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Abstract. It is widely accepted that in order to deliver the best Quality-
of-Service (QoS), applications need to be adaptive to the fluctuating
computing and communication environments. The middleware layer may
assist by controlling the behavior of the applications so that they adapt
and reconfigure themselves. In this paper, we present QualProbes, a set of
middleware QoS Probing and Profiling services to discover such relation-
ships at run-time. Our approach focuses on meeting the requirements of
the critical performance criterion in the application. Such criterion may
be affected by changes in more than one application-specific QoS param-
eters, and these parameters have diversely different resource usage pat-
terns. QualProbes services are able to precisely capture the effects made
to the critical performance criterion when resource availability varies, and
thus enable more effective control of the application to adapt to resource
variations. Our case study with OmniTrack, an omni-directional visual
tracking application, provides solid proof that QualProbes significantly
enhance our capabilities to satisfy the critical performance criterion, the
tracking precision, while controlling the adaptation process of the appli-
cation.

1 Introduction

Recent research advances in Quality-of-Service (QoS) and resource management
have brought forth numerous solutions to support QoS-aware applications, so
that their demands for both end system and network resources are met. Two
major categories of such solutions have evolved. First, reservation-based systems
employ various resource reservation and admission control mechanisms to en-
force the delivery of requested QoS to the applications. Such enforcement may
be deterministic or statistical, depending on the policies involved for resource
reservation. One drawback of this approach is that many reservation mecha-
nisms demand major overhaul in the design of prevalent operating systems in
use today, such as Windows NT, or networking protocols, such as TCP/IP. In
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contrast, adaptation-based systems operate based on best-effort environments,
and attempt to adapt themselves or the applications for the purpose of provid-
ing the best possible QoS under available resource conditions, and of achieving
the most graceful quality degradation in case of scarce resources.

It is advantageous to implement such adaptation-based systems in the mid-
dleware level, since it does not require tight integration or modifications to the
best-effort services in OS kernel and network protocol stack, which is the ma-
jor advantage of adaptation-based systems over reservation-based systems. In-
deed, notable examples of adaptation-based systems, such as the QuO [1] and
Da CaPo++ [2], implement adaptation-based services in the middleware. Natu-
rally, since both middleware components and the actual QoS-aware applications
may be reconfigured to adapt to the changing environment, two approaches ex-
ist with two distinctive focuses. One approach is to dynamically reconfigure the
middleware itself so that it can transparently provide a stable and predictable
operating environment to the application. This approach is attractive since it
does not require any modifications to the application, any legacy application
can be deployed with little efforts and with a certain level of QoS assurance.
However, since it can only provide a generic solution to all applications, a set of
highly application-specific requirements cannot be addressed. Alternatively, the
middleware may be active, and exert strict control of the adaptation behavior of
QoS-aware applications, so that these applications adapt and reconfigure them-
selves under such control. This approach enjoys the advantage of knowing ex-
actly what are the application-specific adaptation priorities and requirements, so
that appropriate adaptation choices can be made to address these requirements.
However, it lacks an easy way to manifest the relationship between application-
specific adaptation choices and the actual changes in resource demands, caused
by reconfiguring an adaptive application. We take the latter alternative in our
approach.

Since the primary objective common to all adaptation-based approaches is to
provide the best possible QoS with the current resource availability in a swiftly
changing environment, the problem comes to the proper choice of a certain cri-
terion that can assist the judgment of ”What is best?”. Most applications have
more than one QoS parameters that are application-specific, and any changes
in these parameters contribute to an increase or degradation of the delivered
quality. In this paper, we focus on the critical performance criterion, which con-
centrates on the satisfaction of requirements related to the most critical applica-
tion QoS parameter. The quality of other non-critical parameters can be traded
off. For example, in our case study of OmniTrack, an omni-directional visual
tracking application, the tracking precision' is the most critical QoS parameter
in the tracking application. The critical performance criterion, therefore, is to
keep the tracking precision accurate and stable.

