
Real-Time Cell Arrival Sequence Estimation
and Simulator for IP/ATM Networks ?

Hiroshi Saito1 Toshiaki Tsuchiya1, Gyula Marosi2, Gyorgy Horvath2,
Peter Tatai2, and Shoichiro Asano3

1 NTT Service Integration Laboratories
2 Technical University of Budapest

3 NACSIS (National Center for Science and Information Systems)

Abstract. We have developed a new traffic measuring tool and applied
it to the real-time simulation of a network. It monitors IP traffic on
an ATM link and continuously transfers the length and timestamp of
each IP packet to a post-processing system. The post-processing system
receives the data, estimates the cell’s arrival epoch at the transmission
queue of the ATM link, and simulates the queueing behavior on-line if
conditions differ from those of the actual system. The measuring tool and
real-time simulation rep resent a new approach to traffic engineering. A
new estimation problem, the arrival sequence estimation, is shown and
some algorithms are proposed and evaluated.

1 Introduction

Internet traffic is growing rapidly world-wide, and the proliferation of new appli-
cations is causing its characteristics to change. Meanwhile, Asynchronous Trans-
fer Mode (ATM) has begun to be deployed in internet backbone networks, sev-
eral types of WAN services, and fast broadband private networks for companies
within a group. In such new telecommunication environments, traffic engineer-
ing faces two difficulties. One is the limited capability to monitor and measure
traffic in network elements such as ATM switches and routers. While capturing
traffic characteristics is one of the most important issues for economical devel-
opment and evaluation of new technologies, extra functions in network elements
to monitor and measure traffic would raise the cost of the network element and
reduce the processing power for call control and/or packet forwarding. So, ex-
isting network elements do not give traffic engineers all the information about
the traffic characteristics that they would like, while the traffic characteristics
are becoming more and more complicated and the link and processor capacities
are increasing. Even when we can monitor traffic, traffic engineering (including
traffic control, management, and dimensioning) is still a challenge in an ATM
backbone for Internet traffic. This is the second difficulty. In particular, empiri-
cal tests (with theoretical background) are more preferable than pure theoretical
? Hiroshi Saito, NTT Service Integration Labs., 3-9-11, Midori-cho, Musashino-

shi, Tokyo, 180-8585, Japan. E-mail: saito.hiroshi@lab.ntt.co.jp, URL:
http://www.hslab.tnl.ntt.co.jp

G. Pujolle et al. (Eds.): NETWORKING 2000, LNCS 1815, pp. 410–422, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Real-Time Cell Arrival Sequence Estimation 411

approaches in traffic engineering these days. Thus, modeling and characterizing
traffic may not be enough to show the effectiveness of a proposed traffic engineer-
ing scheme. This paper shows how these two challenging issues can be overcome
by developing traffic measuring tools outside network elements and passing its
data to a real-time on-line simulator.

This kind of approach has received attention recently. DARPA (Defense Ad-
vanced Research Projects Agency), through its NGI (Next Generation Internet)
project, aims at real-time network simulations as part of network engineering
[11]. Hewlett Packard has also announced that NetMetrix, one of its products,
can be combined with a simulation tool [12]. In practice, it seems to be different
from our tool because we continuously monitor traffic and give every packet a
timestamp, and the simulator uses the timestamp sequence continuously.

Overall, we propose traffic engineering steps using real-time on-line simula-
tion: In the first step, the number of network resources such as link capacity
or buffer size is roughly dimensioned by a certain method. In the second step,
the dimensioned number of network resources is set in the simulator using the
actual traffic data continuously. Instead of the dimensioned number, the num-
ber planned in the following year’s budget, for example, can be used. In the
third step, the simulator checks whether the dimensioned or planned number of
network resources is appropriate. The fourth step yields the number of network
resources that was dimensioned/planned, after it has been checked and modified
if necessary. (Normally, the dimensioned or planned number may need a certain
margin to accommodate the traffic growth by the time the updated network reso
urces are provided. If we can do these four steps in a short period of time and
repeat them, we can implement the self-sizing network concept, which can adapt
its network size to the ever-changing traffic [5],[6], [7], [8], [9].)

