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Abstract. Current mappings of IDL to implementation languages such
as C++ or Java use CORBA specific data-types, which makes it impera-
tive for an object implementation to be CORBA-compliant. While being
completely CORBA-compliant ensures portability and interoperability,
several classes of enterprise applications may only require interoperability
with other CORBA applications. Other applications may be constrained
by such factors as a large existing code-base or a widely used communi-
cation protocol. In many cases, these applications can benefit from the
concise expressiveness of IDL without committing to the overhead of us-
ing a general-purpose CORBA ORB. To aid this process, we propose a
new approach to ORB design where the IDL mapping and ORB protocol
is completely configurable. As a motivation, we present our use of IDL
in the development of a large in-house application. In this application,
all interfaces are specified using IDL, which is mapped to C++ using a
custom mapping. We then present an architecture for a template-driven
IDL compiler and describe the implementation of a prototype we built.
With this compiler architecture, an IDL mapping can easily be specified
and customized by writing an appropriate template.

1 Introduction

CORBA [1] is an enabling technology for building distributed systems, permit-
ting the integration of distributed components at a higher level of communication
than traditional byte-streams. This is achieved by providing the communication
infrastructure for heterogeneous, distributed collections of objects, for which
CORBA presents the communication abstraction of a method call on remote
CORBA objects. The benefits derived are akin to the benefits of utilizing object
oriented programming for building non-distributed programs.

In order to promote language and platform independence, CORBA encour-
ages the use of an Interface Definition Language (IDL) specified by the Object
Management Group (OMG). OMG IDL can only be utilized to specify the inter-
face of a CORBA object, enforcing the separation of interface specification from
object implementation. This also ensures that a client of a CORBA object re-
mains unconcerned with the implementation of the object. Moreover, the client
is also unconcerned with the implementation language of the CORBA object,
simplifying the integration of distributed components that are implemented in
different languages.
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Current mappings of IDL to implementation languages like C, C++ or Java
use data-types that are CORBA or ORB-vendor specific. Moreover, in the IDL-
C++ or IDL-Java mappings, the inheritance relations between the generated
stub/skeleton classes and implementation classes are usually fixed by the IDL
compiler. These factors impose additional constraints on the implementation of
applications that utilize IDL. The problem is especially acute in legacy applica-
tions, which are already associated with a large, well-established code-base.

In order to enable applications to benefit from the concise expressiveness of
IDL without committing to being completely CORBA compliant, the mapping
of IDL to a particular implementation language should be decoupled from the
IDL parser and code-generation engine. This makes it possible to customize
the bridge between the application and the underlying ORB, introducing ample
flexibility for building both, the application and the ORB. To aid this process, we
propose a template-driven IDL compiler architecture. This compiler architecture
not only permits the customization of an IDL mapping and generated code, but
also enables all aspects of the underlying ORB to be configured. This approach
can be considered to introduce the flexibility of tuning middleware to existing
code-bases rather than the more common other way around.

The rest of this paper is organized as follows: Section 2 describes the benefits
of customizing IDL mappings. Section 3 motivates our approach by presenting
the custom IDL to C++ mapping we utilize in Heidi, an existing in-house appli-
cation. Section 4 presents the architecture and implementation of our proposed
template-driven IDL compiler. Section 5 compares our approach with other ap-
proaches to customize ORBs, and Section 6 concludes this paper.

2 The Benefits of Customizing a Mapping

Among the important goals of the CORBA specification are portability and inter-
operability of CORBA compliant application code with different ORB implemen-
tations. Towards this end, CORBA defines mappings from OMG IDL to various
programming languages including Java, C, C++, Smalltalk, COBOL and Mod-
ula 3. The mapping process is automated in an IDL compiler, which generates
the framework for implementing a CORBA object from the IDL specification of
its interface. In addition, the IDL compiler also generates client-side stubs and
server-side skeletons, which collaborate with the underlying ORB to implement
such activities as object registration, method call parameter marshaling and un-
marshaling, and call dispatching. Usually, stubs and skeletons utilize an abstract
interface to the underlying ORB functionality so that the same generated code
can be utilized with ORBs that implement different on-the-wire protocols. The
portability of a CORBA compliant object implementation across IDL compil-
ers from different vendors is ensured in theory by each compiler conforming to
the specified IDL to implementation language data-type mapping (Table 1) and
object model. The interoperability between applications that utilize ORBs from
different vendors is guaranteed by each ORB conforming to such a standard
ORB protocol as the Internet Inter-ORB Protocol (IIOP).
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Table 1. IDL to C++ Type Mappings

