreted as
traditional crisp rules, they also allow for fuzzy interpretation in more complex cases.
Figure[4] (Ieft) shows the result of the blob-coloring algorithm.

The next step is aimed at merging regions that do not belong to class 1 into larger
ones. The matching between regions is based on orientation and color of the neighbor-
ing background pixels in the IPT images. More precisely, regions are merged if they are
close enough, their orientation differ by less than .2 rad, and have regions of the same
colors as neighbors. Color similarity is evaluated according to a set of fuzzy rules.

The final step can be divided in two phases: in the first one a preliminary “closure”
of the obstacle regions is made. Since the typical obstacle footprint in image D consists
of two vertically elongated regions connected to a roundish one on top, the closure is ob-
tained by connecting the two lower apices that can be detected in such a configuration.
When some parts of the typical configuration lack, detecting two vertically-elongated
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regions or one vertically-elongated region and the boundary of the region of interest
common to both cameras can be enough for the obstacle to be circumscribed. In the
second phase, segmentation is refined, based on uniformity of color or, more generally,
of pictorial features in the input images. A horizontal scan is made along the right and
left boundaries of the closed regions, that are made coincident with the pixel in which
the highest gradient between obstacles and background is found. If the maximum gra-
dient falls below a preset threshold in one of the two IPT images the line is discarded:
that is why the large round region on the left (the top of the trash can on the left in the
IPT image of the upper camera) has almost completely disappeared in figure [ (right).
Results obtained in indoor environments are described in [9].

4 Final Remarks

In the application described in the paper, HOPS has been used as a stereo sensor. This
was certainly not among the primary goals for which HOPS was designed. Actually,
omni-directional vision is a complicating factor for inverse-perspective based obstacle-
detection. However, results show that, besides the immediate advantages provided by
HOPS (the joint availability of omni-directional vision and high-resolution information
about a region of interest), HOPS provides also the capabilities of a stereo system by
which navigation sub-tasks can be accomplished in real-time: our prototype application
can process about 10 frames/s on recent high-end PCs.
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