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Abstract. Optimal linear predictors can be utilised in ABR control al-
gorithms for the management of self-similar network traffic. However,
estimates of the Hurst parameter are required to generate these predic-
tors, and uncertainity in these estimates results in a potential mismatch
of the predictors to the trafficc. When mismatched congestion control
algorithms are used within the network, the impact on the network sys-
tem is greater queue lengths at buffers and more significant cell losses.
The sensitivity of these algorithms to the Hurst parameter estimate is
investigated both analytically and using simulations. It is shown that
an asymmetry in the sensitivity occurs in the region where the Hurst
parameter is significantly underestimated.

1 Introduction

A significant amount of research in the area of teletraffic modeling has been
focused on proving the self-similarity of network traffic [12]. Methods of ac-
curately estimating the Hurst parameter, the index of self-similarity, is a key
issue within this area, and these range from relatively simple methods, such
as the variance-time plots and R/S statistic analysis [3], to more sophisticated
techniques, such as Whittle’s estimator and estimators based on the wavelet
transform citeBeran94,Veitch99. Having demonstrated that network traffic is
self-similar, the subsequent step is to determine the impact of self-similarity on
the network as a system. The performance of a queue is fundamentally different
when the input process to the queue is self-similar [5], with the distribution of
the queue length now being heavy-tailed. In the case of finite buffers, higher cell
losses occur within the system and these losses decrease hyperbolically as the
buffer size is increas ed, rather than the exponential decrease which occurs with
Poisson processes [6].

These rather serious consequences of self-similar traffic has driven research,
though a limited extent, to consider methods of recognising the characteris-
tics of self-similarity within network resource management techniques [7J8/9].
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Our research has focused on incorporating the characteristics of self-similarity
into congestion control algorithms, and in particular rate-control mechanisms for
the ABR service in ATM networks [L0J1I]. This work has demonstrate d that
the buffer memory requirements and cell losses can be reduced if the control
algorithms are developed using the stochastic structure of the self-similar back-
ground traffic, and that adaptive algorithms based on on-line Hurst parameter
estimators can be implemented which track non-stationarities which occur in
the traffic.

An area which has not been addressed by any known research work is that of
investigating the effect of poor knowledge of the actual Hurst parameter when
resource management algorithms are designed specifically with self-similarity
in mind. In this paper, this sensitivity is investigated more thoroughly, both
through analysis of the relative change in variance of prediction errors resulting
from the mismatched algorithm and through simulations, where data sets are
tested with a range of algorithms developed from different Hurst parameter
values.

2 Self-similarity of Network Traffic

2.1 Concepts and Models

There is significant statistical evidence that a wide range of classes of network
traffic is self-similar in nature. This means that there is no natural length of
the bursts in the traffic, and the traffic remains bursty over a range of time
scales (hence the term “self-similar”). The Hurst parameter H is the index of
self-similarity of a process, and a process is categorized as long-range dependent
(LRD) when the parameter lies in the interval 0.5 < H < 1.0. Long-range
dependence means that the correla tions within a process decrease hyperbolically
rather than exponentially, so that the autocovariance function for LRD processes
is non-summable. While the burstiness of LRD traffic can cause buffer overflows
and losses, long-range dependence can be used to one’s advantage in terms of
prediction [10/12]. These large correlations mean that there is significantly more
information within previous states regarding the current state in LRD processes
than in short-range dependent (SRD) proc esses, and more accurate predictions
can be achieved from appropriately filtering stored measurements of the process
in the past.

There are a number of well-known models used for processes which display
self-similarity. Fractional Brownian motion is the canonical example of a self-
similar process, and its incremental process (called fractional Gaussian noise—
fGn), has the autocovariance function:
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where the asymptotic behaviour of the autocovariance function shows that the
process is long-range dependent. A self-similar process can be parsimoniously
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represented by an fGn model, if the mean, variance and Hurst parameter of the
process are known. Another important class of self-similar models is the frac-
tional ARIMA family of models, which are a natural extension of the
ARIMA(p, d, q) models where the differencing parameter d is allowed to assume
fractional values.

2.2 Estimation of the Hurst Parameter

As stated in Section ZT] the Hurst parameter plays a key role in characterizing
the self-similarity of a process. Thus, the estimation of this parameter from a
set of measurements is crucial in determining whether a process is self-similar,
and has attracted a significant amount of research. Self-similarity manifests itself
within data in three fundamental ways—slowly decaying variances as the data is
aggregated, long-range dependence within the covariance structure and a spec-
tral density which obeys a power-law with divergence near the origin. Methods of
estimating the Hurst parameter are based on quantifying one of these behaviours,
usually by estimating the slope of a graph based on some transformation of the
data.