In this paper, we present QualProbes, a set of middleware QoS probing and
profiling services, that are uniquely designed to address the following problems:

L The tracking precision is a quantitative measurement of the collective performance
of all concurrently running tracking algorithms, also referred to as trackers.
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(1) How do changes in non-critical application QoS parameters relate to the
critical QoS parameter, and thus the critical performance criterion? (2) How
do the changes in application QoS parameters relate to changes in resource
demands or consumption? (3) How do the solutions to the previous problems
translate to appropriate control actions activated by the middleware, so that
the critical performance criterion, e.g., a stable tracking precision, are satisfied
and maintained? Once we have solved these problems, we are able to control the
adaptation process within the application from the middleware, so that under
any circumstances in a best-effort environment and with fluctuating resource
availability, the application is able to maintain the best possible quality-of-service,
in the sense that the critical performance criterion is always satisfied.

The rest of the paper is organized as follows. Section 2 briefly introduces the
design and architecture of Agilos (Agile QoS), a middleware control architec-
ture that actively controls the application’s adaptation behavior. The QualProbes
services are introduced and serve as critical core components in the Agilos archi-
tecture. Section 3 presents our theoretical and practical solutions to the above
problems, forming the basis of QualProbes. Section 4 shows a detailed experimen-
tal analysis of the control effectiveness from the middleware, with and without
the assistance of QualProbes. We use OmniTrack, our omni-directional visual
tracking application, as an example of complex applications. Section 5 discusses
related work and Section 6 concludes the paper.

2 Agilos Middleware: A Background Introduction

The ultimate objective of Agilos, our middleware control architecture, is to con-
trol the adaptation process within the application so that it is steered towards
the satisfaction of application-specific critical performance criterion. In order
to accomplish the objective, the core middleware components of Agilos consist
of application-neutral Adaptors and application-aware Configurators, which re-
flect a two-level hierarchy of middleware control. In the application-neutral level,
each Adaptor corresponds to a single type of resource, e.g., CPU Adaptors or
network bandwidth Adaptors. Though the Adaptors are specific to resources,
they are not aware of the semantics of individual applications. In contrast, the
Configurators in the application-specific level are fully aware of the application-
specific semantics, and thus each Configurator only serves one application. This
hierarchical design of the Agilos architecture is illustrated as in Figure 1.

Though the Adaptors and Configurators form the basis of the Agilos archi-
tecture, three additional components are necessary to complete the design and
to achieve the desired functionality. First, the Negotiator is responsible for all
communications among Agilos middleware components on different end systems.
Second, the Observer is responsible for monitoring resource availability and in-
specting any application-specific parameters. Third, QualProbes provide QoS
probing and profiling services so that application-specific mappings between the
two adaptation levels can be derived. This paper focuses on the algorithm design
of the QualProbes services.
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Fig. 1. The Hierarchical Design of the Agilos Architecture

QualProbes are designed to assist controlling the applications so that con-
trol actions are generated with better awareness of application’s behavior and
resource demands. To achieve this goal, the results of QualProbes are utilized
in replacing the "fuel” of the Configurator. As detailed in previous work [3],
the Configurator is designed as a rule-based fuzzy control system. As illus-
trated, the Configurator can be partitioned into three parts: the Fuzzy Inference
Engine, Membership Functions and Rule Base. While fuzzy inference engine is
application-neutral, the ”fuel”, namely the rule base and membership functions
of associated linguistic variables, are application-specific. Such model guarantees
that discrete adaptation choices and a wide variety of resource/application QoS
mappings can be addressed easily with a replacement of the rules and member-
ship functions in the rule base.

Rules in the rule base are written using linguistic variables and values. In
OmniTrack, examples of variables are cpu_demand and throughput_demand, and
examples of values are below_average or very_low. These values are uniquely char-
acterized by membership functions, so that the inference engine can have exact
definitions of these values. The design of the rule base involves the generation of a
set of conditional statements in the form of if-then rules, such as if cpu_-demand
is very_high and throughput_demand is below_average then configuration is
compress.

Apparently, the role of QualProbes is to capture the run-time relationships
between application QoS and their resource demands, so that the above rules
are activated with appropriate timing.

3 QualProbes: Investigating Application-Specific
Behavior

Since the ultimate objective is to steer adaptations towards satisfaction of the
critical performance criterion, the primary goal of QualProbes services is to
devise mechanisms that best facilitate such optimal steering of adaptation de-
cisions. To achieve this goal, QualProbes need to address the following issues.
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First, QualProbes need to accurately capture the relationships between the most
critical application QoS parameter, such as the tracking precision, and other
non-critical ones. This is crucial to perform tradeoffs of non-critical parameters.
Second, QualProbes need to capture the resource demands of each non-critical
QoS parameters. Both of the above are achieved via run-time probing and pro-
filing mechanisms. Finally, such profiling results should be used to assist the
generation of application-specific control rules, which are integrated in the Con-
figurator.