2 Measuring Tool

We developed a new traffic measuring tool called CapTie (capturing traffic while
being tied to a post-processing computer) on the real-time OS called VxWorks
[10]. (The first version of CapTie [13] ran under MS-DOS because it was based
on the header trace mode of OC3MON [1], [2].)

CapTie is a program running on a PC tapped at an ATM link. It moni-
tors traffic on the link by using an ATM network interface card (NIC). Cap-
Tie can monitor the IPv4 traffic on ATM adaptation layer type 5 (AAL5).
When the ATM NIC receives a cell and processes the physical layer, removes
the LLC/SNAP encapsulation header and reads the packet length field in the
packet header in the cell and generates a record consisting of the following four
items: the CapTie counter value, the ATM NIC slot number, and the packet’s
timestamp and length. The record generated by CapTie is transferred to another
PC that simulates (part of) a network using the record, and CapTie continues
working (Figure 1). As shown later, the first target of the simulated network is
the output buffers at the switching node in which the monitored link is accom-
modated.

412 H. Saito et al.

Fig. 1. ATM network with our system.

The record items are used as follows: (1) CapTie and the post-processing PC
are connected via telnet over Ethernet. In our experience, the data rate between
them is a few percent of the traffic on the monitored ATM link. Thus, when
100-Mbps traffic on the link is monitored, 1 Mbps or more of data traffic is
transferred between the two PCs, so there is a danger of some data being lost.
The value of CapTie’s counter increases one by one when a packet is monitored.
Thus, the post-processing PC can check whether any traffic records are lost.
(2) CapTie can monitor more than one link simultaneously. To distinguish the
record for the ATM link being monitored, an ATM NIC slot number is used.
This allows network simulation to be performed if the PC running CapTie has
many slots accommodating ATM NICs. (3) The timestamp is a key item of data
for simulation. The timestamp uses 64 bits: 32 bi ts show the number of seconds
and another 32 bits express the fraction of a second; this achieves nano-second
granularity. (4) Packet length is another key item of data in the simulation. It
determines the amount of traffic.

3 Estimation of an Arrival Sequence

The first goal of our traffic measuring tool is to reproduce the cell/packet arrival
sequence at the transmission queue (output buffer) of the output link. (Note
that CapTie monitors the cell/packet carried sequence of the link.) If this repro-
duction succeeds, we can analyze the traffic offered to the transmission queue
accurately, simulate the transmission queue behavior, and can evaluate some in-
teresting metrics. Otherwise, the result of the traffic analysis is misleading even
when the timestamp has fi ne granularity. (For example, the peak traffic never
exceeds the link capacity when we observe the traffic transmitted at the link.)
However, the accurate reproduction of the cell/packet arrival sequence is not a
straightforward task. Our measurement device is tapped at a link, so what we
observe is not the cell arrival sequence or the packet arrival sequence but the
cell transmission sequence or the packet transmission sequence. Therefore, our
measuring device incorporates an algorithm for estimating the arrival sequence
from the transmission sequence.

In this section, we investigate algorithms for estimating an arrival sequence
from a transmission sequence. Here, the arrival sequence is defined by the series

Real-Time Cell Arrival Sequence Estimation 413

of cell/packet arrival epochs observed just before the output transmission queue
in the ATM switching node that has an ingress end point of the monitored
link in Figure 1. The output buffer in the ATM switching node is sometimes
called the reference model when we would like to emphasize the comparison
between the reference model and the virtual mod el, which is a model used in
the simulation (Figure 1). In the remainder of this section, UBR (unspecified
bit rate) on the monitored ATM link is implicitly assumed because UBR is used
for data transmission on ATM in most cases. As a result, cells of a packet are
assumed to be offered to the network at the line speed, while packet transmission
from an end system may be controlled by an upper layer.