Two heuristic estimation techniques are variance-time analysis and the re-
scaled adjusted range (R/S) statistic analysis [3]. Variance-time analysis is based
on the asymptotic relationship of the variance of sample averages X (™) of non-
overlapping blocks of data of size m from the process X, with the relationship
given by:

Var(X™) ~ em™8, asm — oo (2)

with 0 < 8 < 1 for LRD processes. The other well-known heuristic technique
is R/S statistic analysis, where the R/S statistic exhibits the Hurst effect as
described by the relationship:

E[R(n)/S(n)] ~ en'l, asn — oo (3)

with the parameter H typically about 0.7.

More refined methods of data analysis are based on maximum likelihood type
estimates (MLE) and the use of periodograms which effectively transform the
data into the frequency domain, to estimate the power-law behaviour near the
origin. The well-known Whittle’s estimator is an approximate MLE which is
asymptotically normal and efficient. The Abry-Veitch (AV) estimator is a fast
estimation technique based on the wavelet transform [4]. The wavelet domain is
a natural framework from which to view self-similar processes due to the scaling
behaviour which is common to both fields. The wavelet transform generates a
set of detail coefficients dx(j, k) from a data set, and for a LRD process X, the
variance of the detail coefficients at each level j is given by the relationship:

Eldx(j,)*] = C-2/CY (4)

with C > 0. An important property of the AV estimator is that it can be
reformulated to generate on-line estimates of the Hurst parameter [I3]. This is
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because it is based on the fast pyramidal filter, which was originally intended for
on-line applications. These on-line estimates can be used within adaptive ABR
control mechanisms [11].

3 Using Hurst Parameter Estimates
in ABR Rate Control

The potential impact of self-similar traffic within networks, such as greater queue
lengths at nodes and increased cell losses, makes it necessary to incorporate
the characteristics of self-similarity into resource management algorithms. In
particular, we have investigated using the properties of long-range dependence
to improve the accuracy of predictions of traffic levels in the network to develop
congestion control algorithms for the ABR service [10)]. Predictors are developed
using the stoc hastic structure of the self-similar background traffic, and the
estimated Hurst parameter is important in characterising this structure.

3.1 Modeling ABR Control

The concept of the ABR service is to utilise available bandwidth within the net-
work by controlling the sources which agree to the conditions of the ABR service
contract. This means that the network returns control information back to the
ABR source regarding the allowable rate which the source can transmit at. The
approach which has been used in our research is to determine optimal predic-
tions of future traffic levels, and calculate the ABR rates from these predictions.
The network model defined here is based on controlling the bandwidth of the
outgoing link by aiming to achieve a specified link utilization. This follows the
model proposed by Zhao and Li [14]. The congestion avoidance policy can be
formulated as follows,

U(k) + Ry(k) = pC ()

where the control aim is to keep the offered load at a proportion p (0 < p < 1)
of the outgoing link capacity C.

The total rate-controlled bandwidth U (k) is made up of the summation of
the individual bandwidths used by the N rate-controlled connections. Each con-
nection has its own round-trip delay J; through the network. Then the state
variable of the system can be defined as deviation from the target utilization,
that is

N
2(k) =pC— | > uj(k—5;) + Ry(k) (6)

=1

We can further define the variable W (k) = p C — Ry(k), thus resulting in the
equation

N
(k) ==Y uj(k = 6;) + W(k) (7)

j=1
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Equation (@) is in the form of a multi-input single-output (MISO) control
system. The aim of this control system is to determine the inputs u;(k) so
that the variance E[z2(k)] is minimized. However, a control system for a MISO
system is computationally too expensive. To simplify the system, the available
bandwidth is equally shared among rate-controlled connections. Thus, we can
define:

The system now becomes a collection of N subsystems, each with their own
controller:

(k) = —u;(k — 61) +w;(k), j=1,... ,N (9)

where the round-trip delays have been ordered such that 6; > do > -+ > dy
without loss of generality.

