A Repository System with Secure File Access for
Collaborative Environments *

Paul A. Grayt, Srividya Chandramohani and Vaidy S. Sunderam::

tDept. of Computer Science iDept of Math & Computer Science
University of Northern lowa Emory University
Cedar Falls, Iowa Atlanta, Georgia
50614-0506 30332
gray@cns.uni.edu {schand2 | vss}@emory.edu

Abstract. Collaborative computing environments which allow remote execution
of applications, need a remote storage facility that supports shared access to the
software resources required for computation. In this context, there is also a need
to guarantee authorized and secure access to the shared resources. This paper in-
vestigates the use of a repository system in collaborative computing environments
and discusses techniques to provide privacy, user authentication and access con-
trol to the repository using certificates. A protocol based on SSL is developed for
query processing. The IceT environment is used as an exemplar for the applica-
tion of the secure repository system.

1 Introduction

In recent years, the use of network environments as a platform for high performance dis-
tributed computing, has become popular. Research collaborations are being formed by
merging geographically-distributed environments [5]. These collaborations often pool
resources together in order to tackle a common goal.

Each member in any of the groups can contribute software and data to be shared
by other members of the group. There are several means to share data across networks
varying from simple file transfer to complex distributed database management and dis-
tributed shared memory approach. These methods for file sharing lack the ability to
support a dynamically changing membership of users within the groups. They also lack
mechanisms to authenticate users in dynamic environments.

One model is to have applications and data stores in a repository to facilitate group
access. Due to the dynamic nature of the collaborative resource alliance, the reposi-
tory system cannot be managed with physical user accounts on the machines that host
the repositories. In this paper, we present a simple model of a repository system that
suits the computing requirements of dynamic collaborative environments. Section 2.2
outlines the design and discusses the usefulness of this repository system.

When an alliance is formed and data from the repository has to be shared, issues
such as secure communication, authentication and authorization have to be tackled.
The Grid Security Infrastructure (GSI) [9], developed within the Globus project [8]
addresses these issues in detail and defines a security policy by mapping interdomain

* Research supported by NSF grant ACI-9872167 and the University of Northern Iowa’s Grad-
uate College.

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 404—f12}, 2001.
Springer-Verlag Berlin Heidelberg 2001

A Repository System with Secure File Access for Collaborative Environments 405

Concurrent Processes

Fig. 1. Dynamic Collaborative Environment.

operations to local security policy. Further, Akenti [16] implements an automated access
control mechanism using digitally signed certificates.

Lack of a local security policy or local database administration and the dynamic
nature of the collaboration necessitate development of an access control mechanism that
is more dynamic and adaptable than the GSI and Akenti infrastructures. The relevant
security policies and associated protocols for query processing used in this model are
described in Section 3. We also present a reference implementation in the context of
IceT specifically [17], and applicable to the repository frameworks in general.

2 The Repository System

In this section we discuss the background and need for a repository system. The details
of the proposed model are also outlined.

2.1 Background and Need

The Internet enables users to access resources and run applications over a heteroge-
neous collection of computers and networks. Figure 1 shows an example of a dynamic
environment in which three heterogeneous, networked environments have been merged
to form a single virtual machine. Processes can now migrate across environments for
optimal resource utilization.

In these and other scenarios, when code is sent from one computer to another and
run at the destination, problems such as portability of machine code, commanality of
data representation formats and data conversion for network transfer arise. For example,
PC users sometimes send executable files as email attachments to be run by the recip-
ient, but a recipient will not be able to run it, for example, on a Macintosh computer.
These problems are overcome using 1) the virtual machine approach, such as in Java, as
a way of making code executable on any hardware, and 2) External data representation
as an agreed standard for the representation of data. Sun XDR, CORBA’s common data
representation (CDR) and Java’s object serialization are examples of the latter.

Given the use of a suitable scheme to mask the heterogeneity in distributed systems,
this paper looks at some specific computing requirements that are not effectively met
by current systems and provides a solution for the same.

406 P.A. Gray, S. Chandramohan, and V.S. Sunderam

Consider the case where Java programs are used in a collaborative environment.
These programs may access legacy codes written in C, C++ or Fortran for high per-
formance computations. Let Bob and Alice be two end communicating parties (or ma-
chines). Bob sends program called “foo” to Alice via a communication link. To run
“fo0”, Alice has to: locate and resolve static dependencies (java classes and methods),
locate and link external shared libraries (e.g. a DLL for a windows machine) and pro-
vide for external user data that the program might require for processing.