IDL Type Prescribed C++ Type Alternate C++ Mapping

long CORBA::Long long

boolean CORBA::Boolean XBool

float CORBA::Float float

The CORBA specification also provides guidelines for generating stubs and
skeletons from an IDL interface. A typical inheritance hierarchy for C++ stubs
and skeletons is shown in Fig. 1, where the non-shaded classes are generated
by the IDL compiler and the shaded classes implemented by the application
programmer. In this hierarchy, the implementation of a CORBA object can
inherit from the generated skeleton, or remain unrelated to the generated classes,
utilizing a tie class as a bridge to/from the ORB. Most IDL compilers generate
stubs and skeletons conforming to a variation of this inheritance hierarchy.

A_stub

A_tieA_impl Impl

A

A_skel

Fig. 1. Inheritance Hierarchy for C++ Stubs and Skeletons

Although portability and large-scale interoperability are important concerns
of building software for distributed systems, there are several situations when it
is useful to customize the code generated by an IDL compiler:

– Using legacy code for CORBA-object implementations: While being
completely CORBA-compliant ensures portability across different ORBs and
interoperability with other CORBA-compliant applications, several classes of
enterprise applications may only require interoperability with other CORBA
applications. This is especially true with legacy applications, which are often
constrained by such factors as a large existing code-base or a widely used
communication protocol. With most current IDL compilers, these applica-
tions can benefit from the concise expressiveness of IDL only by becoming
completely CORBA compliant. However, a legacy application may utilize the
C++ usages shown in Table 2, while the CORBA specification for mapping
an IDL interface A to a C++ interface class A states that it is non-compliant
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to declare either an instance, pointer or reference to A. As this shows, it can
be an expensive, time-consuming process to integrate a legacy application
into a CORBA-based distributed system.

Table 2. CORBA-prescribed and Legacy C++ Usages

CORBA-prescribed Legacy

A var a; A a;

A ptr p; A* p;

void f(A ptr& r); void f(A& r);

– Customizing the ORB: An ORB that fully implements the CORBA spec-
ification is usually very big in terms of code size. For many classes of appli-
cations, this can be the major reason to decide against utilizing CORBA.
This issue has motivated a recent OMG effort towards identifying an irre-
ducible set of capabilities and characteristics for a minimal ORB. Such an
ORB would implement a CORBA subset that is useful and acceptable for
the applications in consideration. Keeping with this trend, we believe that it
is also useful to permit the customization of the ORB to implement exactly
the subset of CORBA functionality that is necessary for a particular class
of applications.

– Customizing the ORB Protocol and Messaging Formats: Utilizing
a standard inter-ORB protocol guarantees that an application can easily
interoperate with other applications. However, such protocols are often ex-
pensive to use because they are designed for generality. Moreover, for many
applications, a simple protocol or messaging format may suffice.
To address this issue, most IDL compilers generate stubs and skeletons that
utilize an abstract interface to the ORB. This keeps the IDL compiler, and
hence the generated code independent of any particular ORB protocol, per-
mitting the utilization of alternate protocols. With such an approach, uti-
lizing a particular protocol involves choosing the appropriate ORB run-time
library.

– Incorporating Custom Optimizations: Often, the code generated by an
IDL compiler is not well suited for optimization. For instance, many IDL
compilers use string comparisons to implement the dispatching logic in the
skeleton. Such a scheme can be very expensive for interfaces with a large
number of methods with long names. Alternate schemes that utilize nested
comparisons [2], or a hash-table can result in faster dispatching.
Marshaling/Unmarshaling code is typically associated with format conver-
sions and copying. As pointed out in the Universal Stub Compiler (USC)
work by O’Malley, et al [3], a user-level specification of the byte-level rep-
resentations of data types can be effectively utilized to optimize copying
operations, and therefore marshaling and unmarshaling code. It is clearly
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beneficial to introduce such optimizations in generated stubs and skeletons
in order to improve the performance of a remote call.

3 HeidiRMI

In order to demonstrate that it is indeed useful to customize an IDL mapping, we
consider the motivation, design and implementation of HeidiRMI, the control-
messaging infrastructure for Heidi. Heidi is a large in-house project currently
being used to build and test prototype multimedia software systems [4]. In early
versions ofHeidi, all control messaging between distributed software components
utilized a simple text-based request-response protocol over dedicated TCP/IP
connections. This approach sufficed for the simple initial prototype applications
we built. However, as more complicated prototypes were developed, it clearly
became necessary to automate the process of generating control messaging sup-
port. OMG IDL was an available alternative, and was well suited to describe the
control messaging interfaces in Heidi.