Our control aim now is to minimize E[z%(k)]. This is equivalent (refer to
[15]) to requiring %, (k) = 0 for all k. Taking the expectation of (@) and setting
Z;(k) = 0, we have the following general control law for each subsystem:

wj (k) = iy (k +8; | W(m) : m < k) (10)

Thus, we require the allowed rates of the individual source rates u;(k) to be
equal to the predicted values of the system parameters w;(k + ¢;), which are
determined by the amount of bandwidth available in the outgoing link. This
prediction can be achieved by using the self-similarity of the network traffic.

3.2 Optimal Prediction of Self-similar Processes

As we have defined our system model in Section B, we require the prediction
of the background network traffic which is traversing a particular node in the
network to determine the desired rates of the controlled sources. This information
experiences a delay J in the network before the effects can be observed at the
same node. Hence, we require a J-step predictor. The long-range dependence
property of network traffic can be employed to provide more accurate predictions
. The optimal linear predictor Gj is of the form:

Xiys = G I Xy (11)

where X, is a covariance stationary stochastic process with zero mean, variance
0? and autocovariance function v*(k) and Xjs is the vector of stored traffic
measurements { Xy, Xr—1,... , Xp—m+1} . M is the memory-length of the pre-
dictor. The solution is given in [16] and is found by taking the expectations
E(Xk+5Xk+5—m) on both sides of (II) for m = k — M +1,... ,k, resulting in
the matrix equation:

G5 = (12)
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where (¢, j) = v*(i — j) is the M x M covariance matrix, v; = (v*(8),7*(d +
1),...,7*(0 + M — 1)) is M-values of the autocovariance function starting at
lag 6 and Gy is the prediction vector. The variance of the prediction errors is
given by

v = (0) =yt Ty (13)

The predicted background traffic levels for traffic with non-zero mean py; are
then calculated as:

Ry(k+0) = + G*5 (Ru (k) — ) (14)

3.3 Sensitivity of ABR Control to Hurst Parameter Estimates

Of course, absolute knowledge of the stochastic structure of the background
traffic is not possible, and the stochastic structure must be estimated from ob-
servations of the traffic. Thus, predictors which are developed for the traffic are
inevitably mismatched to some degree to that traffic. This effect of this mismatch
can be determined analytical. Consider that the actual predictors are developed
from an estimated autocovariance function:

I'Gs =735 (15)

The variance of the prediction errors using this mismatched predictor now be-
comes

i5 = E [(Rb(k +6) — Rylk + 5))2]
= E[Ry(k + 0)] — 2E[Ry(k + 6) Ry (k + 0)] + E[Ry(k +6)?]  (16)
=*(0) — 29" 155 + AL T 1714,

The relative increase in the variance of the prediction errors is

which gives Theorem [1

Theorem 1. The relative increase in the variance of the prediction errors re-
sulting from a linear predictor which is mismatched to the stochastic structure
of the background traffic is given by:

B LT D 5+ s Ty = 2975 1715
7 (0) =y Iy

Using Theorem [Tl the sensitivity of congestion control algorithms for the ABR

service to the Hurst parameter estimates can be investigated. The fractional

Gaussian noise model is used to calculate the relative increase in the variance
of the prediction errors when an estimate of the Hurst parameter H is used.

K, = (18)



42 S.A.M. Ostring, H. Sirisena, and 1. Hudson

The autocorrelation function for fGn is given in (), and the relative change
K, is calculated for pairs of (H * H ). The resulting surface is shown in Fig.
[l The figure reveals an asymmetry in the sensitivity of the predictors to the
Hurst parameter estimates, with an asymptote situated at the point (H*, H )=
(1.0,0.5). Thus, the relative increase in variance in the prediction errors rapidly
grows when the burstiness of the data becomes more significant, ie. as H* 1.0,
and yet the Hurst parameter is estimated to be close to SRD, ie. H N\, 0.5. This
result emphasizes the importance of recogn ising the presence of self-similarity
within network traffic if it exists. By incorporating the characteristics of self-
similarity into resource management algorithms, the impact of the burstiness of
self-similar traffic can be avoided.

Sensitivity of Predictors to Hurst Parameter Estimates

05 05

Fig. 1. The sensitivity of linear predictors to Hurst parameter estimates using the
fractional Gaussian model.

Figure 1] also indicates that another conclusion can be drawn regarding the
Hurst parameter sensitivity. The asymmetry at the point diagonally opposite
from the asymptote, (H*,H) = (0.5,1.0) suggests that it is actually benefi-
cial to err on the side of over-estimating the Hurst parameter and to assume a
greater burstiness than may actually exist within the traffic. While this may be
intuitively appealing, it does demand an explanation.