These dependencies can be easily resolved if Alice can locate the files on her local
filesystem. But Alice has no prior knowledge of the resources required and need not
maintain a reserve. Alice could interactively request Bob to send these files and Bob
can respond back with the required files. If Bob sends the program to Sue as well, with
Sue working on another machine within the same network as that of Alice, Bob has
to duplicate the file transfer. Suppose that Bob wants to do some statistical analysis
and needs Carol and Dave on a different network to participate in the computation
concurrently, Bob has to maintain persistent connection with all four parties and service
their needs. This will be a potential performance bottleneck. Alternately, in an agent-
based scenario, Bob could generate an agent process on Alice’s machine. Then Bob’s
machine is not needed again even if the process migrates to Carol’s system.

Irrespective of the programming paradigm used, such problems persist in collabo-
rative computing environments. There is no Network File System for such environments
that facilitates shared access to applications, libraries and user data for all members in
the communion, catering to the different underlying operating systems and architec-
tures. In this vein, we propose a simple repository system for dynamic environments,
supporting mobile agents (by serving up files tailored to operating system/architecture)
and remote data storage. Continuing with the example scenario, Bob can now store
the Java files with architecture and operating system-specific libraries in a repository
and authorize Alice, Sue, Carol and Dave to access the repository. When the group is
formed, the parties are given the knowledge of the available repositories so that they
can fetch data on-demand.

2.2 Details of the Model

The scope of the repository system is to address the computing needs of dynamic en-
vironments in which processes participate in remote execution and remote access of
resources within the virtual machine environment. Java applications that use legacy
codes for high performance computations are targetted. The repository system fills in
the need for a shared filesystem. In this model, which epitomizes the breadth of the im-
plementation, users store Java-based front-ends and supporting native library formats
for different architectures that might be called upon to run processes. Figure 2 shows
possible contents of a repository.
The model also supports the following features:

— Repositories are not restricted to locations within the virtual machine. Bob can
create a repository on his machine and so can Alice. Bob and Alice could be within
the same intranet or otherwise.

— Users can add to or delete from, a local or remote repository based on a global
access policy.

— The owner of a resource can impose security restrictions for availability and acces-
sibility of the resource. There is no central authority to impose access restrictions
on all the resources.

A Repository System with Secure File Access for Collaborative Environments 407

>

AN
Java Class Files
/\ Jar Files X X ‘ q
¥/ Java Sources
7

4

Windows NT < D
@

x86

Bob \\' Windows 95 (Q D
1386 Linux —= (@ e

Anonymous

|

Mary

\/ SunOS <8
IceT Repository Files /)
N e (@D @

Fig. 2. Repository Files Belonging to Users.

sparc

The dynamic nature of the collaboration and the lack of central authorities, hin-
der the application of conventional distributed database management models where
database access is administered by setting up user accounts and passwords. There is a
need to specify access control policies that are non-account based and do not rely upon
the presence of a database administrator. The access control policy for the repository
system is described in Section 3.

We adopt a User Interface Distribution model (see [12]) in the three-tier client/server
architecture. The layers are represented by hosts, clients and servers. Figure 3 illustrates
the model. Host performs data-access processing i.e accesses data from the disk. Client
performs user interface processing. It contains GUI interfaces and additional rules such
as client certificates (for authentication). Server performs function processing. It stores
constraints that are used to access data from the host.

Instead of accessing the repository via a standard interface (such as JDBC or ODBC),
the client sends queries to the server and the server processes the requests. Thus the
server acts as a conduit for passing processed data from host to client. The viablity
of this approach stems from two reasons: (1) the client can run in a computing sys-
tem different from the host and the server, and (2) access control mechanisms can be
implemented independent of the type of interface to the repository system.

3 Security, Authorization and Access Control

The centralized storage of data in databases, and the accessing of this data by multiple
end users, bring with them a need for security. The model must have mechanisms that
will allow users to access data they need yet prevent them from accessing data they are
not authorized to see. In addition to controlling the data a particular user has access to,

408 P.A. Gray, S. Chandramohan, and V.S. Sunderam

the repository system should control the type of access the user has, such as whether
the user is allowed only to retrieve the data or may also make changes to it or add new
data to the database.