3.1 Simple Cell Arrival Sequence Estimation Algorithm

Assume that CapTie observes the sequence of cells passing a tapping point in the
middle of a link and judges whether a cell is the first cell of a packet based on the
payload type indicator of the cell header. If it is the first cell of a packet, CapTie
reads the packet length field of the IP packet header in the cell and generates
a record consisting of the packet length and the timestamp showing when the
cell was detected by CapTie. Actually we can observe the time instance when
the first cell of each p acket passes a certain point of a link and then observe
how many cells belong to the same packet and will pass the point. Based on this
information, the simple cell arrival sequence estimation (S-CASE) algorithm
estimates the arrival instance of each cell at the arrival observation point.

Let t(i) be the observed timestamp of the first cell of the i-th packet, and let
n(i) be the number of cells belonging to the i-th packet. Let H be the capacity of
the input link to the ATM switching node that has the ingress end point of the
monitored link (Figure 1) where we assume for simplicity that each input link
has the same link capacity. Let L be the length of a cell. The following estimated
arrival epoch of the j-th cell belonging to the i-th packet, t(i, j), is provided by
th e S-CASE algorithm.

t(i, j) = t(i) + (j − 1) ∗ L/H (1)

The S-CASE algorithm assumes implicitly that the first cell does not wait for
any time in the transmission queue and that the remaining cells arrive at the
input link speed without interruption and do not wait in the transmission queue.

3.2 Busy Period Sensing Cell Arrival Sequence Estimation
Algorithm

Assume that we can observe whether or not the output link is busy as well
as observing the timestamp of each cell of a packet and the number of cells
belonging to the packet. Let b be a busy flag, which is 1 when the output link
is busy and 0 when it is idle. This flag can obtained by directly observing the
status of the output link or by checking the timestamp of each cell.

The busy period sensing cell arrival sequence estimation (BPS-CASE) algo-
rithm estimates the arrival epoch of the j-th cell belonging to the i-th packet

414 H. Saito et al.

as follows. It maintains x, the number of active flows on the output link, and
T , the reference time. (i) The number x of active flows increases by one when
the first cell of a packet is detected and decreases by one when the last cell of a
packet is detected. That is, the definition of the number of active flows in this
paper is the number of simultaneously existing packets on the link, and it is not
defined by using the source (destination) address or source (destination) port
number. (ii) If the link is busy at start time s, the reference time T is updated
to be s. When the first cell of a packet is detected and if the timestamp is t, the
reference time T is updated to be t.

The BPS-CASE algorithm stores the values of b, x, and T for estimating the
arrival epoch of each cell of the i-th packet when the first cell of the packet is
detected. Let b(i), x(i), and T (i) be their values just before the detection of the
first cell of the i-th packet. By using them, the BPS-CASE algorithm estimates
the arrival epoch of each cell of the i-th packet when the last cell of the packet
is detected.

Consider the case in which the first cell of the i-th packet is detected when the
link is idle (i.e., b(i) = 0). In this case, this cell does not wait for transmission.
Therefore, t(i, 1) = t(i), where t(i, j) is the estimated arrival epoch of the j-th
cell of the i-th packet and t(i) is the timestamp of the first cell of the i-th packet.

Next, consider the case in which the first cell of the i-th packet is transmitted
during a busy period of the link and assume that the link is kept busy while cells
from the first one of the (i−1)-th packet through the first one of the i-th packet
are detected (Figure 2). In this case, T (i) is the transmission time (equivalently,
the time stamp) of the first cell of the (i− 1)-th packet. Because the link is busy
between T (i) and t(i), the number of cells between the first cell of the (i − 1)-th
packet and the first cell of the i-th packet is given by (t(i) − T (i)) ∗ C/L, where
C is the output link capacity (Figure 3). Since the number of active flows is x(i),
the mean time taken for this number of cells to arrive at the transmission queue
of the reference model is (t(i) − T (i))C/(Hx(i)) if each active flow offers cells
at the input link capacity H and the number of active flows does not change
between T (i) and t(i). Therefore, if the estimate t(i − 1, 1) of the arrival epoch
of the first cell of the (i − 1)-th packet is accurate, the arrival epoch of the first
cell of the i-th packet can be estimated as

t(i, 1) = t(i − 1, 1) + (t(i) − T (i))C/(Hx(i)). (2)