Using IDL along with a general-purpose ORB in Heidi was associated with
problems that arose from the large amount of legacy code that was not CORBA-
compliant, and the non-blocking nature of communication in a Heidi applica-
tion. The large existing code-base clearly needed wide-spread changes before it
could be integrated with a general-purpose ORB. Even if this were done, it would
still be difficult to utilize a general purpose ORB because of the non-preemptive
computation model of Heidi.

To avoid the wide-spread changes necessary to make existing Heidi code
CORBA-compliant, we modified the OmniBroker1 IDL compiler [5] to generate
an alternate C++ mapping that conforms to existing Heidi code. The Hei-
diRMI mapping only utilizes Heidi defined data types, which simplifies the
use of legacy Heidi code. Besides utilizing only existing Heidi data-types, the
mapping also implements a delegation based relation between the skeleton and
implementation classes as shown in Fig. 2. This approach ensures that no re-
structuring of the existing Heidi class hierarchy is necessary.

A_stub A_impl

A

A_skel

Fig. 2. IDL to C++ Mapping in HeidiRMI

The delegation model of the HeidiRMI mapping is similar to the tie ap-
proach in the CORBA-prescribed IDL to C++ mapping. A tie is usually im-
1 OmniBroker is now called ORBacus.



Customizing IDL Mappings and ORB Protocols 401

plemented as a template to which the implementation class of the target object
must be specified. This approach makes it unnecessary for the implementation
class to depend on any of the classes generated by the IDL compiler. Although
this simplifies the utilization of legacy code, there still is the dependency on
CORBA-specific data types because method signatures in the implementation
class must exactly match method signatures in the interface class. We therefore
believe that ties alone are largely insufficient to address the problem of utiliz-
ing legacy code. Our approach of using a custom mapping on the other hand,
provides the desired flexibility while maintaining a simpler relation between the
implementation class and the skeleton. Moreover, such coding conventions as
class naming can be easily customized, saving large amounts of otherwise mun-
dane, but time consuming changes.

3.1 Implementation Details

We extended the IDL syntax in support of default parameters and passing pa-
rameters by value. Since legacy Heidi code extensively utilized the ability to
specify default parameters to a method in C++, we added support for the spec-
ification of default parameters in IDL. Default parameters are indicated as shown
in the IDL interface presented in Fig. 3, and have the same effect as that of
default parameters in C++ class specifications. Each default parameter to a
method in an IDL interface is mapped to an appropriate default parameter in
the generated C++ interface class.

In order to support passing parameters by value, we introduced the new in-
copy keyword, which is used as a qualifier for a method parameter. For simple
data types, the effect of incopy is identical to that of in. However, object refer-
ences passed incopy are copied across the IDL interface, if possible. The ORB
run-time utilizes marshaling/unmarshaling primitives that the object implemen-
tation may have provided. Whether a particular object has actually implemented
the required marshaling/unmarshaling primitives is determined by testing if it
implements the HdSerializable interface. The dynamic type checking support
that is implemented in Heidi is utilized for this purpose. The semantics of pass-
ing parameters by value in HeidiRMI are identical to the effect of passing a
Serializable object that is not Remote as a parameter to a remote method in
Java RMI [6].

Also shown in Fig. 3 are the relevant portions of the abstract C++ interface
class generated by our customized HeidiRMI IDL compiler. It can be seen that
no CORBA-specific types are utilized: primitive IDL data-types are mapped to
primitive C++ types, while sequence and boolean are mapped to the Heidi
specific HdList and XBool data types. Also, default parameters are mapped to
appropriate C++ constants. Note that the IDL interfaces Heidi::A and Heidi::S
are respectively mapped to the C++ interface classes HdA and HdS. This un-
conventional mapping facilitates the integration with legacy code, assuming that
HdA and HdS were existing Heidi interface classes.

