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Abstract. Historically, method-oriented middleware, such as Sun RPC,
DCE, Java RMI, COM, and CORBA, has provided synchronous method
invocation (SMI) models to applications. Although SMI works well for
conventional client/server applications, it is not well-suited for high-
performance or real-time applications due to its lack of scalability. To ad-
dress this problem, the OMG has recently standardized an asynchronous
method invocation (AMI) model for CORBA. AMI provides CORBA
with many of the capabilities associated traditionally with message-
oriented middleware, without incurring the key drawbacks of message-
oriented middleware.

This paper provides two contributions to research on asynchronous invo-
cation models for method-oriented middleware. First, we outline the key
design challenges faced when developing the CORBA AMI model and
describe how we resolved these challenges in TAO, which is our high-
performance, real-time CORBA-compliant ORB. Second, we present the
results of empirical benchmarks that demonstrate the performance ben-
efits of AMI compared with alternative CORBA invocation models. In
general, AMI based CORBA clients are more scalable than equivalent
SMI based designs, with only a moderate increase in programming com-
plexity.

1 Introduction

Motivation:

Historically, applications based on the standard CORBA [1] distributed object
computing model have had to choose between three invocation models: one-way
operations, synchronous two-way operations, and deferred synchronous opera-
tions using the dynamic invocation interface (DII). Unfortunately, these alter-
natives are often inappropriate for applications with stringent quality of service
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(QoS) requirements. For instance, one-way operations lack well-defined seman-
tics [2], which reduces their portability and suitability for applications with non-
trivial reliability requirements. Likewise, synchronous two-way operations are not
scalable because they require a client thread for each pending request/response
invocation. Finally, the deferred synchronous model is inefficient and tedious to
program due to its reliance on the DII [3], which allocates memory and copies
data excessively.

To address these limitations, the OMG adopted a Messaging specification [4]
for the CORBA standard. One of the key features in the CORBA Messaging
specification is support for asynchronous method invocations (AMI).

Overview of CORBA AMI:

The CORBA AMI specification defines a polling model and a callback model, as
described below:

• Polling model: In this model, each two-way AMI operation returns a Poller
valuetype [5], which is very much like a C++ or Java class in that it has both
data members and methods. Operations on a Poller are just local C++ method
calls rather than remote CORBA operation invocations. The polling model is
illustrated in Figure 1. The client can use the Pollermethods to check the status
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Fig. 1. Polling Model for CORBA Asynchronous Twoway Operations

of the request so it can obtain the server’s reply. If the server hasn’t replied yet,
the client can either (1) block awaiting its arrival or (2) return to the calling
thread immediately and check back on the Poller to obtain the valuetypes
when it’s convenient.

• Callback model: In this model, when a client invokes a two-way asynchronous
operation on an object, it passes an object reference for a reply handler servant
as a parameter. The reply handler object reference is not passed to the server,
but instead is stored locally by the client ORB. When the server replies, the
client ORB receives the response, and dispatches it to the appropriate callback
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Fig. 2. Callback Model for CORBA Asynchronous Twoway Operations

operation on the reply handler servant provided by the client application, as
shown in Figure 2.

Reply handler servants are accessed through normal object references. There-
fore, it is possible for a client application to obtain an object reference for a
remote reply handler servant and use that object reference to make AMI calls.
In this case, replies for the asynchronous invocations will be handled in processes
other than the client or the server involved in the original invocations. The most
common use-case, however, is for the original client to process the response. In
this case, therefore, client application developers must obtain, initialize, and ac-
tivate reply handlers on a POA, which makes the application behave effectively
as both a client and a server.

In general, the callback model is more efficient than the polling model because
the client need not invoke method calls on a valuetype repeatedly to poll for
results. Moreover, compared with CORBA’s original invocation alternatives, the
new AMI models provide the following benefits:

• Simplified asynchronous programming model: CORBA AMI allows operations
to be invoked asynchronously using the static invocation interface (SII). Using
SII for AMI eliminates much of the tedium, complexity, and inefficiency inherent
in DII. In particular, DII requires programmers to allocate a new Request object
explicitly and insert the operation parameters into a list of name value pairs,
i.e., an NVList pseudo-object. Conversely, in SII the IDL compiler can use an
ORB’s internal mechanisms to avoid extra memory allocations and data copies.
Although deferred synchronous request implementations can exploit many AMI
optimizations, such as better utilization of the network resources and improved
parallelism, those improvements are hindered by DII’s extra overhead, which
often makes AMI a more attractive alternative.