As noted in Section 2.2, due to the dynamic characteristics of the alliance, where
new users can join and existing users can leave the group at anytime, users do not have
accounts and passwords on the repository host. Hence user authentication mechanisms
which depend on account setup such as Kerberos [13] and SSH [11] cannot be used.
This also eliminates risks due to “password sniffing” [7].

Instead, Certificates are used both for authorizing access to the repository and for
governing subsequent access to files. The group has to maintain Certificate Authorities
(CA) which issue and sign certificates for the group members. The repository server
stores this “trust” information. When Bob inserts his files into the repository, he presents
to the repository server, a valid certificate digitally signed by a CA that the server trusts.
This authorizes Bob to access the repository. Bob could grant access privileges to Alice
by signing Alice’s certificate already signed by a group CA. This creates a certificate
chain of users. Along with the files owned by Bob, access permissions in the form of
user certificates will be stored in the repository. Bob could also specify some of his files
to be public so that anonymous users can read those files. The server has to check the
permissions before granting access. When Bob changes his mind, and wants to revoke
privileges granted for Alice, he will revoke Alice’s certificate. A Certificate Revocation
List (CRL) is maintained by the group authority for each user. Alternately, the resource
alliance can be terminated and all access privileges are revoked for all users. In both
cases, a consistent state of the repository on the host has to be maintained. The access
control list for a user in the repository has a “checkCRL” flag. Revocation of privileges
is reflected by setting the flag, so that the server can query the user’s CRL prior to
servicing any file requests by the user.

When a user posts requests, the repository server’s reply may constitute a file trans-
fer. Data is typically sent via an insecure communication channel. To ensure privacy ,
the data has to be encrypted. This issue has been addressed in depth in projects such

.

o=

User Interface Processing A Function Processing
Data Access Processing
Communication Network

> L

Repository

Iﬁ

Fig. 3. User Interface Distribution Model.

A Repository System with Secure File Access for Collaborative Environments 409

Client Repository

Client Hello |----------------------------omo oo >

Server Hello

Server Certificate

Certificate Request

VM Certificate (Chain) |-------------------------=
Client Key Exchange |---------------"---------->=
Certificate Verify |-------------------------=
ChangeCipherSpec |------------------------->
ChangeCipherSpec
Repository Certificate Request
Access Certificate |- ------------------------>
Client Proceed
Client Request |- ------------------------>

Server Process Request

Data Transfer

Fig. 4. The Protocol Established For Accessing Files In A Repository.

as Globus [8], Akenti [16] and securePVM [18]. The channel should also be protected
from network attacks such as eavesdropping, masquerading, message tampering, re-
playing, denial of service etc. (see [14]). This calls for making the channel secure. The
SSL protocol [4] can be used to establish a secure channel. In an open network, all
client parties may not use the same client software. The client and server software may
not support same encryption algorithms. SSL is a good choice because it is designed so
that the algorithms used for encryption and authentication are negotiated between the
processes at the two ends of the connection during the initial handshake.

3.1 Secure Query Processing Protocol
The protocol used to establish contact with the repository is similar to SSL, with modi-
fications to allow the use of certificate chains belonging to users in the merged environ-
ments. Figure 4 depicts the protocol.

The protocol messages are sent in the following order:

1. Client hello - The client sends the repository server information including the high-
est version of SSL it supports and a list of the cipher suites it supports. The cipher
suite information includes cryptographic algorithms and key sizes.

2. Server hello - The server chooses the highest version of SSL and the best cipher
suite that both the client and server support and sends this information to the client.

3. Server Certificate - The repository server sends the client a certificate or a certificate
chain. This message is used to authenticate the repository server.

4. Certificate request - The server then issues this message to the client, which con-
tains a list of acceptable Distinguished Names (DN) that are recognized as credible.

5. VM Certificate (Chain)- The client sends its certificate (chain), just as the server
did in Message 3. The client has to send a certificate that has been certified by one
of the listed DNG.

410 P.A. Gray, S. Chandramohan, and V.S. Sunderam

6. Client key exchange - The client generates information used to create a key to use
for symmetric encryption.

7. Certificate verify - The client sends information that it digitally signs using a cryp-
tographic hash function. When the server decrypts this information with the client’s
public key, the server is able to authenticate the client.