Predictors for the boundary values for the Hurst parameter are shown in
From the predictors, it is clear why the asymmetry occurs and the reason
for its orientation. When H* = 0.99, the optimal predictor is shown in Fig.
Pfa) where significant weight is given to previous samples because of the LRD
effect. However, if the predictor in Fig. BIb) is used, no weight is given to the
previous samples (even though there is a significant amount of information in
these samples). This results in significant prediction errors. Consider the other
situation, where H* = 0.5 represents in normally distributed white Gaussian
noise, and the mismatched predictor in Fig. [2(a) is used rather than the one in
Fig. B(b). In this case, there is no information about the future sample in the
stored data samples and the optimal predictor gives no weight to any of the
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samples. When the mismatched predictor in Fig.[2(a) is used, weight is given to
these samples, but since the burstiness of the samples is mi nimal (H* = 0.5),
each individual sample does not impact the weighted sum as significantly and
overall the prediction errors are comparitively smaller.

(a) Predictor Coefficients: H =0.99 (b) Predictor Coefficients: H=0.5
0.7 0.7
*
0.6 0.6
|
0.5 0.5
1
041, : : : 0.4
|
o 03[ (_"JU 0.3
|
0.2} 0.2
\
0.1f 0.1
* %k *
0 B ettt A )
-0.1 -0.1
5 10 15 5 10 15
Coefficient Index Coefficient Index

Fig. 2. Predictors for the boundary Hurst parameter values: (a) H = 0.99, (b) H = 0.5.

4 Simulation Results

The asymmetry of the sensitivity of ABR controllers with respect to the Hurst
parameter estimates is investigated in this Section using data sets, giving simu-
lation results which we can compare with the analytical results. The simulation
model of the ABR system is shown in Fig. Bl and it consists of six ABR sources
competing for the use of a congested link. Each source has its own round-trip
delay, and the sources are ordered according to the delay ¢; = {10,8,6,4,2,1}.
T he congested link is also carrying non-ABR background traffic, which uses a
significant proportion of the link capacity, in this case 50% of the capacity on
average.

The background traffic is modelled by data sets which consist of ten ag-
gregated VBR data sets [L7[18] which have been randomly shifted in time and
have been filtered to remove GOP correlation structure of the VBR data. The
sources of these aggregated data sets and the Hurst parameter estimates for the
data sets are summarised in Table [l Two additional data sets (the Combina-
tion VBR Data and White Gaussian Noise sets) were used for comparison. The
Com bination VBR Data was produced by aggregating all the previous VBR
data sets sources in the table, which had been randomly shifted in time. Finally
the White Gaussian Noise data set was generated from a normally distributed
random number generator, and transformed so that it has an equivalent mean
and variance to the Star Wars data set.

Comparing the estimates from the different estimation techniques, it is ob-
served that while there is sufficient agreement between the techniques that self-
similarity is evident in each of the aggregated VBR data sets and that, for most
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Fig. 3. The network model for the simulation study.

cases, the confidence 95% generated from the AV estimator contains all three
estimates, there is also sufficient discrepancy between the values for the Hurst
parameter to leave uncertainity in the choice of the value when an ABR con-
gestion control algorithm is being develope d. To determine the effect of this
uncertainity on the performance of the ABR system, predictors for the sim-
ulation model were developed across the entire interval of possible estimates,
He [0.5,1.0) and the system was simulated using each predictor.

Buffers at network nodes are designed to handle traffic overflows which oc-
cur in the network. In our case, these overflows represent positive prediction
errors. The maximum queue length is used as measures of the performance of
the network, and an indicator of the sensitivity of the control algorithms to the
Hurst parameter estimate under the assumption of infinite network buffers. For

Table 1. Comparison between the Hurst parameter estimates for the variance-time
(V-T), R/S statistic (R/S) and Abry-Veitch (AV) estimation methods.