• Improved quality of service: When implemented properly, AMI can improve the
scalability of CORBA applications. For instance, it allows “pipelining” of two-
way operations and minimizes the number of client threads that are otherwise
required to perform two-way synchronous method invocations (SMI). In addi-
tion, AMI is important for real-time CORBA applications [6] because it helps
to bound the amount of time a client spends blocking on two-way requests.
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Synopsis of research contributions:

Our previous research has examined many dimensions of high-performance and
real-time ORB endsystem design, including static [7] and dynamic [8] schedul-
ing, event processing [9], I/O subsystem [10] and pluggable protocol [11] in-
tegration, ORB Core architectures [12], systematic benchmarking of multiple
ORBs [13], patterns for ORB extensibility [14] and ORB performance [15]. This
paper focuses on a previously unexplored dimension in the high-performance and
real-time ORB endsystem design space: the design and optimizations used to im-
plement the standard CORBA asynchronous method invocation (AMI) callback
model.

The vehicle for our research on high-performance and real-time CORBA is
TAO [7]. TAO is an open-source1, CORBA-compliant ORB designed to address
applications with stringent quality of service (QoS) requirements. In addition to
being the first ORB with a standard Portable Object Adapter [15], TAO was
the first ORB to implement the standard CORBA AMI callback model.

Related work:

The AMI polling model stems from research on programming language sup-
port for distributed computing. For instance, Futures [16] and Promises [17]
are language mechanisms that decouple method invocation from method return
values passed back to the caller when a method finishes executing. As with
AMI Pollers, calls are invoked asynchronously, clients can rendezvous with a
Future/Promise to obtain reply values when they become available.

Previous research onmethod-oriented middleware [9,18,19] has examined how
the CORBA Event Service can be used to perform asynchronous communica-
tion between CORBA applications. However, the CORBA AMI specification
provides a different programming model than the CORBA Event Service. For
instance, since the CORBA Event Service allows single-point-to-multi-point and
anonymous communication models, application developers must devise their own
means to send replies from event consumers back to event suppliers. In contrast,
AMI applications can receive replies that include multiple IDL types. Moreover,
CORBA Event Service participants communicate using a single Any argument.
Although Anys can send all IDL types, they incur significant marshaling and
message footprint overhead. In contrast, AMI clients can send and receive mul-
tiple IDL types and IDL compilers [20] can generate efficient marshaling and
demarshaling code for them.
Message-oriented middleware (MOM), such as the Isis [21] Message Distri-

bution System, TIBCO Information Bus, and IBM’s MQSeries, provide mecha-
nisms that allow suppliers to reliably transmit messages asynchronously to one or
more consumers. MOM systems typically consist of additional “router” processes
that store and forward messages on behalf of application processes. If a consumer
1 The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/∼schmidt/TAO.html.
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happens to be unavailable due to scheduled downtime, a site crash, or a network
partition, the router will attempt to deliver the message periodically until the
consumer becomes available. The OMG Message specification defines similar
routing capabilities via its Time-Independent Invocation (TII) feature [22,4].
Both the TII and MOM asynchrony mechanisms are too heavyweight, however,
for many high-performance and real-time applications. Moreover, the message-
oriented invocation mechanisms of MOM systems can be harder to program
correctly due to the lack of strong typechecking.

The remainder of this paper is organized as follows: Section 2 outlines the
general structure and dynamics an ORB requires to support AMI callbacks;
Section 3 describes key design challenges faced when implementing the CORBA
AMI callback model and explains how TAO resolves these challenges; Section 4
empirically analyzes the performance of AMI callbacks in TAO [7] and compares
it with alternative communication models; and Section 5 presents concluding
remarks that summarize the lessons learned from implementing AMI callbacks
in TAO.

2 ORB Architectural Support for AMI Callbacks

This section outlines the general structure and dynamics an ORB requires to
support AMI callbacks.

2.1 AMI Callback Features

To support AMI callbacks, an ORB should implement the following
functionality:

1. AMI stubs: For each two-way operation in the IDL interface, an ORB’s
IDL compiler [20] should generate an AMI stub that applications can use to
issue asynchronous operations. Each AMI stub is responsible for (1) setting up
state in the ORB to receive the reply and dispatch it to the appropriate reply
handler, (2) marshaling the in and inout arguments provided by the application,
and (3) using the ORB Core to send the message to a remote ORB. High-quality
IDL compilers should provide an option to suppress the generation of AMI stubs
to reduce the footprint of applications that do not use them.