Here we should note that the estimated arrival epoch t(i, 1) of the first cell of
the i-th packet should be less than or equal to the transmission time t(i) of this
cell. To keep this constraint t(i, 1) <= t(i) for any T (i) = t(i− 1) >= t(i− 1, 1),
we use max(C, Hx(i)) instead of Hx(i). Consequently, we obtain the following
estimation rule that is applicable to both C > Hx(i) and C <= Hx(i).

t(i, 1) = t(i − 1, 1) + (t(i) − T (i))C/max(C, Hx(i)). (3)

Finally, consider the case in which the first cell of the i-th packet is transmit-
ted during a busy period and the first cell of the (i−1)-th packet is not included
in this busy period (Figure 4). In this case, T (i) is the transmission epoch of

Real-Time Cell Arrival Sequence Estimation 415

Fig. 2. Example of the event sequence (1).

Fig. 3. Example of the event sequence (2).

the first cell forming this busy period. Note that the arrival epoch of this cell is
T (i) because this cell does not wait for transmission. Therefore, similarly to the
discussion above,

t(i, 1) = T (i) + (t(i) − T (i))C/max(C, Hx(i)). (4)

The arrival epoch of the j-th cell of the i-th packet is estimated as follows
for any of the cases mentioned above.

t(i, j) = t(i, 1) + (j − 1)L/H (5)

3.3 Numerical Examples

We investigated the accuracy of the S-CASE and BPS-CASE algorithms through
a computer simulation, which simulated the whole system including the refer-
ence model and the point where the timestamp is applied (Figure 5). In this
computer simulation, packets were generated according to a Poisson process and

Fig. 4. Example of the event sequence (3).

416 H. Saito et al.

(VWLPDWRU RI DUULYDO VHTXHQFH

Virtual system 0

7UDIILF

VRXUFH

Output buffer
2XWSXW OLQN

Virtual system 1

Virtual system 2

$UULYDO HSRFK

7LPHVWDPS

Fig. 5. Computer simulation.

their length distribution was assumed to be geometric. They were offered to the
transmission queue of the reference model (a FIFO queue). Through observation
of the cell transmission sequence, the cell arrival sequence to the transmission
queue of the reference model was estimated by the S-CASE and BPS-CASE
algorithms. Since we knew the true cell arrival sequence in this computer sim-
ulation, we could compare the true and estimated cell arrival sequences. The
accuracy was compared in terms of the difference in cell loss ratios (CLRs) that
occurred when the true and estimated cell arrival sequences were offered to the
virtual system and the r eference model. This is explained below. One reason for
measuring the accuracy in terms of the CLR is that the final target of the cell
arrival sequence estimation is to use it for performance analysis.

By using the actual and estimated cell arrival sequences, the CLRs of the
reference model and virtual systems in the computer simulation were evaluated,
where the virtual systems were defined as a FIFO queue with a different buffer
size or a different output link capacity from the reference model. In the fol-
lowing figures, (k, m, n) denotes the k-th simulation condition, the m-th virtual
system, and the n-th estimation method. Simulation conditions and virtual sys-
tems (their buffer size and output link capacity) are summarized in Table 1.
(The 0-th virtual system means the reference model.) The estimation method
is 0 when the estimated cell arrival sequence is the true cell arrival sequence;
1 when the estimation method is the S-CASE algorithm; and 2 when it is the
BPS-CASE algorithm. Under the following numerical examples, we assume that
the average offer load from a source is 1 Mbps and that the number of sources
is 30. (Thus, the total offered load is fixed.)

The results for Condition 1 are plotted in Figure 6. For high CLR or small
output link capacity, both algorithms were accurate. As the CLR became lower
or the output link capacity became larger, the S-CASE underestimated the CLR.