We address the above issues in the following sections. We illustrate our so-
lutions with actual examples derived from OmniTrack.

3.1 Relations Among QoS Parameters and Resources:
The Dependency Tree Model

As previously noted, the application-specific QoS parameters can be classified as
critical (usually one parameter such as the tracking precision) and non-critical. In
addition, the changes of each parameter in the non-critical collection may cause
and be dependent on the changes of zero, one, or multiple types of resources.

Assume that we study m different resource types, and the current observation
of consumed resources are Ry, Ra, ..., R, measured with their respective units.
Typically in OmniTrack, m = 2, and Rcp, is measured with the CPU load
percentage, while R,.; is measured with bytes per second.

In addition, assume that there are n unique non-critical QoS parameters that
may influence the critical parameter, p., in the application. These parameters
are p;, t = 1,...,n. For p;, Vi, there are [ of resource types related to p;, where
[ < m. In the OmniTrack example, if p; is frame rate, its changes correspond
to Rper and Rep,. In contrast, if p; is the object velocity, it does not directly
correspond to any resources, though p., the tracking precision, depends on its
variations.

The Application Model In all subsequent discussions about application QoS
parameters and resource types, we assume a Task Flow Model for distributed
applications. A complex distributed application can be modeled as several tasks,
each task generates output for the subsequent task, which can be measured by
one or more output QoS parameters. Such output forms the input of subsequent
tasks. In order to process input and generate output, each task requires a specific
amount of resources. An acyclic task graph, as shown in Figure 2 can be used
to illustrate such a model.

With such a conceptual model, we note that there may be various definitions
of the concept application task, distinguished among themselves by the granu-
larity of functional partitions in the application. Since we attempt to optimize
the adaptation behavior of the application to achieve a performance goal, we di-
vide the applications with coarse granularity, and demand that each task must
present a one-to-one mapping to an individual executable component within the
application. Static or dynamic linked library objects (such as codec or encryp-
tion modules) and individual working threads are not tasks themselves, though
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they may be partitioned as subtasks. As an example, the Task Flow Model of
OmniTrack is shown in Figure 3.

A Dependency Tree for Application QoS Parameters Although each p;
corresponds to resources R;, i = 1,...,[, we observe that such dependencies are
generally hard to capture directly. We take the parameter frame rate in Omni-
Track as an example. Naturally, the frame rate of video streaming depends on
network bandwidth availability. However, the nature of such dependence is non-
deterministic: For the same available bandwidth, the frame rate varies diversely
for compressed video versus uncompressed video; different CPU load may limit
the capacity that trackers can consume the frames, thus limiting the frame rate.
Similar situation applies to other parameters.

Such observations illustrate that each p;, in addition to being directly de-
pendent on resource types, depends directly on a subset of p;, j # 4, and via
its dependence with this subset of parameters p;, indirectly corresponds to re-
sources. We define that if p; is dependent on p;, then changes in p; can cause
changes in p;. Ideally, a generic model for capturing the dependencies is by us-
ing an acyclic directed dependency graph, with the critical parameter p. as the
source, and resources R;, ¢ = 1,...,m as the sink. For simplicity reasons, we
only consider a special case that all but the bottom levels of such a dependency
graph is a directed binary tree, with p. as the root of the tree, and resources as
the leaves. Each p; depends on zero, one or two other parameters or resources.
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There are two key characteristics in such a dependency tree 2. First, the
resource types R;, 7 = 1, ...l are always leaf nodes of the tree. This is based on a
simplified assumption that the changes of each resource type never depend on any
other resources, i.e., that resource types are independent with each other. Second,
we note that in addition to demanding resources of certain types, the changes
of an application QoS parameter may change the resource availability of some
other resource types, without demanding them. For example, while changing
the compression ratio in OmniTrack demands CPU resources, its changes will
have significant effects on available network bandwidth also, since less data is
necessary to be transmitted. This case is presented by a directed arrow from the
resource node R; to the QoS parameter node p;, showing that the availability
of R; relies on p;, rather than the usual case that p; demands and relies on R;.
An illustration of our directed dependency tree model and an real-world example
with OmniTrack is given in Figure 4.
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Fig. 4. The Dependency Graph for Application QoS Parameters