2. Manage pending invocations: The client ORB must store reply handler
object references for all asynchronous invocations. If the reply handler servant
is collocated with the client, the application developer must activate the reply
handler implementation with the client’s ORB POA. When a reply returns, the
client ORB locates the reply handler servant and invokes the callback method on
it. The client ORB delivers this new request to the reply handler servant using
its regular invocation path, which allows an ORB’s collocation optimizations [23]
to be used to minimize dispatching overhead.
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3. Explicit event loop methods: An ORB must implement the standard
CORBA work pending and perform work operations. Clients can use these op-
erations to invoke the CORBA event loop in a client explicitly. In addition, if
asynchronous replies arrive while a client is blocked waiting for a synchronous
reply, the ORB can use the blocked thread to dispatch the asynchronous reply.

2.2 Collaborations between ORB Components for Asynchronous
Invocation

After an OMG IDL compiler generates the AMI callback stubs, the generated
code must collaborate with internal ORB components to send and receive asyn-
chronous invocations. To demonstrate how this works, Figure 3 depicts the gen-
eral sequence of steps involved when an asynchronous two-way get quote oper-
ation is executed.2 As shown in this figure, the interactions between client ORB

Fig. 3. Interactions Between Client ORB Components for Asynchronous Invo-
cation

components for an asynchronous invocation consist of the following steps:

– The client application invokes the sendc get quote method on the Stub to
issue the asynchronous operation (1). The client passes the
AMI QuoterHandler object reference, along with the name of the stock we’re
interested in, e.g., IBM.

– The Stub marshals its string argument into a buffer and instantiates an In-
vocation (2), which is a facade that delegates to internal ORB components
that establish connections (3) & (4) with a remote server (if necessary), the
ORB stores the AMI QuoterHandler object (5), and send the requests (6)
& (7) to the server.

– After the request is sent, Invocation returns control to the Stub (8), which
itself returns control to the client (9).

2 The names of certain objects in this discussion are specific to TAO, though the
general flow of control and behavior should generalize to other ORBs that implement
AMI callbacks.
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– When a client application is prepared to handle callbacks, it calls the ORB’s
work pending and perform work (10) methods to receive and dispatch
replies associated with asynchronous invocations.

– When the reply arrives, the ORB demarshals the reply and demultiplexes it
to the callback method on the reply handler servant that was passed in by
the application when the AMI method was invoked originally (11).

Section 3.2 revisits these steps in more detail after we’ve explained the compo-
nents in TAO’s ORB architecture.

3 The Design of TAO’s AMI Callback Architecture

To make the discussion of ORB architectural support for AMI in Section 2 more
concrete, this section describes our resolutions to key design challenges encoun-
tered when implementing TAO’s AMI-enabled ORB architecture. Section 4 then
illustrates the performance characteristics of TAO’s AMI implementation com-
pared to alternative SMI and DII deferred synchronous communication models.

3.1 Design Challenges and Resolutions

To assist developers of distributed object systems in making informed choices
among alternative ORB middleware solutions, they should understand how the
ORBs are implemented. Below, we (1) outline the key design challenges we faced
when implementing AMI in TAO and (2) explain the patterns and components
we used to resolve these challenges.

Challenge: How to Process Asynchronous Replies Efficiently

Context: Early TAO implementations supported only the Synchronous Method
Invocation (SMI) model. In SMI, the calling thread that makes a two-way invoca-
tion blocks awaiting the server’s reply. The client ORB can use the calling thread
to process the response. For example, consider the Leader/Followers thread pool
concurrency model [12] illustrated in Figure 4. TAO uses this concurrency model
to support multi-threaded client applications efficiently, as follows:

– Each calling thread that invokes a two-way synchronous method (1) uses a
connection to send the request (2).

– The client ORB designates one of the waiting threads the leader and the other
threads as the followers. The leader thread blocks on the select operation
(3); the follower threads block on semaphores (4).

– When a reply arrives on a connection, the leader thread returns from select.
If the reply belongs to the leader, it continues to process the reply after first
promoting the next follower to become the new leader. If the reply belongs to
one of the followers, however, the leader signals the corresponding semaphore
to wake up the follower thread (5).

– The awakened follower thread reads the reply (6), completes the two-way
invocation (7), and returns to its caller.
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Fig. 4. Processing Synchronous Two-way Client Invocations using the
Leader/Followers Concurrency Model

Problem: Although the Leader/Followers thread pool model described above
works well for SMI, it does not work without modification for AMI. The problem
stems from the fact that the calling stub goes out of scope as soon as the request
is sent and control returns to client application code. Thus, the ORB must be
prepared to process an asynchronous reply in another context, possibly within
another client thread. Moreover, to complete the processing of server replies to
asynchronous invocations, the ORB must maintain certain state information,
such as reply handler object reference and a function to demarshal the reply
(the so-called reply-stub).