Figure 7 shows our investigation of Conditions 1 and 3. While the CLRs for
the true cell arrival sequence were almost the same for (3, 0, 0) and (1, 2, 0),

Real-Time Cell Arrival Sequence Estimation 417

Table 1. Simulation conditions and virtual systems

Simulation Average Input Virtual system
condition packet speed (buffer size, output link capacity)

length (Mbps) (Mbps)
(Cell) 0 1 2

1 10 50 (128, 50) (128, 37) (128, 30)
2 10 150 (128, 30) (128 ,37) (128, 50)
3 50 50 (128, 50) (128, 37) (128, 30)
4 50 15 (128, 50) (128, 37) (128, 30)
5 10 150 (128, 50) (128, 37) (128, 30)
6 50 50 (256, 50) (256, 37) (256, 30)
7 50 50 (256, 50) (128, 50) (384, 50)
8 50 50 (128, 50) (128, 75) (128, 37)

the estimation accuracies were different. Using either estimation algorithm, the
CLRs in (1, 2, 1) and (1, 2, 2) were similar to the true CLR of (1, 2, 0). This
means that the estimation in (1, 2, *) was easy. On the other hand, the CLRs in
(3, 0, 1) and (3, 0, 2) were different from the true CLR of (3, 0, 0). This means
that the estimation in (3, 0, *) was difficult. This seems to be mainly because
it was easier to estimate the CLR of a small output link capacity (with short
packets) than that of a large one (with long packets). (Item (v) below shows that
long packets made estimation easier. Thus, a small output link capacity seems
to be one of the main reasons for this result.)

Figure 8 compares the CLRs derived by the estimated and true cell arrival
sequences. In addition, the CLR evaluated by the upper bound formula [4], [5]
using the mean and peak cell rates of each flow is also shown for comparison.
Here, the mean cell rate was the true mean cell rate and the peak cell rate was
the cell rate transmitted by the input link capacity. In this figure, the y-axis
denotes the log of the ratio of an estimated CLR to the true CLR. For example,
for each simulation condition, S-CASE ((*, 0, 1)/(*, 0, 0)) means the log of the
ratio of the CLR estimated by S-CASE for the virtual system 0 to the true CLR
for the virtual system 0. That is, the y-axis denotes a metric of CLR estimation
error.

(i) We should note that the estimation was accurate when the capacity of the
output link of the virtual system was smaller than that of the reference model,
but may be inaccurate when it is larger. For example, for simulation condition
1, the estimation error for virtual system 0 when S-CASE was used (that is,
S-CASE ((*, 0, 1)/(*, 0, 0))) was a larger absolute value than the estimation
error for virtual system 1 when S-CASE was used (S-CASE ((*, 1, 1)/(*, 1, 0))).
Here, virtual system 1 had less capacity than virtual system 0 (the reference
model).

(ii) BPS-CASE is normally more accurate than S-CASE. For example, for
simulation condition 1, S-CASE’s estimation error for virtual system 1 (S-CASE
((*, 1, 1)/(*, 1, 0))) had a larger absolute value than BPS-CASE’s (BPS-CASE
((*, 1, 2)/(*, 1, 0))).

418 H. Saito et al.

Fig. 6. Cell loss ratio for condition 1.

�

����

����

����

����

&
HO
O
OR
VV

UD
WL
R
�&

/
5
�

������� ������� ������� ������� ������� �������

7UXH DUULYDO

6�&$6(

%36�&$6(

/DUJH OLQN� ORQJ SDFNHWV6PDOO OLQN� VKRUW SDFNHWV

Fig. 7. Errors in estimation for similar
CLR.

(iii) Simulation conditions 1 and 5 for virtual system 0 and simulation condi-
tion 2 for virtual system 1 produced low CLRs and the estimation was inaccurate
with S-CASE for simulation conditions 1 and 5 and with BPS-CASE for simula-
tion condition 2. See S-CASE ((*, 0, 1)/(*, 0, 0)), S-CASE ((*,1,1)/(*,1,0)) and
BPS-CASE ((*, 1, 2)/(*,1,0)). It was difficult to estimate a low CLR accurately.

