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Abstract. Priority scheduling for packets is becoming a hot topic, as
attemps are being made to integrate voice services in existing IP data
networks. In this paper, we consider a discrete-time queueing system with
head-of-line (HOL) non-preemptive priority scheduling. Two classes of
traffic will be considered, i.e., high priority and low priority traffic, which
both generate variable-length packets. We will derive expressions for the
Probability Generating Function (pgf) of the packet delay of the high
priority tra ffic and the low priority traffic. From these, some performance
measures (such as the mean value) will be derived. These will be used
to illustrate the significance of priority scheduling and the effect of non-
preemptive scheduling on the high priority traffic.

1 Introduction

In recent years, there has been much interest devoted to incorporating multi-
media applications in IP networks. Different types of traffic need different QoS
standards. For real-time applications, it is important that mean delay and delay-
jitter are bounded, while for non real-time applications, the Loss Ratio (LR) is
the restrictive quantity.

In general, one can distinguish two priority strategies, which will be referred
to as Time Priority and Space Priority. Time priority schemes attempt to guar-
antee acceptable delay boundaries to delay-sensitive traffic (such as voice/video).
This is achieved by giving it HOL priority over non-delay-sensitive traffic, and/or
by sharing access to the server among the various traffic classes in such a way
so that each can meet its own specific delay requirements. Several types of
Time priority (or scheduling) s chemes (such as Weighted-Round-Robin (WRR),
Weighted-Fair-Queueing(WFQ)) have been proposed and analyzed, each with
their own specific algorithmic and computational complexity (see e.g. [6] and
the references therein). On the other hand, Space Priority schemes attempt to
minimize the packet loss of loss-sensitive traffic (such as data). Again, vari-
ous types of Space Priority (or discarding) strategies (such as Push-Out Buffer
(POB), Partial Buffer Sharing (PBS)) have been presented in the literature (see
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e.g. [15]), mainly in the context of ATM buffers. An overview of both types of
priority schemes can be found in [1].

In the existing literature, there have been a number of contributions with
respect to HOL priority scheduling. An overview of some basic HOL priority
queueing models can be found in Jaiswal [3], Takacs [10] and Takagi [11] and
the references therein. Khamisy et al. [4], Laevens et al. [5], Takine et al. [13]
and Walraevens et al. [16] have studied discrete-time HOL priority queues with
deterministic service times equal to one slot. Furthermore, non-preemptive HOL
priority queues have been considered by Rubin et al. [7], Stanford [8], Sugahara
et al. [9] and Takine et al. [12,14]. Rubin [7] studies the mean waiting time,
for a queue fed by an i.i.d. arrival process. Stanford [8] analyses the interdepar-
ture time distribution in a queue fed by a Poisson process. In Sugahara [9], a
non-preemptive queue in continuous time is presented, with a Switched Poisso
n Process arrival process for the high priority packets. Finally, Takine [12,14]
studies a discrete-time MAP/G/1 queue, using matrix-analytic techniques.

In this paper, we analyse the packet delay of high and low priority traffic in
a discrete-time single-server buffer for a non-preemptive HOL priority scheme
and per-slot i.i.d. arrivals. The transmission times of the packets generated by
both types are assumed to be generally distributed. We will demonstrate that an
analysis based on generating functions is extremely suitable for modelling this
type of buffers with priority scheduling.

2 Mathematical Model

We consider a discrete-time single-server queueing system with infinite buffer
space. Time is assumed to be slotted. There are 2 types of traffic arriving in
the system, namely packets of class 1 and packets of class 2. We denote the
number of arrivals of class j during slot k by aj,k (j = 1, 2). Both types of
packet arrivals are assumed to be i.i.d. from slot-to-slot and are characterized
by the joint probability mass function a(m, n) and joint probability generating
function (pgf) A(z1, z2) . Notice that the number of packet arrivals from different
classes (within a slot) can be correlated. Further, we define the marginal pgf’s of
the arrivals from class 1 and class 2 during a slot by A1(z) , E[za1,k ] = A(z, 1)
and A2(z) , E[za2,k ] = A(1, z) respectively. We furthermore denote the arrival
rate of class j (j = 1, 2) by λj = A′

j(1).
The service times of the class j packets are assumed to be i.i.d. and are

characterized by the probability mass function sj(m) and probability generating
function Sj(z) (j = 1, 2). We furthermore denote the mean service time of a
class j packet by µj = S′

j(1). We define the load offered by class j packets as
ρj , λjµj (j = 1, 2). The total load is then given by ρ , ρ1 + ρ2.