Forces: The mechanisms provided to support AMI replies should add no signif-
icant run-time overhead to the existing SMI mechanisms.

Solution → Strategizing the reply dispatching mechanisms: The problem of pro-
cessing asynchronous replies can be solved by strategizing the reply processing
and dispatching mechanisms used for AMI and SMI calls. Figure 5 illustrates
the components in TAO’s Reply Dispatcher hierarchy. A Synchronous Reply
Dispatcher is created by an Invocation object during a synchronous invoca-
tion on the local stack activation record. When the reply is received, the reply
buffer, i.e., TAO’s InputCDR object, is placed in the dispatcher and control re-
turns first to the Invocation object and then to the Stub. At this point, the
Stub obtains the reply buffer from the Invocation object, demarshals the re-
ply, and completes the invocation. Each Reply Dispatcher object maintains a
reply received flag that indicates if the reply has been received. This flag is
set when the reply is dispatched to this object and the thread waiting for the
reply returns to the Stub.
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Fig. 5. Reply Dispatching Strategy

During an AMI call, an Invocation object creates an Asynchronous Reply
Dispatcher on the heap3 because the activation record where the Invocation
object is created is exited before the reply is received. The AMI stub, i.e., the
sendc * operation, stores the reply handler object reference provided by the
client in the Asynchronous Reply Dispatcher object. In addition, the AMI
stub stores the pointer to the appropriate reply-stub method in this object.

A Leader/Followers implementation using TAO’s Reply Dispatcher archi-
tecture is illustrated in Figure 6 and behaves as follows:
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Fig. 6. TAO’s AMI-enabled Leader/Followers Implementation

– When application threads make two-way invocations (1), a Reply
Dispatcher object is created for each invocation (2) and the request is
sent (3).

– The leader thread then blocks on the select call (4) and the follower threads
block on the semaphores (5).

3 As an optimization, an ORB could use a pre-allocated pool to allocate these objects,
thereby alleviating heap fragmentation [15].
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– When a reply arrives on a connection, the leader thread itself reads the
complete reply (6) and calls the Reply Dispatcher object that was created
for that invocation to dispatch the reply (7).

– For SMI calls, the Synchronous Reply Dispatcher signals (8s) the thread
waiting for that reply and completes the invocation (9). For AMI calls,
however, the Asynchronous Reply Dispatcher object invokes the callback
method in the reply handler servant (8a).

Challenge: How to Minimize Connection Utilization

Context: Early implementations of TAO supported only a non-multiplexed con-
nection model [12], which is not well-suited for hard real-time applications whose
QoS requirements include highly predictable response times. In this model, a
connection cannot be reused for another two-way request until the reply for the
previous request is received. Figure 7 illustrates TAO’s non-multiplexed connec-
tion model, where five threads make two-way invocations to the same server,
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Fig. 7. One Outstanding Request Per-Connection

which creates five connections. TAO represents connections using a Transport
object that provides a uniform interface to the TAO’s pluggable protocols
framework [11], this framework abstracts various underlying transport mecha-
nisms, such as TCP, UNIX-domain sockets, and VME, implemented by TAO.
TAO’s pluggable protocols framework uses key patterns and components pro-
vided by ACE [24].

Problem: Non-multiplexed connection models are inefficient for CORBA AMI
because client applications can issue hundreds or thousands of asynchronous
requests before waiting for the replies. Thus, a non-multiplexed connection model
would use a correspondingly large number of connections.
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Forces:

1. An ORB should implement connection multiplexing so that multiple out-
standing requests required to support the AMI model can be processed effi-
ciently.

2. When multiple threads access a connection simultaneously, they should be
synchronized so that requests are sent one-by-one and not corrupted through
intermingled I/O calls.

3. To accommodate various use-cases and QoS requirements, applications
should be able to configure multiplexed and non-multiplexed connection be-
havior both statically and dynamically.

Solution → Strategize the transport multiplexing mechanisms: To overcome the
scalability limitations of a non-multiplexed connection architecture, we extended
TAO to support a multiplexed connection option for both SMI and AMI. In
this design, many requests can be sent simultaneously over the same connection,
even when replies are pending for earlier requests. In general, multiplexing yields
better use of connections and other limited OS resources [12], such as memory
buffers.

To implement this design in TAO, we applied the Strategy pattern [25] and
defined a new strategy called Transport Mux Strategy that supports both mul-
tiplexed and the non-multiplexed connections. The components in this design are
illustrated in Figure 8.