Characterizing the Relationship between Dependent Nodes Once we
have established the dependency tree of QoS parameters for an application *, the
relationship between dependent nodes needs to be characterized appropriately.
We assume that for Vi, Vt, there exists {p; }min and {p; }maz such that {p;}min <
i(t) < {pi}maz, any values beyond this range is either not possible or not
meaningful. For example, the frame rate may vary in between [1, 30] fps. Assume
the parent node p; depends on two descendant nodes p, and p,. The dependency

can thus be characterized by a function f; ; ., defined as:

2 To be exact, it is only a binary tree without considering the bottom level related to
resources. Otherwise, it is more of a lattice.

3 Such establishment is application-specific, and may be derived based on knowledge
of a specific application.
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Y fi,m,y(Apma Apl/)
PEe = {pk}mm + Apk, with k € {i,x,y}
0 S Apk S {pi}maz - {pz}mzn (1)

where Apy, is a normalized value of p;. Function f; ; , defines the dependence
relationship between the parent node p; and its descendant nodes p, and p,.
If p; only depends on one node p,, then f; . , is equivalent to f; ., where Ap; =
fi,z(Apz). If one or two of the descendant nodes are resource types R, and Ry,
then we define f;, ,, so that Ap; = fi, » (AR., AR,). Note that for the
special case that the availability of resource type R; depends on changes in p;,
, there is a directed link from R; to p;, we define fI . such that AR; =
. j(Apj) Figure 5 visually shows the above characterization.
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Fig. 5. Characterization of Dependencies among QoS Parameters

If we obtained all f; ., in the dependency tree via probing and profiling
services, the relationship of any application QoS parameter p; and its related
resources can be characterized by a series of substitutions. As an example, for
the generic dependency tree in Figure 4, we have

Ape = fe1,2(Ap1, Ap2)
= fe1.2(f1,3,4(Aps, Aps), f2,5(Aps))
- fc,1,2(f1,3,4(f3,r1 (ARl)a f4,r2 (ARZ))v f2,5(f5,r1 (ARI)) (2)
and

ARz = f1, 5(Aps) (3)

which characterizes the relationship between p. and resources R; and Rs.

3.2 QualProbes Services Kernel: The QoS Profiling Algorithm

QualProbes services are responsible for run-time capturing of the relationships f
and f" between dependent nodes in an application-specific dependency tree,
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and for properly storing the results in profiles. QualProbes services are mid-
dleware components, and implement a QoS Probing and Profiling algorithm as
the kernel in each component. The QualProbes services kernel is designed to be
application-neutral, thus we require that all related application QoS parameters
should present the following properties:

1. Observable. Their run-time values at any instant can be obtained in a timely
manner. Implementation-wise, we utilize the CORBA Property Service. Ap-
plications report values of their QoS parameters as CORBA properties to the
Property Service when initializing or when there are changes, while Qual-
Probes services kernel retrieves these values from the Property Service when
necessary.

2. Tunable. They should be either directly or indirectly tunable from outside
of the application. Since the application exports interfaces to the middle-
ware Configurator for such tuning and reconfiguration, QualProbes services
only need to reuse these interfaces to control the QoS parameters in the
application.

Having ready "read/write” access to the application QoS parameters, Qual-
Probes services execute a QoS Profiling algorithm in their kernel. The algorithm
traverses the dependency tree from leaves up to the root, and attempts to dis-
cover the function f and f” previously defined by tuning the values in descen-
dant QoS parameters or resource types and measuring those of the parent QoS
parameter. If f is three-dimensional, a nested loop involving both descendant
parameters is executed. Figure 6 demonstrates the QoS profiling algorithm in
the pseudo-code form. In this algorithm, function tune executes recursively in
order to tune an application QoS parameter indirectly.

As an concrete example, Figure 7 illustrates the results of tuning the QoS
parameters object velocity and tracking frequency in order to measure the tracking
precision. The output of the inner loop (by only tuning tracking frequency) is
shown as bold dotted lines.