The system has one server that provides the transmission of packets. Class
1 packets are assumed to have non-preemptive priority over class 2 packets, and
within one class the service discipline is FCFS. Due to the priority scheduling
mechanism, it is as if class 1 packets are stored in front of class 2 packets in the
queue. So, if there are any class 1 packets in the queue when the server becomes
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idle, the one with the longest waiting time will be served next. If, on the other
hand, no class 1 packets are present in the queue at that moment, the class
2 packet with the longest waiting time, if any, will be served next. Since the
priority scheduling is non-preemptive, service of a packet will not be interrupted
by newly arriving packets.

3 System Contents

To be able to analyze the packet delay, we will first analyse the system contents
at the beginning of so-called start slots, i.e., slots at the beginning of which a
packet (if available) can enter the server. Note that every slot during which the
system is empty, is also a start slot. We denote the system contents of class j
packets at the beginning of the l-th start slot by nj,l (j = 1, 2). Their joint pgf
will be denoted by Nl(z1, z2). Clearly, the set {(n1,l, n2,l)} forms a Markov chain,
since the arrival process is i.i.d. and only random variables during start slots are
involved. If s∗ indicates the service time of the packet that enters service at the
beginning of start slot l (which is - by definition - regular slot k) the following
system equations can be established:

1. If n1,l = n2,l = 0:

n1,l+1 = a1,k ; n2,l+1 = a2,k, (1)

i.e., the only packets present in the system at the beginning of start slot l+1
are the packets that arrived during the previous slot, i.e., start slot l.

2. If n1,l = 0 and n2,l > 0:

n1,l+1 =
s∗−1∑
i=0

a1,k+i ; n2,l+1 = n2,l +
s∗−1∑
i=0

a2,k+i − 1, (2)

i.e., the class 2 packet in service leaves the system just before start slot l+1.
s∗ is characterized by probability mass function s2(m), since a class 2 packet
enters the server at the beginning of start slot l.

3. If n1,l > 0:

n1,l+1 = n1,l +
s∗−1∑
i=0

a1,k+i − 1 ; n2,l+1 = n2,l +
s∗−1∑
i=0

a2,k+i, (3)

i.e., the class 1 packet in service leaves the system just before start slot l+1.
s∗ is characterized by probability mass function s1(m), since a class 1 packet
enters the server at the beginning of start slot l.

In the remainder, we define E[X{Y }] as E[X|Y ]Prob[Y ]. The system equations
(1)-(3) can now be translated into relations between z-transforms. Exploiting
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the statistical independence of the (set of) random variables s∗, (n1,l, n2,l) and
(a1,k+i, a2,k+i), i ≥ 0, respectively, this leads to the following relation:

Nl+1(z1, z2) , E
[
z

n1,l+1
1 z

n2,l+1
2

]
= E

[
z

n1,l+1
1 z

n2,l+1
2 {n1,l = n2,l = 0}]

+ E
[
z

n1,l+1
1 z

n2,l+1
2 {n1,l = 0, n2,l > 0}]

+ E
[
z

n1,l+1
1 z

n2,l+1
2 {n1,l > 0}]

= A(z1, z2)Nl(0, 0) +
S2(A(z1, z2))

z2
[Nl(0, z2) − Nl(0, 0)] (4)

+
S1(A(z1, z2))

z1
[Nl(z1, z2) − Nl(0, z2)] .

We assume that the system is stable (implying that the equilibrium condition
requires that ρ < 1) and as a result Nl(z1, z2) and Nl+1(z1, z2) converge both to
a common steady-state limit denoted by N(z1, z2). By taking the l → ∞ limit
of equation (4), we obtain:

[z1 − S1(A(z1, z2))]N(z1, z2) = z1
z2A(z1, z2) − S2(A(z1, z2))

z2
N(0, 0) (5)

+
z1S2(A(z1, z2)) − z2S1(A(z1, z2))

z2
N(0, z2).