Not shown in Fig. 3 is the generated support for dynamic type checking,
which all Heidi classes provide. Methods for marshaling and unmarshaling ob-
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/� File A.idl �/
module Heidi f

// External declaration of Heidi::S
interface S;

// Heidi::Status
enum Status fStart, Stopg;

// Heidi::SSequence
typedef sequence<S> SSequence;

// Heidi::A
interface A : S

f

void f(in A a);

void g(incopy S s);

void p(in long l = 0);

void q(in Status s = Heidi::Start);

readonly attribute Status button;

void s(in boolean b = TRUE);

void t(in SSequence s);

g;

g;

/� File A.hh �/
// IDL:Heidi/Status:1.0
enum HdStatus f Start, Stop g;

// IDL:Heidi/SSequence:1.0
typedef HdList<HdS> HdSSequence;

typedef HdListIterator<HdS>

HdSSequenceIter;

// IDL:Heidi/A:1.0
class HdA : virtual public HdS

f

public:

virtual void f(HdA�) = 0;

virtual void g(HdS�) = 0;

virtual void p(long l = 0) = 0;

virtual void q(HdStatus s = Start) = 0;

virtual void s(XBool b = XTrue) = 0;

virtual void t(HdSSequence�) = 0;

virtual HdStatus GetButton() = 0;

virtual �HdA() fg

g;

Fig. 3. Example IDL Interface and Generated C++ Interface Class

jects that implement the generated interface have also been omitted. These
methods implement the logic for determining if a given object also implements
HdSerializable, and passing control to the implementation object specific meth-
ods for marshaling/unmarshaling object state. This simplifies generated code for
stubs and skeletons by putting together what would otherwise be redundantly
generated marshaling/unmarshaling code.

In HeidiRMI, each object is associated with a stringified object reference.
An object reference is composed of three parts: the bootstrap URL, the ob-
ject identifier, and the object type. The bootstrap URL consists of a protocol-
hostname-port tuple that provides a means to open a communication channel
to the object. The object identifier uniquely identifies the object in a particu-
lar address space, while the type information ensures that the correct stub and
skeleton is utilized in accessing the object. A typical stringified object reference is
@tcp:galaxy.nec.com:1234#9876#IDL:Heidi/A:1.0. Although a HeidiRMI ob-
ject reference may be considered minimal, it is not unlike an object reference in
CORBA or any other remote object system.

The interaction diagram on the client-side of a remote method invocation is
shown in Fig. 4. When a stub method is invoked, a new Call object that provides
the generic functionality for making a remote method call is created. The stringi-
fied object reference of the target remote object forms the header of the Call.
After any parameters to the remote method are marshaled into the Call object,
the Call is invoked, resulting in the call request being sent to the server-side.
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An ObjectCommunicator provides the abstraction of a communication channel
on which individual requests can be demarcated. The current implementation
of Call and ObjectCommunicator utilize a newline terminated string of ASCII
characters to implement the on-the-wire protocol. The Call object provides the
functions for marshaling and unmarshaling all primitive data types, as well as
additional begin and end functions that permit structuring of the call request so
that such composite data types as structs or sequences can be easily represented.

Object 
Communicator

Call

Stub

Send

operation

Marshal Parameters

Unmarshal Results

Invoke

Fig. 4. Remote Method Invocation in HeidiRMI

The interaction at the server-side is shown in Fig. 5. The bootstrap port
in each address space serves as means to initiate a communication channel.
When a client connects to the bootstrap port (1), a new ObjectCommunicator
is wrapped around the resulting connection. Connections are cached and reused
in HeidiRMI, and only if there is no available connection is a new connec-
tion opened. The ObjectCommunicator reads in an incoming request (2) and
encapsulates it in a Call object. The Call header contains the stringified ob-
ject reference, whose type information and object identifier permit the selection
of the appropriate Skeleton. Control is passed to the dispatch method of the
selected Skeleton, where the remote method call parameters are unmarshaled.
The skeleton then calls the desired method of the target object implementation,
marshals any return value into the Call object, and sends the result back to the
client-side.

An important aspect of HeidiRMI is that an implementation object is un-
concerned with being remote accessible. The skeleton for a particular object is
only created when a reference to it is being passed as either the parameter to, or
the result of a remote call. Moreover, if the implementation object is Serializable
and is being passed-by-value, then no skeleton is ever created. In this case, the
marshaling method defined by the object is utilized to copy the object. At the
receiving end, the type information contained in the object reference is utilized
to create a stub of the appropriate type. Both stubs and skeletons are cached in
each address-space in order to minimize the overhead of their creation.