3.3 Towards Better Middleware Control

The design of QualProbes services in previous sections addresses the problem
of discovering relationships between the critical performance criterion and re-
source demands of an application. In order to complete the solutions provided
by QualProbes, we need to address the issue of bridging the obtained profiles
with actual membership functions and inference rules in the Configurator.

The Inference Rules Based on our extensive experiences with the real-world
application OmniTrack, we believe that the inference rules inside the rule base
cannot be generated automatically. Such rules need to be written by the appli-
cation developer for a specific application. The reasons are two-fold: First, a rule
base customized by the application developer is best in exploiting all available
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for each resource leaf node R; in the dependency tree:
if link(R; — p;) or link(p; — R;) exists
for k = {py}mzn to {pj}maz Step {pj }increment
tune(p;,k); log observed R;
for each non-leaf node p; in the dependency tree (nodes on descendant levels first):

if p; has one descendant parameter node p,
for k = {pz}min t0 {Pz}max step {pa}increment
tune(p,, k); log observed p;
else if p; has two descendant parameter node p, and p,
for k1 = {ps}min t0 {pa}tmas step {pz}increment
for ko = {py}min to {py}marc step {py}increment
tune(ps, k1); tune(py, k2); log observed p;

tune(p;, value)
if p; is directly tunable via exported interface
call application exported interface to set p; = value
else
assume descendant nodes of p; are p, and py
for k1 = {pz}min t0 {Pz}mas step {pz}increment
for ky = {py}mzn to {py}maac step {py}increment
tune(ps, k1); tune(py, k2);
if ((observed p;) == value) return;

Fig. 6. QualProbes Services Kernel Algorithm

adaptation choices and best optimize the rich semantics of these choices, natu-
rally integrating the relative priorities of different application QoS parameters.
In other words, the application developer should decide the set of QoS parame-
ters to be traded off in the event of quality degradation. Second, the rules are not
constant. It should be tuned towards the needs and user preferences in different
occasions where the application is executed.

Thresholds: Towards Better Membership Functions Even though the
rules can not be generated automatically, the profiles discovered by QualProbes
services are of significant assistance in the process of determining the membership
functions of linguistic values in the inference rules. In order to demonstrate such
assistance, we take one inference rule in OmniTrack as an example:

if cpu_demand is very_high and throughput_demand is very_low then config-
uration is compress

This inference rule operates as follows. First, it takes the output of CPU
adaptor and Network Bandwidth Adaptor in the application-neutral level as in-
put. When the CPU is idle, the CPU adaptor will apply its application-neutral
control algorithm and suggests that the application under its control to demand
more CPU resources. This yields a high c¢pu_demand value. Similarly, when the
network is congested and there are very low bandwidth available, the network
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bandwidth adaptor suggests that the application demand less network band-
width, thus yielding a low value in throughput_demand. Second, the inference
rule decides that if cpu_demand is high and throughput_demand is low, the ap-
plication should reconfigure itself and add compression to its video streaming.
Third, the actual definitions, made via the membership functions, of linguistic
values very_high and very_low decide the activation timing of such reconfigura-
tion choice.

The question is: How "high” is very_high for this specific rule? As we have
observed in our experiences with OmniTrack, very frequently the discovered
profiles by QualProbes services are non-linear, and contain certain threshold
values. For example, by switch codec type from ”uncompressed” to ”Motion
JPEG”, we observe that ARy, steps up abruptly by a certain amount, e.g.,
60%, while AR,,¢; steps down by about 90% of the original value. The threshold,
thus, can be determined by the profiles obtained from QualProbes services. For
example, very_high can be defined as higher than 60%, while very_low can be
defined as lower than 90% of {Ret }maz-

As another example, let us examine the profiles obtained related to the top
level of dependency tree, the tracking precision. Such profiles are illustrated in
Figure 7. One of the corresponding inference rule is:

if tracking_frequency is low and object_velocity is medium then configuration
is remove_tracker

As illustrated by Figure 7, QualProbes services have discovered an approx-
imate threshold value for tracking frequency at respective object speed levels.
If the tracking frequency drops below such threshold values, we could specu-
late that tracking precision may degrade. In order to keep the tracking preci-
sion, which is the critical performance criterion for OmniTrack, we define the
membership function of linguistic value low to cover the values lower than the
threshold value that we have discovered, e.g., 10 iterations per second. When
this definition is applied to the above inference rule, the configuration choice
of remove_tracker will be activated when the tracking frequency falls below the
critical threshold value. This ensures that the tracking precision is kept stable
at all times.