Fig. 8. Transport Mux Strategy

The Exclusive Transport Strategy implements the non-multiplexed con-
nection strategy by holding a reference to a single Reply Dispatcher object.
This strategy is “exclusive” because only one outstanding request at a time can
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pend on each connection. In contrast, the Muxed Transport Strategy uses a
hash table that stores multiple Reply Dispatchers, each representing a request
sent on the connection. As shown in Figure 8, the Transport Mux Strategy base
class provides a common interface for these two different implementations. TAO
uses the Service Configurator pattern [26] to allow applications to select between
these two strategies and thereby configure TAO’s Transport Mux Strategy ei-
ther statically or dynamically.

To synchronize access to a multiplexed connection among multiple threads,
the Transport object for that connection is marked as “busy” while one thread
is sending a request. If during that time another thread tries to send a request,
either a cached connection is recycled or a new connection is created. After the
request is sent, the Transport object is marked as “idle” and is cached so it can
be reused to send subsequent requests.

Challenge: How to Implement Scalable Reply Processing Mechanisms

Context: High-quality CORBA implementations should support “nested up-
calls”, in which an ORB processes incoming requests while it waits for replies.
This support can be implemented using select to wait for both the reply and
any incoming requests. This implementation can add unnecessary overhead, how-
ever, to “pure” clients that do not receive any incoming requests from servers.
Therefore, TAO provides the following three reply processing strategies that al-
low developers to select the most appropriate mechanism for their application
QoS requirements:

– Wait-on-Read: In this strategy, the calling thread blocks on read to receive
the reply. This is a very efficient strategy for pure clients that need not
receive requests or nested upcalls while waiting for server replies.

– Wait-on-Reactor: The Reactor [27] is a framework implemented in ACE [24]
that provides event demultiplexing and event handler dispatching. In this
strategy, a single-threaded Reactor is used to dispatch events, such as reply
arrivals and upcalls. This strategy supports single-threaded client applica-
tions efficiently by having the waiting thread run the event loop of the Re-
actor to check for server replies. When there is input on a connection, the
Transport object is notified and it reads the input message and dispatches
the reply. The Wait-on-Reactor strategy also works with multi-threaded ap-
plications that use a Reactor-per-thread to minimize contention and locking
overhead [12].

– Wait-on-Leader/Followers: If the application is multi-threaded and several
threads are sharing the same Reactor, only one of them can run the Reactor’s
event loop at a time. Therefore, this strategy uses the Leader/Followers pat-
tern [12] to synchronize access to the Reactor. In this pattern, the leader
thread runs the event loop of the Reactor. All other threads wait on a
semaphore. When a reply is available, the leader thread reads and dispatches
the complete reply. If the reply is for an AMI request, it is dispatched to the
callback method in the reply handler servant. For synchronous replies, the
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reply buffer is transferred to the Synchronous Reply Dispatcher from the
Transport object. If a reply belongs to the leader thread, it selects another
thread as the leader and returns from the event loop. If the reply belongs to
another thread, however, it signals this thread so it can wake up from the
semaphore, return to its stub, and process the reply.

Problem: Pre-AMI-enabled versions of TAO implemented the three reply pro-
cessing strategies described above as Connection Handlers within TAO’s plug-
gable protocols framework, as shown in Figure 9. However, every Transport

Fig. 9. Initial Design of TAO’s Reply Processing Mechanisms

mechanism, such as IIOP and UNIX-domain sockets (UIOP), in TAO’s pluggable
protocols framework [11] required three Connection Handler implementations
to support all the reply wait strategies in its Transport implementation. Not
surprisingly, this approach did not scale up effectively when TAO incorporated
additional transport mechanisms, such as VME, Fibrechannel, or TP4. TAO’s
original design also complicated the integration of the AMI callback model be-
cause changes to the reply wait mechanisms were necessary for each Transport
implementation.

Forces: The semantics of the existing wait mechanisms, as well as the existing
optimizations, must be maintained while integrating the AMI callback model.
Moreover, applications should be able to configure TAO’s reply wait mechanism
according to their particular needs.

Solution → Refactor reply wait strategies: As part of our enhancement to TAO,
we moved the reply wait mechanisms from the Connection Handlers to the
new Wait Strategy and decoupled it from the underlying Transport and the
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Connection Handler objects. TAO’s new Wait Strategy architecture is illus-
trated in the UML class diagram in Figure 10. In TAO’s enhanced architecture,

Fig. 10. Enhanced Design of TAO’s Reply Processing Strategies

each Transport implements only one Connection Handler. Due to the patterns-
based OO design [11] used in TAO, this modification required changes only to
its Transport and Connection Handler implementations; no other ORB com-
ponents were affected.