It now remains for us to determine the unknown function N(0, z2) and the
unknown parameter N(0, 0). This can be done in two steps. First, we notice
that N(z1, z2) must be bounded for all values of z1 and z2 such that |z1| ≤ 1
and |z2| ≤ 1. In particular, this should be true for z1 = Y (z2), with Y (z2) ,
S1(A(Y (z2), z2)) and |z2| ≤ 1, since it follows from Rouché’s theorem that there
is exactly one solution |Y (z2)| ≤ 1 for all such z2. Notice that Y (1) equals 1.
The above implies that if we choose z1 = Y (z2) in equation (5), where |z2| ≤ 1,
the left hand side of this equation vanishes. The same must then be true for the
right hand side, yielding

N(0, z2) = N(0, 0)
z2A(Y (z2), z2) − S2(A(Y (z2), z2))

z2 − S2(A(Y (z2), z2))
. (6)

Finally, in order to find an expression for N(0, 0), we put z1 = z2 = 1 and use de
l’Hospital’s rule in equation (5). Therefore, we need the first derivative of Y (z)
for z = 1 and this is given by

Y ′(1) = µ1(λ1Y
′(1) + λ2) =

λ2µ1

1 − ρ1
. (7)

We then obtain N(0, 0):

N(0, 0) =
1 − ρ

1 − ρ + λ1 + λ2
. (8)
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A fully determined expression for N(z1, z2) can now be derived by combining
equations (5) and (6):

N(z1, z2) = N(0, 0)
[

z1(z2A(z1, z2) − S2(A(z1, z2)))
(z1 − S1(A(z1, z2)))(z2 − S2(A(Y (z2), z2)))

+
S2(A(Y (z2), z2))(S1(A(z1, z2)) − z1A(z1, z2))
(z1 − S1(A(z1, z2)))(z2 − S2(A(Y (z2), z2)))

(9)

+
A(Y (z2), z2)(z1S2(A(z1, z2)) − z2S1(A(z1, z2)))

(z1 − S1(A(z1, z2)))(z2 − S2(A(Y (z2), z2)))

]
,

with N(0, 0) given by equation (8) and Y (z) implicitly defined by Y (z) =
S1(A(Y (z), z)).

4 Packet Delay

The packet delay is defined as the total time period a tagged packet spends in
the system, i.e., the number of slots between the end of the packet’s arrival slot
and the end of its departure slot. We denote the delay of a tagged class j packet
by dj and its pgf by Dj(z) (j = 1, 2). Before deriving expressions for D1(z) and
D2(z), we first define some stochastic variables we will frequently use in this
section. We denote the arrival slot of the tagged packet by slot k. If slot k is a
start s lot, it is assumed to be start slot l. If slot k is not a start slot on the
other hand, the last start slot preceeding slot k is assumed to be start slot l. We
denote the number of class j packets that arrive during slot k, but which are
served before the tagged packet by fj (j = 1, 2). We denote the service time of
the tagged class j packet by s∗

j (j = 1, 2). We finally denote the service time and
the elapsed service time of the packet in service (if any) during the arrival slot
of the t agged packet by s∗ and s+ respectively.

4.1 Delay of Class 1 Packets

We tag a class 1 packet. There are 3 possibilities when the tagged packet arrives:

1. The server is idle during slot k, yielding

d1 =
f1∑

m=1

s
(k)
1,m + s∗

1, (10)

with the s
(k)
1,m’s the service times of the class 1 packets that arrived during

slot k, but that are served before the tagged class 1 packet.
2. A class 2 packet is in service during slot k (implying that n1,l = 0, n2,l > 0),

yielding

d1 = (s∗ − s+ − 1) +
s+∑
i=1

a1,k−i∑
m=1

s
(k−i)
1,m +

f1∑
m=1

s
(k)
1,m + s∗

1, (11)
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with the s
(k−i)
1,m ’s (0 ≤ i ≤ s+) the service times of the class 1 packets that

arrived during slot k − i. The residual service time of the packet in service
during slot k contributes in the first term, the service times of the class
1 packets in the system at the beginning of slot k contribute in the second
term, the service times of the class 1 packets arrived during slot k, but served
before the tagged class 1 packet contribute in the third term, and finally the
service time of the tagged class 1 packet itself contributes in the last term.

3. A class 1 packet is in service during slot k (i.e., n1,l > 0), yielding

d1 = (s∗ − s+ − 1) +
n1,l−1∑
m=1

s̃1,m +
s+∑
i=1

a1,k−i∑
m=1

s
(k−i)
1,m +

f1∑
m=1

s
(k)
1,m + s∗

1. (12)

The difference with the previous situation is that there may be multiple high
priority packets in the buffer (apart from the one in service) at the beginning
of slot l, which will contribute to the tagged packet’s delay. If we denote by
s̃1,m the service times of the class 1 packets already in the queue at the
beginning of the ongoing service (thus without the packet in service during
slot k), then this condition is quantified by the second term in the right-hand
side of the above expression .