QualProbes: Middleware QoS Profiling Services 267
4 Case Study: OmniTrack

4.1 OmniTrack: An Introduction

As a case study, we have developed OmniTrack, a distributed omni-directional
visual tracking system, using tracking algorithms in the X Vision [4] project. Om-
niTrack is a flexible, multi-threaded and client-server based application, which
adopts complex tracking capabilities in multiple dimensions, such as visual ob-
ject tracking, camera tracking and switching, and features full integration of user
preferences. This application illustrates the coexistence of multiple adaptation
possibilities, ranging from image properties, codec choices, server selections, to
tracker quantities and variety. The actual adaptation choices are based on a
combination of user preferences and decisions made by the underlying Agilos
middleware control architecture. An illustration of OmniTrack architecture is
shown in Figure 8.
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Fig.8. OmniTrack: A Distributed Omni-Directional Visual Tracking System

OmniTrack is implemented in Windows NT, deployed under the control of
Agilos middleware. OmniTrack exports a control interface which is clearly de-
fined in IDL. All control commands made by the Agilos middleware is carried out
through such a control interface via CORBA. This ensures that Agilos middle-
ware architecture is generic and not bound to any specific applications. Besides
exporting the control interface, OmniTrack reports on-the-fly observations of its
application-specific QoS parameters to the CORBA Property Service, so that
they are always observable from the middleware’s point of view.
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4.2 Experiments with OmniTrack

We have carried out a series of experiments with OmniTrack. In our experimen-
tal setting, while the basic inference rules in the Configurator are hand-tuned,
we have been successful in applying the threshold values extracted from the pro-
files discovered by QualProbes services. Without QualProbes, it has been very
difficult to specify appropriate membership functions to complete the definitions
for the "fuel” of Configurator, let alone to put the Configurator in active service.
With QualProbes services enabled and QoS profiles generated, such tasks have
been straightforward. We feel that with QualProbes services, we are able to ”see
through” the internal behavior of the OmniTrack application. Such transparency
has provided us with unparalleled assistance in our understanding of OmniTrack,
as well as its control optimally. The following preliminary results are obtained
in two different experimental scenarios.

(1) An animated video sequence is streamed from the server to the client using
Motion-JPEG compression. The animated sequence is 320%240 pixel frame size
video sequence. Within this scenario, we illustrate basic adaptation possibilities
by adapting the image size. We measure the tracking precision and show that
the tracking precision remains stable with fluctuating bandwidth availability.

(2) Live video is streamed from the active server to the client in a omni-
directional setting. The content of the live video is captured by the digital cam-
era and an image grabber. We use 320%240 pixel frame size for the default initial
properties of the live video. Within this scenario, we illustrate both throughput-
related and CPU-related adaptation in action simultaneously, such as compres-
sion and dropping trackers. We finally measure the tracking precision and show
that it remains stable with fluctuating CPU availability.

4.3 Experimental Results

Scenario 1 In Figure 9, we illustrate basic adaptations by adapting the image
size on a Motion-JPEG compressed video stream. We show from the results that,
despite the fluctuating network bandwidth availability, the tracking precision
remains stable under the control of Agilos middleware.

Scenario 2 Figure 10 and Table 1 show the experimental results. With respect
to parameter-tuning adaptations, Figure 10(b) shows the result of Adaptors
and Tuners by changing image size during the fluctuation of network band-
width shown in Figure 10(a). With respect to reconfiguration alternatives, Fig-
ures 10(c), 10(d) and Table 1 show the Configurator in action. In this experiment,
Figure 10(c) shows the CPU load fluctuation, while Table 1 shows the control
actions generated by the Configurator at various time instants, and executed by
the application. Figure 10(d) shows the actually measured tracking precision.
The first tracker tracks a more important object, so if a drop_tracker event
is signaled, later trackers should be dropped. We note that the tracking preci-
sion stays stable in a small range, which shows that the adaptation efforts are
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Fig. 9. Scenario 1

successful to lock the trackers on the objects, before they are dropped for more
important trackers.