In addition to refactoring the wait strategies, a variation of the
Leader/Followers implementation has been integrated into TAO’s
Wait-on-Leader/Followers strategy. This change was necessary because the origi-
nal Leader/Followers implementation assumed non-multiplexed connections, i.e.,
only one request at a time was sent per-connection. Therefore, state variables,
such as semaphores, were kept in the Transport and the Connection Handler
objects, which are per-connection objects. Although this implementation works
for the Exclusive Transport strategy, it is unsuitable for Muxed Transport,
where multiple threads may wait simultaneously for replies on a single connec-
tion.

To address the multiplexing problem, we enhanced the
Leader/Followers model described earlier to create a variation called Muxed-
Wait-on-Leader/Followers strategy. This new strategy uses the Thread-Specific
Storage pattern [28] to store a per-ORB-per-thread condition variable. This con-
dition variable is created on-demand just once, by a factory method in TAO’s
ORB Core. This factory method provides a facade [25] to all ORB strategies,
helper classes, and global or thread-specific resources.

Challenge: How to Minimize Stub Footprint

Context: Earlier, we discussed the ORB components used by the client stub to
set up the connection, create the Reply Dispatchers, send the request, keep
track of the Reply Dispatchers and reply-stubs, wait for and process replies,
and deliver the replies to target threads or reply handler servants. A stub can
either invoke methods on these ORB components directly, or it can use helper
classes that can be implemented as part of the ORB. Helper classes can interact
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with various ORB components on behalf of the stub and execute all functionality
outlined above.

Problem: If stubs interact with the internal ORB components directly, the code
size of the stub increases. In turn, this increases the footprint of the generated
C++ code because TAO’s IDL compiler creates stubs for each operation in the
IDL interface.

Forces: There is a tradeoff between code size and performance [29]. In gen-
eral, stubs could inline all the code required to complete their task [30]. How-
ever, inlining can cause unacceptably large memory footprint. Conversely, stubs
could simply pass parameter data to a shared interpreter, such as a DSI/DII
engine [31]. In this case, however, system performance would suffer.

Solution → Optimized invocation helper facades: To reduce memory footprint,
stubs should use helper classes to factor out common code from the stubs
into reusable ORB Core components. In TAO, these helper classes are called
Synchronous Invocation and Asynchronous Invocation. They provide stubs
with facades that encapsulate the details of various features implemented inter-
nally to the ORB to support both AMI and SMI.

When called by a stub on behalf of a client, the Synchronous Invocation
class establishes a connection4 to the remote host, sends the request, waits for
a reply, receives the reply, and returns control to the stub once the reply is
received. The Asynchronous Invocation class is similar, but it returns control
to the stub as soon as it sends the request. Thus, the Synchronous Invocation
object creates the Synchronous Reply Dispatcher on its local stack activation
record, whereas the Asynchronous Invocation object creates the Asynchronous
Reply Dispatcher on the heap.

As illustrated in Figure 11, TAO’s synchronous and asynchronous variants
inherit from a common Invocation class, which provides a uniform interface to
other components in the ORB. Both classes delegate the tasks described above
to other ORB components we discussed earlier.

3.2 Collaborations between Components in TAO’s AMI-Enabled
Architecture

Now that the preceding sections described TAO’s ORB architecture components
that process synchronous and asynchronous requests, we can present the overall
AMI-enabled ORB architecture of TAO, which is shown by the UML class dia-
gram in Figure 12. Moreover, Figure 13 reexamines the sequence of steps that
occur when an application issues an AMI or SMI call. Each of these steps is
described below:
4 TAO uses connection caching [12] to avoid establishing new connections if one is
already open to a particular ORB endpoint.
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Fig. 11. Invocation Interface

– The Client calls the Stub to invoke an operation. In the case of an AMI
call, it passes a reference to a reply handler servant (1).

– The stubs generated by TAO’s IDL compiler are different for the SMI and
AMI calls. In particular, the SMI and AMI stubs instantiate their corre-
sponding Invocation objects (2).

– The Invocation object creates a Synchronous or Asynchronous Reply Dis-
patcher, depending on the type of the request (3). The Invocation object
then binds the Reply Dispatcher object with the Transport Mux Strategy
object (4 & 5).

– The Invocation object calls the Transport object, which in turn uses TAO’s
pluggable protocols framework [11] and ACE [24] to send the request (6 & 7).