(iv) The accuracy of BPS-CASE deteriorated when the input link capacity
was much larger than the output link capacity of the reference model. See BPS-
CASE ((*,1,2)/(*,1,0)) for simulation condition 2 and compare it with that for
simulation condition 1.

(v) BPS-CASE was accurate for simulation conditions 3, 4, and 6. There, the
input link capacity was less than or equal to the output link capacity of the ref-
erence model and the packet size was long. It was more accurate for simulation
condition 6 than for simulation condition 3, while the CLR for simulation condi-
tion 6 was lower than for simulation condition 3. (Normally, the estimation error
becomes large when the CLR is lower.) This seems to be because the virtual
system for simulation condition 6 had a longer buffer than that for simulation
condition 3.

(vi) The absolute value of the estimation error obtained by BPS-CASE was
always smaller (i.e., more accurate) than that by the upper bound formula.

(vii) We also compared the CLR of each virtual system for each simulation
condition derived using the Poisson arrival assumption instead of the arrival
sequence estimated by S-CASE or BPS-CASE. Here, the Poisson arrival as-
sumption means that the cells were generated according to a Poisson process

Real-Time Cell Arrival Sequence Estimation 419

Fig. 8. Errors in estimation. Fig. 9. Error in estimation for differ-
ent network resources.

with mean equal to the mean observed in the simulation. The CLR obtained
under the Poisson arrival assumption was smaller than -10 in this figure for all
simulation conditions, so it was not plotted.

Figure 9 shows our investigation of conditions with different network re-
sources (buffer and link capacity). When there were more network resources in
the virtual system than in the actual system, the estimation errors were larger
than when there were fewer network resources in the virtual system. BPS-CASE
was more accurate and better than S-CASE. In particular, BPS-CASE was ac-
curate even when the buffer size of the virtual system was different from that of
the actual system.

4 Real-Time Simulation

The post-processing PC, which receives the data from CapTie via Ethernet,
uses one of the arrival sequence algorithms mentioned in the previous section.
As a result, we can (approximately) reproduce the cell arrival sequence at the
multiplexing point (the transmission queue) of a switching node. Therefore, if
we provide a simulator in the post-processing PC, provide a virtual system or
a model of the transmission queue in the simulator, and give it the reproduced
arrival sequence, we can simulate the performance behavior of new controls and
new network resource conditions as if they were applied at the transmission
queue (Figure 1).

420 H. Saito et al.

In this study, we used a simulator to evaluate the accuracy of an output
link capacity dimensioning method called the queue decay parameter method
[13]. The simulator in the post-processing PC simulates an output link and its
transmission queue in the switching node that has an ingress end-point of the
monitored link. We assumed that the transmission queue could be modeled as a
single-server FIFO queue with a finite-size waiting buffer where the service was
cell transmission.

As a first step, the output link capacity was dimensioned by the dimensioning
algorithm, which was propsoed in [13] and used the traffic measurement data
obtained by the switching node. The dimensioned output link capacity was used
for the output link capacity (that is, the service rate of the server) in the sim-
ulator and the actual buffer size of the simulated transmission queue was used
as the buffer size of the simulator. The estimated and reproduced cell arrival se-
quences were offered to the si mulator in the post-processing PC, and the CLR
of the transmission queue (output buffer) of the output link was evaluated in the
simulator. In the numerical example below, S-CASE was used in the simulation
for simplicity.

5 Numerical Example of Real-Time Simulation

The developed system was applied to a bi-directional link in SINET (the Science
Information Network) [3], which is a nationwide large IP network for research
organizations in Japan, whose core network is implemented on an ATM network.
The monitored link was between the University of Tokyo and the network office of
NACSIS (National Center for Science and Information Systems). The capacity of
each link was dimensioned using the queue decay parameter method [13] based
on data measured in the we ek before this trial by an ATM switching node
accommodating the link. The CLR objective was 10-6.

Figure 10 [13] plots the CLR of each link simulated by the real-time sim-
ulator for one hour during a busy hour. The CLR obtained by the simulator
agreed closely with the objective. (In our experience, the CLR is a very diffi-
cult parameter to manage, so the agreement was actually far better than we
expected.)