5 Related Work

It has been widely recognized that many QoS-constrained distributed applica-
tions need to be adaptive in heterogeneous environments. Recent research work
on resource management mechanisms at the systems level expressed much inter-
ests in studying various kinds of adaptive capabilities. Particularly, in wireless
networking and mobile computing research, because of resource scarcity and
bursty channel errors in wireless links, QoS adaptations are necessary in many
occasions. For instance, in the work represented by [5][0], a series of adaptive
resource management mechanisms were proposed that applies to the unique char-
acteristics of a mobile environment, including the division of services into several
service classes, predictive advanced resource reservation, and the notion of cost-
effective adaptation by associating each adaptation action with a lost in network
revenue, which is minimized. As another example, Noble et al. in [7] investigated
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Fig. 10. Scenario 2

in an application-aware adaptation scheme in the mobile environment. Similarly
to our work, this work was also built on a separation principle between adap-
tation algorithms controlled by the system and application-specific mechanisms
addressed by the application. The key idea was to balance and tradeoff between
performance and data fidelity.

Another related group of previous work studies the problem of dynamic re-
source allocations, often at the operating systems level. Noteworthy work are
presented in [8][9][10]. The work in [8] focuses on maximizing the overall system
utility functions, while keeping QoS received by each application within a feasible
range (e.g., above a minimum bound). In [9], the global resource management
system was proposed, which relies on middleware services as agents to assist
resource management and negotiations. In [10], the work focuses on a multi-
machine environment running a single complex application, and the objective
is to promptly adjust resource allocation to adapt to changes in application’s
resource needs, whenever there is a risk of failing to satisfy the application’s
timing constraints.

Recently, in addition to studies in the networking and resource management
levels, many active research efforts are also dedicated to various adaptive func-
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Table 1. Control Actions produced by the Configurator (follow the time scale
in Figure 10(c))

Time (sec)| Control Action from Configurator
28.22 uncompress

51.24 add_tracker

67.37 compress

167.7 drop_tracker

320.4 drop_tracker

tionalities provided by middleware services. For example, [11] proposes real-
time extensions to CORBA which enables end-to-end QoS specification and en-
forcement. [1] proposes various extensions to standard CORBA components and
services, in order to support adaptation, delegation and renegotiation services
to shield QoS variations. The work applies particularly in the case of remote
method invocations to objects over a wide-area network. The work noted in [12]
builds a series of middleware-level agent based services, collectively referred to
as Dynamic QoS Resource Manager, that dynamically monitors system and ap-
plication states and switches execution levels within a computationally intensive
application. These switching capabilities maximize the user-specified benefits, or
promote fairness properties, depending on different algorithms implemented in
the middleware.

In contrast, our approach is both unique and orthogonal in the following as-
pects. First, in defining QualProbes services, we defined a novel layered model
for application-specific QoS parameters, for the purpose that the relationships
between such parameters and system resource usage can be probed and pro-
filed with ease. Second, our Agilos middleware is active, in the sense that rather
than attempting to transparently provide adaptive services, it actively controls
the applications themselves so that the applications, not the middleware com-
ponents, are the ones to adapt. Third, our work is orthogonal in the sense that
we leverage the advantages of any service enabling platforms, including both
standard CORBA services or those with customized ORBs. Fourth, we attempt
to develop mechanisms that are as generic as possible, applicable to applications
with various demands and behavior. Finally, we attempt to provide support
in the Agilos middleware with respect to multiple resources, notably CPU and
network bandwidth.

6 Conclusion

This paper has presented new mechanisms with respect to investigating the be-
havior of the application, for the purpose of generating best control actions for
the application to adapt itself to the environmental variations. A detailed anal-
ysis of QualProbes services is presented, including the application model, the
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dependency tree model for application QoS parameters, and the QoS profiling
algorithm implemented in the QualProbes services kernel. The key contribution
of this paper is that we have provided a unique approach to ”see through” the be-
havior of the application, especially when environmental or requirement changes
may occur. In addition, we have presented some preliminary experimental results
with OmniTrack, a complex multimedia application that we have developed, in
order to verify that our approaches are effective in assisting the understanding of
the application, and generating the ”fuel” of the Configurator, a key component
in the Agilos architecture.
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