404 Girish Welling and Maximilian Ott

Bootstrap 
Port

Object 
Communicator

Call

Skeleton Implementation

operation

Unmarshal 
Parameters

Marshal Results

Send

Dispatch

1

2

Reply

Fig. 5. Server-side Method Call Dispatching in HeidiRMI

The implementation of stubs and skeletons for an IDL interface is straight-
forward. All stubs inherit from a base HdStub class which provides the generic
stub functionality. A stub also implements the C++ mapping of the IDL inter-
face, and reflects the IDL inheritance structure appropriately. For the running
example, the stub A stub for the IDL interface A inherits functionality from the
stub S stub for the IDL interface S, and in addition implements the methods of
interface A.

In HeidiRMI, skeletons do not share any inheritance relation with the ab-
stract interface class. However, similar to generated stubs, skeletons also reflect
the IDL inheritance structure. For the running example, the skeleton A skel
for interface A inherits from the skeleton S skel for interface S. The dispatch
method of A skel first attempts to dispatch an incoming request to methods
defined in the interface A. If this fails, then dispatching is delegated to the dis-
patch method of S skel, continuing recursively up the skeleton class hierarchy. If
A inherits from more than one interface, then dispatching is delegated to each
of the corresponding skeleton super-classes in order.

3.2 Shortcomings of This Approach

Early use of our compiler involved reverse-engineering existing C++ interfaces
into suitable IDL interfaces. However, the ease with which our approach per-
mitted us to quickly build Heidi components led us to begin specifying their
interfaces in IDL. HeidiRMI has thus become an integral part of the Heidi de-
velopment environment, and our custom compiler has evolved into a key tool
to build the system. Extensive utilization of HeidiRMI has strengthened our
belief that IDL is indeed a powerful tool for specifying the interfaces of mod-
ules in a large application. By customizing the IDL compiler for HeidiRMI, we
have succeeded in separating the utilization of IDL from the necessity of using
a complete CORBA-compatible ORB.
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However, the evolution of the HeidiRMI IDL compiler has also raised con-
cerns regarding the limitations of the customization approach. It is evident that
even a minor change in the IDL to C++ mapping requires compiler source
code changes and recompilation. This concern led us to consider the alternative
of template-based code-generation. Here, details of the IDL to implementation
mapping are specified in a template, which the IDL compiler utilizes to drive
its code generation. This greatly simplifies customization of the IDL compiler
to generate code conforming to a desired mapping. Moreover, the very same
compiler can be utilized with alternate templates to generate code in different
implementation languages.

It should be noted, though, that our extensions for default parameters and
passing parameters by value required IDL syntax changes. Such syntax enhance-
ments must be reflected in the IDL parser, and is outside the scope of any tem-
plate scheme for code-generation.

4 Architecture of a Customizable IDL Compiler

As with OmniBroker, most current IDL compilers hard-code the IDL mapping.
Although this approach serves well to ensure CORBA-conformance, the inflexi-
bility restricts the ability to customize generated code. In order to overcome this
restriction, we propose the compiler architecture shown in Fig. 6. In this archi-
tecture, an IDL compiler consists of a generic parser that creates an enhanced
syntax tree (EST) representation of the IDL source, and a template driven code-
generator that utilizes the EST to generate stub/skeleton code. Figure 6 also
shows the languages utilized in our prototype implementation.

IDL 
Parser

A.idl

A.est

C++.tmpl

Code 
Generator

A.hh 
A_skel.hh 
A_skel.cc 
A_stub.hh 
A_stub.cc 

Perl

Perl

C++/Java/Tcl

Code-generation 
directives

C++

IDL

Fig. 6. Template-driven IDL Compiler Architecture

The key point to note in this compiler architecture is that the generated
code no longer depends on anything that is hard-coded in the compiler mod-
ules. While both modules clearly must understand the EST representation, the
parser must additionally understand the IDL syntax, while the code-generator
must understand the syntax for specifying a template. The generated code now
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depends only on the template that is provided to the code-generator. This makes
it possible to tune generated code by only changing the template specification.
Moreover, this approach also makes it is possible to generate code for an IDL
mapping to any implementation language.

4.1 Prototype Implementation

In order to determine the feasibility of the template approach, we built a hybrid
two-stage IDL compiler using the OmniBroker compiler to parse IDL, and a
template-driven back-end code-generator that is based on Jeeves [7].