Data Set Source V-T Estimate R/S Estimate AV Estimate
with 95% CI
Star Wars 0.84 0.90 0.835
[0.774,0.897]
Mr. Bean 0.76 0.86 0.817
[0.634, 1.000]
James Bond: Goldfinger 0.89 0.86 0.851
[0.669, 1.034]
Jurassic Park 0.79 0.81 0.850
[0.6667, 1.033]
Terminator IT 0.77 0.83 0.838
[0.732,0.943]
ATP Tennis Final 94: Becker - Sampras 0.77 0.85 0.884
[0.778, 0.989]
Soccer World Cup Final 94: Brazil - Italy 0.57 0.79 0.791
[0.685, 0.896]
Combination VBR Data 0.71 0.85 0.811
[0.629, 0.994]
White Gaussian Noise 0.47 0.51 0.495

[0.469, 0.522]
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finite buffers, the cell loss ratio (CLR) is used as the performance metric. These
simulation results are shown in Figs . 4 and

Maximum Buffer Occupancy
18000 T T T T T

T
—©— Star Wars
—< Mr. Bean

-8 ATP
16000 —— Bond
—v— Jurassic
—#— Soccer
14000 —=— Terminator ||

—t— Combination

—*— Gaussian
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100004 B

8000 - T

Maximum Buffer

6000 T

4000 - 4

2000 \

*
¥
!

Fig. 4. The maximum queue length at the node against the Hurst parameter estimate.

It is observed from these figures that the performance of the ABR system
is highly sensitive to the Hurst parameter estimate with self-similar background
traffic. This occurs in the region of the interval H = [0.5,1.0) where H is close
to the 0.5 value, which means that the design has assumed short-range depen-
dence within the network traffic. This sensitivity is revealed in longer queues
in the nodes, and greater cell losses. The sensitivity of the system is signifi-
cantly reduced when the estimates for the Hurst parameter are in the interval
He (0.75,1.0). Comparing these simulation results with the surface for predic-
tor sensitivity derived analytically (Fig. [[), we have further confirmation that
the actual values of the Hurst parameters for this type of data is in the interval
H € (0.75,1.0).

The Combination VBR Data and White Gaussian Noise data sets provide an
interesting comparison. In both cases the overall sensitivity to H is significantly
less than in the other cases. In the case of the White Gaussian Noise data set, this
reduction in sensitivity agrees with the conclusions from our analytical work, that
there is insignificant change in network performance when a mismatched filter
is used with SRD traffic. The slight increase in the maximum queue lengths and
CL R as the Hurst parameter is increased across the interval [0.5,1.0) confirms
that the true value for the Hurst parameter is close to 0.5. In the case of the
Combination VBR Data set, while the sensitivity is not as significant as the
other VBR data sets, it still appears that the assumption of self-similarity and
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Fig. 5. The Cell Loss Ratio, for the system with a finite buffer of maximum capacity
100 cells, versus the Hurst parameter estimate.

a higher estimate for the Hurst parameter does result in marginally improved
network performance.

While our simulation results do not prove self-similarity for the aggregated
VBR data sets (which is not the purpose of this research), two main conclusions
can be drawn from these results. Firstly, significant losses will occur within the
ABR control system if the self-similarity of network traffic is not accounted for in
the design of the control algorithms. These losses in the system can be reduced by
incorporating the characteristics of self-similarity into the algorithms. Secondly,
if two estimates H 1 and H2 have been obtained for the Hurst parameter of the
network traffic, where H, < H,, then it is more judicious to choose the greater
estimate Hy when designing the ABR control algorithm, provided that H, < 1.0.

5 Conclusions

There is an inevitable uncertainity in the specific value which is assigned to the
Hurst parameter when research moves from attempting to prove self-similarity
to utilising its characteristics within network architecture. This issue of the im-
pact of the Hurst parameter value has been addressed here both analytically
and through simulations. The analytical study revealed an asymmetry in the
sensitivity of the predictors to the estimate, especially in the region where the
Hurst parameter was significantly u nderestimated and the background traffic
was assumed to be SRD when in reality it was significantly LRD in character.
The sensitivity was also addressed using simulations of an ABR control system
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using aggregated VBR data sets to model background network traffic. Previous
research has statistically proven the self-similarity of the data used, and our
own Hurst parameter estimates agreed with that conclusion. The simulations
investigated the performance of network buffers when a set of congestion con-
trol algorithms were used which were derived from Hurst parameter values that
spanned the interval H € [0.5,1.0). The results of our simulations confirmed the
analytical study.

This research work has confirmed previous conclusions regarding self-simila-
rity in network traffic, specifically that there is significant impact on the network
performance if the self-similar nature of traffic is ignored. Thus, it is important to
continue to develop and improve Hurst parameter estimators, and to investigate
methods of incorporating the characteristics of self-similarity into network man-
agement techniques. In addition, this research demonstrated that, when given a
set of estimates of th e Hurst parameters, the most judicial choice of the Hurst
parameter value is the highest one as this ensures the best network performance.
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