Again, equations (10)-(12) can be z-transformed. Taking the sum then eventually
leads to an expression for D1(z):

D1(z) , E[zd1 ] = E
[
zd1{no service}]

+ E
[
zd1{service class 2 packet}]

+ E
[
zd1{service class 1 packet}]

= F1(S1(z))S1(z)


1 − ρ + ρ2

S∗
2

(
A1(S1(z)))

z
, z

)
z

(13)

+ ρ1

S∗
1

(
A1(S1(z)))

z
, z

)
z

N(S1(z), 1) − N(0, 1)
(1 − N(0, 1))S1(z)


 ,

with F1(z) , E[zf1 ], S∗
2 (x, z) , E[xs+

zs∗ |n1,l = 0, n2,l > 0] and S∗
1 (x, z) ,

E[xs+
zs∗ |n1,l > 0]. The random variable f1 can be shown to have the following

pgf (see e.g. [2]):

F1(z) =
A1(z) − 1
λ1(z − 1)

. (14)

If a class j packet is in service during slot k, s∗ is characterized by the probability
mass function sj(m) (j = 1, 2). Notice that the distributions of s∗ and s+ are
correlated, since s+ is the elapsed part of the service time s∗ at the beginning of
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slot k. Considering these observations, one can derive the following expression
for S∗

j (x, z):

S∗
j (x, z) =

Sj(xz) − Sj(z)
µj(x − 1)

, (15)

with j = 1, 2. Substitution of (9), (14) and (15) into equation (13) finally leads
to a closed-form version of D1(z):

D1(z) =
(1 − ρ)(z − 1) + λ2(S2(z) − 1)

λ1(S1(z) − 1)
S1(z)(A1(S1(z)) − 1)

z − A1(S1(z))
. (16)

4.2 Delay of Class 2 Packets

Because of the priority discipline, an expression for d2 will be a bit more involved.
We now tag a class 2 packet that enters the buffer during slot k. Let us refer
to the packets in the system at the end of slot k, but that have to be served
before the tagged packet as the “primary packets”. So, basically, the tagged class
2 packet can enter the server, when all primary packets and all class 1 packets
that arrived after slot k are transmitted. In order to analyse the delay of the
tagged class 2 packet, the number of class 1 packets and class 2 packets that are
served between the arrival slot of the tagged class 2 packet and its departure slot
is important, not the precise order in which they are served. Therefore, in order
to facilitate the analysis, we will consider an equivalent virtual system with an
altered service discipline. We assume that from slot k on, the order of service for
class 1 packets (those in the queue at the end of slot k and newly arriving ones)
is LCFS instead of FCFS in the equivalent system (the transmission of class 2
packets remains FCFS). So, a primary packet can enter the server, when the
system becomes free (for the first time) of class 1 packets that arrived during
and after the service time of the primary packet that predecessed it according to
the new service discipline. Let v

(i)
1,m denote the length of the time period during

which the server is occupied by the m-th class 1 packet that arrives during slot
i and its class 1 “successors”, i.e., the tim e period starting at the beginning of
the service of that packet and terminating when the system becomes free (for
the first time) of class 1 packets which arrived during and after its service time.
Analogously, let v

(i)
2,m denote the length of the time period during which the

server is occupied by the m-th class 2 packet that arrives during slot i and its
class 1 “successors”. The v

(i)
j,m’s (j = 1, 2) are called sub-busy periods, caused by

the m-th class j packet that arrived durin g slot i.
When the tagged class 2 packet arrives, there are 3 possibilities:

1. The server is idle during slot k, yielding

d2 =
2∑

j=1

fj∑
m=1

v
(k)
j,m + s∗

2, (17)
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i.e., f1 class 1 primary packets and f2 class 2 primary packets that arrived
during slot k and their class 1 successors have to be served before the tagged
class 2 packet.