We modified the Omnibroker compiler to generate a perl program that en-
codes the EST representation of the IDL source. An EST representation is a
parse tree that is organized so that similar elements are grouped together. For
instance, IDL permits interspersing of attributes and methods in an interface.
This can be seen in the example of Fig. 3 where the attribute button occurs
between the methods q and s. The children of a node corresponding to an in-
terface in a regular IDL parse tree would therefore be ordered exactly as the
corresponding order of attributes and methods in the IDL. On the other hand,
an EST would be constructed so that nodes corresponding to all the attributes
are grouped, as are those corresponding to all the methods. This can be seen in
Fig. 7, where the EST for the IDL interface presented in Fig. 3 maintains the
node corresponding to the button attribute in a separate sub-tree of the node
corresponding to the interface A. Irrelevant parts of the EST have been omitted
from Fig. 7 for simplicity. A portion of the actual perl program that encodes the
EST is shown in Fig. 8.

ROOT

ModuleList

InterfaceList
EnumList

AliasList

"Heidi"

InheritedList

"A"

"S"

AttributeList

"button" 
"readonly" 
"Status"

MethodList

"p" 
"void"

"g" 
"void"

"f" 
"void" "q" 

"void"

"s" 
"void"

"t" 
"void"

paramList paramList

paramList

"in", "Status", 
"s", "Start"

"incopy", 
"S", "s"

"in", 
"SSequence", 

"s"

Fig. 7. Extended Syntax Tree for A.idl
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#!/usr/bin/perl
use Ast;
use JeevesUtil;
$ROOT = $n0 = Ast::New("Root");
#

# IDL:Heidi:1.0
#

$n1 = Ast::New("Heidi", "Module", $n0);
#

# IDL:Heidi/Status:1.0
#

$n2 = Ast::New("Status", "Enum", $n1);
@m = [ Start, Stop ];
$n2→AddProp("members", @m);
#

# IDL:Heidi/SSequence:1.0
#

$n2 = Ast::New("SSequence", "Alias", $n1);
$n2→AddProp("type", "sequence");
#-–––––––––––––––––

$n3 = Ast::New("", "Sequence", $n2);
$n3→AddProp("type", "objref");
$n3→AddProp("typeName", "Heidi S");
$n3→AddProp("IsVariable", true);

#

# IDL:Heidi/A:1.0
#

$n2 = Ast::New("A", "Interface", $n1);
$n2→AddProp("Parent", "Heidi S");

#

# IDL:Heidi/A/f:1.0
#

$n3 = Ast::New("f", "Operation", $n2);
$n3→AddProp("type", "void");
#-–––––––––––––––––

$n4 = Ast::New("a", "Param", $n3);
$n4→AddProp("type", "objref");
$n4→AddProp("typeName", "Heidi A");
$n4→AddProp("getType", "in");

. . .

Fig. 8. Portion of the generated Perl program representing the EST
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Grouping similar nodes in the EST simplifies the specification of a tem-
plate that drives the code-generator back-end. This can be seen in Fig. 9, which
presents a template for the C++ interface class header as defined in the Hei-
diRMI mapping. The template syntax is straightforward: the ’@’ character
serves as an escape for code-generation commands, while the other lines are
just printed out with appropriate substitutions. The ’$’ indicates the name of
an attribute of the node under current consideration, and is substituted by its
text value before being printed out. The use of a map makes it possible to con-
vert an IDL name into one that is suitable in the context of the code that is
being generated, changing Heidi::A to HdA, for instance. The foreach command
walks through a list of nodes, examining each node in sequence. Since the EST
has already classified the nodes into separate sub-trees according to their types,
using the foreach command will in fact exhaustively enumerate all elements of
the lists of methods, attributes, or parameters.

In our current implementation, code-generation is a two-step process. In the
first step, a perl program that represents the actual code generator is automat-
ically produced from the given template. A modified version of Jeeves [7] is
utilized for this process. This program is then executed together with the perl
program generated in the IDL parse stage to produce the desired IDL mapping.
The latter program essentially rebuilds the EST within the perl interpreter, while
the former uses the EST to generate the desired code based on the template.

Although the two-step code-generation stage is akin to recompiling the com-
piler, it is possible to merge the two code-generation steps as we plan to do in
the future. It can also be noted that the first step of the code-generation stage
need only be performed once for a particular code-generation template. More-
over, evaluating a perl program that directly rebuilds the EST, as we do in the
second code-generation step, is certainly more efficient than parsing an external
representation of the EST.

4.2 Experience

Our template approach to generating code introduces the flexibility of quickly
building an ORB to suit an existing application. For instance, it took us about
two weeks and 700 lines of tcl code to build an IIOP compatible tcl ORB. This
exercise enabled the integration of an existing tcl management GUI applica-
tion with a CORBA-based distributed system. We utilized our template-driven
IDL compiler to generate an IDL-tcl mapping that suited the existing tcl code
(Fig. 10). Our experience goes to show that the template approach has intro-
duced the option of quickly developing an ORB to suit an existing application, as
opposed to only having the option of making the existing application CORBA-
compliant.