– In the AMI model, the stub returns control to the application at this point.
Later, the Client can wait for the server’s reply. In the SMI model, con-
versely, the Invocation object calls the Transport to wait for the reply,
which delegates this task to the Wait Strategy (8).

– When the reply arrives, the Transport object is notified to read the reply
(9). It reads the complete reply and calls the Transport Mux Strategy
to dispatch the reply (10). The Transport Mux Strategy uses the correct
Reply Dispatcher object created for that invocation and calls its dispatch
method (11).

– If a Synchronous Reply Dispatcher is used, it simply stores the reply
buffer, sets the state variables within the object to indicate that the reply
has been received, and then returns. Conversely, the Asynchronous Reply
Dispatcher invokes the reply stub stored in the object, passing in the reply
handler servant and the reply buffer, and dispatches the reply (12).
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Fig. 12. AMI-enabled TAO ORB Architecture

4 Evaluating the Performance of TAO AMI Callbacks

4.1 Overview

As discussed in Section 1, AMI can help improve the scalability of CORBA appli-
cations by minimizing the number of client threads required to perform two-way
invocations. In this section, we present empirical results that show how TAO’s
AMI implementation helps to increase application scalability by minimizing the
number of client threads. We demonstrate the efficiency of the implementation
by comparing both the latency and operation throughput of SMI and AMI two-
way invocations in TAO.

All experiments were performed on two 400 Mhz quad-CPU Dell 6300 com-
puters running Linux 2.2 and connected by a 100 Mbps Fast Ethernet. Each com-
puter has 1 GB of RAM. The benchmarks were compiled using the GCC v. 2.95
compiler with the highest level of optimization.

The server implementation is held constant in all our benchmarks. Moreover,
to minimize the overhead on the server, we use a simple interface that accepts
a single argument and returns it. The argument is a 64-bit unsigned long that
the client uses to send timestamps to the server to measure round-trip delays.
To minimize jitter, all client and server benchmarking processes were run in the
Linux real-time scheduling class.

4.2 Empirical Results

Two-way latency benchmark: In our first experiment, we compared the round-
trip latency of 10,000 two-way calls in single-threaded applications using three
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Fig. 13. Sequence of Steps in TAO’s SMI & AMI Invocations

different invocation models: (1) SMI using the SII, (2) AMI using the SII, and
(3) deferred SMI using the DII. For the DII and AMI benchmarks we sent the
request and immediately waited for the asynchronous reply.

Table 1 compares the latency for the three invocation models. The best results

Table 1. µsecond Latency Results for Different Invocation Models

Test Minimum Average Maximum Jitter

SMI 455 497 684 2.7%

AMI 447 479 1,859 3.0%

DII 499 573 2,652 9.6%

are obtained using AMI requests, though the difference with respect to SMI
is small (3%). This difference is within the error margins defined by the jitter
measurements and is not significant. Compared to SMI, a larger amount of jitter
was observed for AMI, resulting from the extra locking overhead required to
dispatch the reply-stub. In contrast, the worst performance is obtained using
the deferred synchronous model, which averaged 20% slower than AMI because
it incurs additional DII processing overhead.
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Operation throughput benchmark: In this experiment, we compared the through-
put (in number of requests per second) of the different invocation models. To
simulate asynchronous communication using ORBs without AMI support, appli-
cations have traditionally spawned additional threads. To compare this approach
with an AMI application, therefore, the client process creates a new thread for
each two-way SMI call, up to an OS imposed limit of 220.5 The benchmark sends
10,000 requests on each thread.

In contrast to the heavily threaded SMI client, the AMI client uses only two
threads. One thread sends as many two-way requests as required and the other
thread runs the ORB event loop to dispatch replies to the appropriate reply
handler. To match the number of calls performed by the SMI client, therefore,
the AMI client performs 2,200,000 calls. Finally, we perform the same test using
DII deferred synchronous requests.

The results of this experiment are shown in Figure 2. As shown by these

Table 2. Operation Throughput Results for Different Invocation Models

Test Average Calls/sec.

SMI (220 threads) 1914

SMI (7 threads) 7080

AMI 8524

DII 3816

results, the AMI client not only provides a more scalable design than the multi-
threaded SMI client, but also shows a significant performance improvement. This
improvement stems from the fact that (1) the TCP/IP stack can send larger data
packets containing multiple AMI requests, (2) the two threads in the AMI client
can overlap request invocations and response processing, and (3) the AMI client
fully utilizes the network resources, i.e., it can completely fill TCP/IP windows
because it can “pipeline” the two-way invocations.