2. A class 2 packet is in service during slot k, yielding

d2 = (s∗ − s+ − 1) +
s∗−s+−1∑

i=1

a1,k+i∑
m=1

v
(k+i)
1,m +

2∑
j=1

fj∑
m=1

v
(k)
j,m (18)

+
2∑

j=1

s+∑
i=1

aj,k−i∑
m=1

v
(k−i)
j,m +

n2,l−1∑
m=1

ṽ2,m + s∗
2,

with the ṽ2,m’s the sub-busy periods, caused by the m-th class 2 packet
already in the queue at the beginning of start slot l. The residual service
time of the packet in service during slot k contributes in the first term, the
sub-busy periods of the class 1 packets arriving during the residual service
time contribute in the second term, the sub-busy periods of the class 1 and
class 2 packets arriving during slot k, but that have to be served before the
tagged class 2 packet contribute in the third term, the sub-busy periods of
the class 1 and class 2 packets that arrived during the elapsed service time
contributes in the fourth term, the sub-busy period of the class 2 packets
already in the queue at the beginning of start slot l contributes in the fifth
term and finally the service time of the tagged class 2 packet itself contributes
in the last term.

3. A class 1 packet is in service during slot k, yielding

d2 = (s∗ − s+ − 1) +
s∗−s+−1∑

i=1

a1,k+i∑
m=1

v
(k+i)
1,m +

2∑
j=1

fj∑
m=1

v
(k)
j,m (19)

+
2∑

j=1

s+∑
i=1

aj,k−i∑
m=1

v
(k−i)
j,m +

n1,l−1∑
m=1

ṽ1,m +
n2,l∑
m=1

ṽ2,m + s∗
2,

with the ṽj,m’s (j = 1, 2) the sub-busy periods, caused by the m-th class j
packet already in the queue at the beginning of start slot l. The expression
is virtually the same as in the previous case, with an additional term that
takes into account the sub-busy periods of the class 1 packets already in the
system when the transmission of the class 1 packet currently in the server
started (i.e., at the beginning of slot l).

Due to the initial assumptions and since the length of different sub-busy periods
only depends on the number of class 1 packet arrivals during different slots and
the service times of the corresponding primary packets, the sub-busy periods
associated with the primary packets of class 1 and class 2 form a set of i.i.d.
random variables and their pgf will be presented by V1(z) and V2(z) respectively.
Notice that f1 and f2 are correlated; in section 2 it was explained that a1,k and
a2,k may be correlated as well. Once again, applying a z-transform technique to
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equations (17)-(19) and taking into account the previous remarks, we can derive
an expression for D2(z):

D2(z) , E[zd2 ] = E
[
zd2{no service}]

+ E
[
zd2{service class 2 packet}]

+ E
[
zd2{service class 1 packet}]

= F (V1(z), V2(z))S2(z)

{
1 − ρ + ρ2

S∗
2

(
A(V1(z), V2(z))

zA1(V1(z))
, zA1(V1(z))

)
zA1(V1(z))

N(0, V2(z)) − N(0, 0)
(N(0, 1) − N(0, 0))V2(z)

+ ρ1

S∗
1

(
A(V1(z), V2(z))

zA1(V1(z))
, zA1(V1(z))

)
zA1(V1(z))

N(V1(z), V2(z)) − N(0, V2(z))
(1 − N(0, 1))V1(z)

}
, (20)

with F (z1, z2),E[zf1
1 zf2

2 ], S∗
2 (x, z),E[xs+

zs∗ |n1,l = 0, n2,l > 0] and S∗
1 (x, z) ,

E[xs+
zs∗ |n1,l > 0]. The random variables f1 and f2 can be shown to have the

following joint pgf (extension of a technique used in e.g. [2]):

F (z1, z2) =
A(z1, z2) − A1(z1)

λ2(z2 − 1)
. (21)

The S∗
j (x, z)’s (j = 1, 2) are again given by equation (15). Finally, we have to

find expressions for V1(z) and V2(z). These pgfs satisfy the following relations:

Vj(z) = Sj(zA1(V1(z))), (22)

with (j = 1, 2). This can be understood as follows: when the m-th class j packet
that arrived during slot i enters service, v

(i)
j,m consists of two parts: the service

time of that packet itself, and the service times of the class 1 packets that arrive
during its service time and of their class 1 successors. This leads to equation (22).
Equation (20) together with equations (21) and (15) leads to a fully determined
version for D2(z):

D2(z) =
1 − ρ

λ2

S2(z)(A(V1(z), V2(z)) − A1(V1(z)))
zA1(V1(z)) − A(V1(z), V2(z))

1 − zA1(V1(z))
1 − V2(z)

. (23)

5 Calculation of Moments

The functions Y (z), V1(z) and V2(z) can only be explicitly found in case of
some simple arrival processes. Their derivatives for z = 1, necessary to calculate
the moments of the system contents and the cell delay, on the contrary, can be
calculated in closed-form. For example, Y ′(1) is given by equation (7) and the
first derivatives of Vj(z) for z = 1 are given by