We have also utilized our hybrid compiler to generate an experimental Hei-
diRMI compatible IDL-Java mapping. The goal of this work was to enable the
use of HeidiRMI to configure a generic Heidi engine from within a Java pro-
gram. The class inheritance structure in our IDL-Java mapping was similar to the
HeidiRMI C++ mapping, but expanded multiple super-classes in order to get
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@foreach interfaceList -map interfaceName CPP::MapClassName
@openfile ${interfaceName}.hh
/∗ File ${interfaceName}.hh ∗/
class ${interfaceName} :
@foreach inheritedList -ifMore ’,’ -map inheritedName CPP::MapClassName

virtual public ${inheritedName} ${ifMore}
@end inheritedList
{
@foreach attributeList -map attributeType CPP::MapType

${attributeType} ${attributeName};
@end attributeList
public:
@foreach methodList -map returnType CPP::MapReturnType

virtual ${returnType} ${methodName}(
@foreach paramList -ifMore ’,’ -map paramType CPP::MapType
@if ${defaultParam} == ""

${paramType} ${ifMore}
@else

${paramType} ${paramName} = ${defaultParam} ${ifMore}
@fi
@end parameterList

) = 0;
@end methodList

virtual ∼${interfaceName}() {}

// Attribute access methods
@foreach attributeList -map attributeType CPP::MapType

${attributeType} Get${attributeName}() const = 0;
@if ${attributeQualifier} �= "readonly"

void Set${attributeName}(${attributeType}) = 0;
@fi
@end attributeList

};
@end interfaceList

Fig. 9. Template for Generation of C++ Interface Class Header
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if {[info vars "IDL:Receiver:1.0"] �= ""} return
set IDL:Receiver:1.0 1

BOA::addIdlMapping ::Receiver "IDL:Receiver:1.0"

class ReceiverStub {
inherit Stub

constructor {ior connector} {
Stub::constructor $ior $connector

} {}

public method print {text} {
set c [$pb connector getRequestCall $this "print" 0]
$c insertString $text
$c send
# void return
$c release

}
}

class ReceiverSkel {
inherit Skel

constructor {implObj} {
Skel::constructor $implObj

} {}

public method print {c} {
set text [$c extractString]
$pb obj print $text
# void return

}
}

Fig. 10. Sample tcl stub and skeleton code
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around the unavailability of multiple inheritance in Java. The IDL-Java mapping
we implemented also does not support default parameters as the corresponding
C++ mapping does.

The template approach also makes it easy to customize primitive ORB func-
tionality and protocols. Assuming that all generated code utilizes generic ORB
functionality provided by an ORB library, it is possible to write templates for
stubs and skeletons that only use portions of the ORB library to minimize the
ORB footprint as may be required for small embedded devices. HeidiRMI itself
utilizes an entirely text-based wire-protocol that suffices for the control messag-
ing needed in Heidi. Utilizing such a text-based protocol permitted a “human”
client to telnet into the bootstrap port of a Heidi application and type in simple
HeidiRMI requests to debug the system. This was made possible by writing
templates that utilized a custom Call object that implemented the appropriate
marshaling/unmarshaling functionality.

5 Related Work

Although ORB customization has received the attention of many researchers,
current work has mostly concentrated on finding an appropriate balance between
ORB functionality, code-size and efficiency, while preserving a fixed, conform-
ing programming interface. By addressing the problem of customizing the ORB
interface, our approach can be considered to add an additional degree of flexi-
bility to ORB design. We first compare our approach with other approaches to
ORB customization, and then with other approaches to building configurable
IDL compilers.

One approach to customizing an ORB is to synthesize it from primitive com-
ponents. For instance, Quarterware [8] provides the core components required for
middleware implementations: data marshaling/unmarshaling, object references,
transport, dispatching, invocation policy, and wire protocol. Specific middleware
like CORBA or Java RMI are implemented by suitably selecting and customiz-
ing these Quarterware components. Similarly, Jonathan [9] provides interface
references, binding types, and binding factories using which a CORBA or RMI
personality can be implemented. While this approach can clearly be utilized to
customize ORB functionality to fit application requirements, it does not simplify
customizing the language interface presented by the ORB to the application. Our
template driven code-generation can therefore be considered to complement the
synthesis approach. Moreover, the availability of primitive components will cer-
tainly simplify designing suitable templates for a particular class of applications.