In addition to scalability problems, the use of hundreds of threads in the SMI
client also increases its synchronization overhead. Table 2 shows how reducing
the number of threads in the SMI client test from 220 to 7 improved performance
significantly. This solution has the adverse affect of reducing the number of si-
multaneous two-way calls, however, which increases average latency. In contrast,
the AMI client do not suffer from this tradeoff.

Finally, note that that deferred synchronous requests can sometimes achieve
better performance than a naively designed, heavily-threaded SMI client. It is
unlikely, however, that the performance of deferred synchronous DII could ever

5 Note that we were unable to create more than 220 threads before running out of
resources on Linux. This illustrates one of the drawbacks of using threads to simulate
asynchronous communication.
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rival that of AMI, due to the inherent overhead of memory allocation and data
copying. Moreover, DII’s invocation model is more tedious and error-prone to
program.

4.3 Summary of Results

The latency and operation throughput results presented above can be interpreted
as follows:

– For simple applications that require few request-response interactions, SMI
is almost as effective as AMI, with an insignificant difference in latency
within the error margins. In addition, SMI has slightly less jitter because its
implementation uses fewer locks.

– For more demanding applications, AMI applications can exhibit a measur-
able (20%) improvement in operation throughput compared with the best
SMI results. These performance improvements illustrate how AMI clients can
leverage network resources and inherent parallelism in distributed systems
more effectively than SMI clients.

5 Concluding Remarks

Asynchronous method invocations (AMI) are an important feature that has been
integrated into CORBA via the OMG Messaging specification [4]. A key aspect
of AMI is that operations can be invoked asynchronously, while still using the
static invocation interface (SII). The use of SII eliminates much of the complexity
and inefficiency inherent in the dynamic invocation interface (DII)’s deferred
synchronous model.

This paper explains how ORBs can be structured to support the CORBA
AMI callback model efficiently and scalably. The following is a synopsis of the
lessons learned developing TAO’s AMI callback implementation:

AMI requires a scalable ORB architecture: An ORB should implement the AMI
and SMI reply handling in a flexible and scalable manner. For instance, to sup-
port many simultaneous AMI requests efficiently, connection multiplexing opti-
mizations should be supported in the ORB Core.

Optimizations should be guided by empirical measurements: AMI and SMI en-
hancements should be guided by systematic blackbox benchmarks and whitebox
profiling so that existing optimizations in the ORB are preserved, while allowing
applications to configure the ORB based on their specific QoS requirements. For
example, during the validation phase of our AMI changes, we discovered that the
SMI model was performing one memory allocation more than it did before the
AMI changes. The problem was easily fixed, but it illustrates that careful, re-
peated whitebox analysis of the system and application of optimization principle
patterns [15] is required to ensure and maintain its quality.
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The ORB should adapt readily to different use-cases: Design patterns should be
applied to configure ORBs with policies and mechanisms appropriate for par-
ticular application use-cases, while still preserving key optimizations necessary
to support stringent QoS requirements. In particular, we repeatedly applied the
Strategy pattern [25] to TAO’s AMI implementation to support scalable con-
nection multiplexing strategies, while retaining configurations that ensure the
determinism required for hard real-time applications. Applications can select
AMI or SMI strategies using the Service Configurator pattern [25], which makes
the TAO framework dynamically configurable and therefore highly flexible.

Both AMI and SMI are important invocation models: Enhancements needed to
support AMI should not add overhead to the ORB’s SMI processing. Patterns
like Strategy and Service Configurator can be used to make any additional over-
head optional for applications that do not require it.

Programming AMI clients requires application developers to make design deci-
sions: While developing our tests for the AMI implementations, we recognized
that the AMI model, while more intuitive and easier to use than the DII de-
ferred synchronous model, is more complex than simple SMI applications. For
instance, client developers must decide how to handle the replies, e.g., by using a
separate thread, waiting for replies after a fixed number of replies, or adaptively
waiting for replies. Developers must also decide how to connect the reply with
the original request, e.g., by using a different reply handler servant for each one,
returning some kind of request id from the server, or using the POA dynamic
activation mechanisms to distinguish between all the requests. Finally, client de-
velopers must be prepared to handle “inversion of control” in their applications,
i.e., by using a callback to handle the incoming reply.

These challenges should not be viewed as insurmountable problems, how-
ever. After developers master the appropriate patterns and idioms, AMI can be
significantly easier to program than the CORBA deferred synchronous model.
Moreover, it offers significant performance improvements over both SMI and
DII calls. Thus, CORBA AMI is an important addition to the CORBA family
of features and specifications.
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