V ′
j (1) =

µj

1 − ρ1
,
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with (j = 1, 2). Let us define λij and µjj as

λij , ∂2A(z1, z2)
∂zi∂zj

∣∣∣∣∣
z1=z2=1

; µjj , d2Sj(z)
dz2

∣∣∣∣∣
z=1

,

with i, j = 1, 2. Now we can calculate the mean values of the packet delay of
both classes by taking the first derivatives of the respective pgfs for z = 1. We
find

E[d1] = µ1 +
1
2

µ1λ11

λ1(1 − ρ1)
+

1
2

λ1µ11 + λ2µ22

1 − ρ1
,

for the mean value of the packet delay of a class 1 packet and

E[d2] = µ2 +
1
2

µ2
1λ11

(1 − ρ)(1 − ρ1)
+

1
2

2µ1λ12 + µ2λ22

λ2(1 − ρ)
+

1
2

λ1µ11 + λ2µ22

(1 − ρ)(1 − ρ1)
,

for the mean value of the packet delay of a class 2 packet. In a similar way,
expressions for the variance (or higher order moments) can be calculated as well
by taking the appropriate derivatives of the respective generating functions.

6 Numerical Examples

In this section, we present some numerical examples. We assume the traffic of
the two classes to be arriving according to a two-dimensional binomial process.
Its two-dimensional pgf is given by:

A(z1, z2) = (1 − λ1

N
(1 − z1) − λ2

N
(1 − z2))N . (24)

The arrival rate of class j traffic is thus given by λj (j = 1, 2). This arrival process
occurs for instance at an output queue of a NxN switch fed by a Bernoulli process
at the inlets (see [16]). Notice also that if N → ∞, the arrival process becomes
a superposition of two independent Poisson streams. In the remainder of this
section, we assume that N = 16. We will furthermore assume deterministic
service times for both classes.

In Fig. 1., the mean value of the packet delay of class 1 packets and class 2
packets is shown as a function of the total load ρ, when µ1 = µ2 = 2. The fraction
of class 1 arrivals is 0.25, 0.5 and 0.75 respectively of the total number of arrivals.
In order to compare with FIFO scheduling, we have also shown the mean value
of the packet delay in that case. Since, in this example, the service times of the
class 1 and class 2 packets are equal, the packet delay is then of course the same
for class 1 and class 2 packets, and can thus be calculated as if there is only one
class of packets arriving according to an arrival process with pgf A(z, z). This
situation has already been analyzed, e.g., in [2]. One can observe the influence
of priority scheduling: mean delay of class 1 packets reduces significantly. The
price to pay is of course a larger mean delay for class 2 packets. If this kind of
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Fig. 1. Mean packet delay when the fraction of class 1 arrivals equals 0.25, 0.5 and
0.75

traffic is not delay-sensitive, as assumed, this is not a too big a problem. Also,
the smaller the fraction of high priority packets in the overall traffic mix, the
lower the mean packet delay of both classes will be.

Fig. 2. shows the mean value of the packet delay of class 1 packets as a
function of the total load, when λ1 = 0.25, µ1 = 2 and µ2 = 1, 2, 4, 8, 16. This
figure shows the influence of the non-preemptive priority scheduling. When the
service time of a class 2 packet is assumed to be deterministically equal to 1
slot, i.e., µ2 = 1, the preemptive priority scheduling has the same effect as the
non-preemptive priority scheduling. If µ2 > 1, the non-preemptive prior ity has
worse performance than the preemptive priority scheduling in terms of the mean
packet delay for class 1 packets. Furthermore, for a given value of the low priority
packet length, the mean high priority packet delay increases proportional to the
total load ρ.

7 Conclusions

In this paper, we analyzed the packet delay in a queueing system with non-
preemptive HOL priority scheduling. A generating-functions-approach was
adopted, which led to closed-form expressions of performance measures, such
as mean of packet delay of both classes, that are easy to evaluate. The model
included possible correlation between the number of arrivals of the two classes
during a slot and general service times for packets of both classes. Therefore, the
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results can be applied to analyse the per formance of traffic streams in an envi-
ronment with delay and loss sensitive traffic, such as an integrated voice/data
IP network.
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Fig. 2. Mean packet delay of class 1 packets when the service time of class 2 packets
equals 1, 2, 4, 8, 16
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