The direction from the NACSIS network office to the University of Tokyo
has a large amount of traffic with long packets because it includes a lot of
traffic downloaded from the U.S. The opposite direction has less traffic with
shorter packets. The link utilization obtained in the simulation was higher in
the direction from the University of Tokyo to the NACSIS than in the opposite
direction (Figure 11). That is, the smaller link had higher utilization than the
larger one whereas a larger link can usually achieve higher utilization due to
the statistical multiplexing gain. The reason for this unexpected result is that
short packets are dominant in the direction from the University of Tokyo to the
NACSIS network office (Figure 12). However, the CLR of this direction had a
larger fluctuation than that of the opposite direction because the offered traffic
was small (Figure 10).

Real-Time Cell Arrival Sequence Estimation 421

��������

��������

��������

��������

��������

��������

�� �� �� �� �� �� �ÄÀÅ��

�
¼Ã
ÃwÃ
ÆÊ

Êw
É¸

ËÀ
Æw
��

£
©
�

¥��ª ��«ÆÂÐÆ

«ÆÂÐÆ�¥��ª ª

Fig. 10. Cell loss ratio in simulated out-
put link.

Fig. 11. Link utilization in simulated
output link.

�

���

���

���

���

���

���

���

���

���

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

3DFNHW OHQJWK �RFWHW�

3
UR
E
DE

LOL
W\

¥��ª ªwËÆw¬ÅÀÍ�w«ÆÂÐÆ
�¸Í¼É¸¾¼w�w������wwwwwww

�Ê�w»�w�w������

¬ÅÀÍ�w«ÆÂÐÆwËÆw¥��ª ª
�¸Í¼É¸¾¼w�w������wwwwwww
�Ê�w»�w�w������

J S

Fig. 12. Packet length distribution.

Comparing Figures 10 and 11, we see that high average utilization during ten
minutes does not mean a high CLR. This is because traffic fluctuations over a
period much shorter than ten minutes strongly affect the CLR. Thus, we cannot
estimate the CLR based only on a ten-minute average utilization.

6 Conclusions

We have developed a traffic monitoring tool called CapTie and a real-time simu-
lator that uses data from CapTie. The cell arrival sequence estimation methods
used in it were evaluated. Using these two systems, the proposed dimensioning
method was evaluated for real IP traffic data on an ATM network and shown to
be accurate. The developed system enables us to implement a new approach to
network engineering. In the near future, we will apply the system to a self-sizing
network.

References

1. K. Thompson, et al., IEEE Network, pp. 10-23, Nov./Dec. (1997).
2. http://www.nlanr.net/NA/Oc3mon

422 H. Saito et al.

3. S. Asano, IEICE Journal, 81, 4, pp. 402-406 (1998).
4. H. Saito, Teletraffic Technologies in ATM Networks, Artech House, Boston (1994).
5. H. Saito, IEEE Trans. Communications, 40, 9, pp. 1512-1521 (1992).
6. N. G. Duffield, et al., Proc. Cam. Phil. Soc., 118:363-374 (1994).
7. H. Saito, et al., NTT Review, 8, 1, pp. 56-65 (1996).
8. S. Nakagawa, et al., NOMS’96, Kyoto (1996).
9. H. Saito, IEEE Communication Magazine, 35, 5, pp. 146-153 (1997).

10. http://www.wrs.com/products/html/vxworks.html
11. M. Maeda, IEEE ATM workshop ’99, Kochi (1999).
12. http://www.tmo.hp.com/tmo/ntd/products/products.html
13. H. Saito, et al., ICCCN’99, Boston (1999).

	1 Introduction
	2 Measuring Tool
	3 Estimation of an Arrival Sequence
	3.1 Simple Cell Arrival Sequence Estimation Algorithm
	3.2 Busy Period Sensing Cell Arrival Sequence Estimation
	3.3 Numerical Examples

	4 Real-Time Simulation
	5 Numerical Example of Real-Time Simulation
	6 Conclusions
	References