A less flexible approach to synthesizing an ORB is for it to expose certain
object patterns and interfaces. With this approach, certain aspects of a core
ORB engine can be customized by attaching a custom module. For instance a
strategy may be attached in TAO [10] and dynamicTAO [11,12], a subcontract in
Spring [13], or a policy in the extensions to RMI suggested in [14]. The CORBA
standard [1] provides the Object Adaptor (OA) through which server objects
interact with the ORB. An OA can make such services as a database appear as
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an object. ORB implementations too provide features based on this approach:
Orbix [15] provides filters that are triggered in the dispatch path, and smart
proxies that can cache object state. Visibroker [16] provides similar features
called interceptors and smart stubs. Java RMI [6] permits the customization of
its reference layer so that alternate invocation semantics can be implemented.
While this approach certainly permits the customization of ORB functionality,
the degree of flexibility introduced is clearly limited to only those aspects of the
ORB that are actually exposed.

Our two-stage compiler architecture is not unlike that of the Omnibroker
compiler itself. The Omnibroker parser stores an abstract representation of the
IDL source in a possibly persistent global Interface Repository (IR) in support of
a distributed development environment. The code-generation stage then queries
the IR for details of each required IDL interface, generating code as it walks the
IDL parse tree. We believe our own code generator would integrate well with
the OmniBroker framework to directly utilize the OmniBroker IR. The EST that
our template code-generation requires could either be generated on the fly from
the parse tree in the IR, or the IR could modified to store the EST instead of
the parse tree.

An extensive effort towards modularizing IDL compilers has been made in
the Flick project at the University of Utah [2]. Although the Flick compiler
framework has been designed with the goal of supporting multiple IDLs, im-
plementation languages and protocols, the flexibility that has been introduced
does not simplify the tuning of generated code. Each new IDL mapping would
typically require the design and development of a new Flick back-end module,
which in turn would require recompilation for every change in the mapping.
In contrast, our approach of specifying the IDL mapping in a template clearly
simplifies the customization of a mapping. However, our approach of building
an IDL compiler is consistent with that of Flick and we believe that it is possi-
ble to incorporate the template approach into the Flick framework by writing a
suitable template-driven back-end.

We believe Flick is superior at providing certain sophisticated optimizations,
especially those involving marshal buffer management and parameter manage-
ment. However, code-generation optimizations involving inlining code or nested
message demultiplexing can easily be accomplished with the template approach.
A good strategy may be to utilize the template approach when code-generation
flexibility is desired, but resort to writing a custom Flick back-end for incorpo-
rating sophisticated optimizations.

Although the ILU project at XEROX, Palo Alto Research Center [17] also
emphasizes customizability, the customizability is restricted to primitive ORB
functionality rather than IDL mappings. For instance new messaging protocols,
URL parsing functions, or authentication and accounting schemes can be speci-
fied to the ILU kernel. Many different target languages including C, C++, Java,
and Modula-3 are supported, but the code-generation for each of these is based
on fixed mappings of ILU’s native IDL to the target language. This limitation
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makes it hard to utilize ILU to generate code that is compliant with legacy
application code.

6 Conclusions

Most ORBs are designed to provide features that satisfy a large class of ap-
plications. However, not all available features are necessary for all applications.
Moreover, a particular set of features may not suffice for certain classes of ap-
plications. This makes it necessary for an ORB to be customizable and tunable
to the requirements of a particular class of applications.

In this paper, we first illustrated that there do indeed exist several classes
of applications where it is useful to customize the code that is generated to
bridge application code with the underlying ORB. We then presented a flexible
template-driven code-generator where the mapping of IDL to the implementa-
tion language is specified in a template. This approach simplifies tuning the
IDL mapping, and can be used to complement other approaches of ORB cus-
tomization. Extensive utilization of this approach suggests that it is a powerful
technique for tailoring an ORB to application requirements. Moreover, the tem-
plate approach can also be utilized to quickly generate the framework for object
implementations, which are often associated with fixed code patterns.

We have already strengthened our belief in the template approach by building
support for an IDL-Java mapping for HeidiRMI (without support for default
parameters), and a new IDL-tcl mapping that utilizes a custom tcl ORB. In the
future, we plan to further consolidate our position by considering the design of
IDL mappings for minimal, real-time ORBs based on IIOP.
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