8. Change cipher spec - The client sends a message telling the server to change to
encrypted mode.

9. Change cipher spec - If the server accepts the certificate as valid, a response to the
change in cipher is issued.

10. Repository Certificate Request - At this point, the client has authenticated itself
to the server and a secure channel has been established. However, another valid
certificate is required to access files on the repository as the owner of the files may
have imposed access restrictions. The server requests the client for the certificate
corresponding to the owner of the repository files.

11. Access Certificate - The client’s certificate signed by the owner is presented if one
is available, else a NoCertificateAlert message is sent.

12. Client Proceed - If the server can verify the certificate presented, it grants access
to the client. Otherwise the access is denied and the session is closed. It allows
anonymous access if it received a NoCertificateAlert in message 11.

13. Client Request - The client requests to access or update files in the repository and
sends the details (file name, architecture, OS) of the file it requests.

14. Data Transfer - The server queries the access control list to check if the particular
file can be accessed. If the checkCRL flag is set, the client’s CRL is checked for
validity before granting access to the file.

4 A Reference Implementation of the Repository System

In this section, we describe the IceT repository system, an implementation of our pro-
posed model. The repository system was developed as a part of IceT project [17], whose
focus is to:

build distributed applications using multiple heterogeneous environments.

— support the use of portable shared libraries.

— target applications to dynamic reconfigurable environment which allows merging
and splitting of environments.

— address security concerns

— provide an environment suitable for collaboration and distributed computing appli-

cations

We describe here selected aspects of this implementation, focusing on our use of the
Java Secure Socket Extension (JSSE) API for SSL, a Postgres database and Java Key-
tool for certificates.

4.1 Use of Java Secure Socket Extension API and Keytool

The Java Secure Socket Extension (JSSE) [1] provides a framework and a reference
implementation for a Java version of the SSL protocol and includes functionality for
data encryption, server authentication, message integrity, and client authentication. The
JSSE API is used for creating and configuring secure socket factories. The Java Key-
tool is used to generate keys (inserted into a keystore), certificate signing requests and

A Repository System with Secure File Access for Collaborative Environments 411

to import trusted X509 certificates into a user defined truststore. For details of using
x.509 certificates see [10]. For testing purposes, OpenSSL ca command (as in [2]) was
used to sign the certificate requests and create a chain of trusted of X509 certificates.
The keystore and truststore are loaded into X509 key and trust managers respectively.
The API also provides a class representing a secure socket protocol implementation. A
Query Processing protocol as described in Section 3.1 is implemented on top of SSL
to access the repository. These tools come together in our implementation to facilitate
dynamic, short-term collaborative alliances,where self-signed certificates and CRLs are
used on a more intimate framework of users. I.e. users will hold self-signed certificates
and act as their own certificate authorities.

4.2 Postgres Database

PostgreSQL [3] was our implementation choice for the database. Postgres uses a simple
“process per-user” client/server model. A Postgres session consists of a supervisory
daemon process, the user’s frontend application (eg. psql program) and one or more
backend database servers. A single postmaster manages the repositories on the host.
The postmaster is always running, waiting for requests, whereas frontend and backend
processes come and go.

A primary registry table is created to store X509 certificates of different users and
their corresponding user-id. A table indexed by file-id stores Java source files for each
user and a library table stores the user’s libraries based on architecture and operating
system. A separate access permissions table maintains access list for files belonging to
a user. Any query posted to the repository has to be processed as:

user certificate — user-id — file-id — file permissions — file contents

L.e., each access to the repository requires a valid X.509 certificate and access per-
missions are checked prior to granting file access.

Once a secure channel is established using JSSE methods, the user sends his queries
to the server. The server connects to the postgres host (on same machine as the server)
via the JDBC interface. The user certificate is matched to that in the repository, access
permissions are checked and the encrypted file is transferred to the requesting client.

5 Conclusions and Future Work

We have described a model for distributed access of resources with security and au-
thorization features. The model is general enough to be suited to several applications
including but not limited to:

— collaborative computing projects such as Harness [15] and CCF [6]

— security policy for remote execution and remote access of resources

— extending security architecture given by Globus and Akenti for dynamic environ-
ments

— access control policy for distributed databases using certificates

The prototype implementation has shown the feasibility of the certificate-based au-
thentication and secure repository model. Preliminary benchmarks have also shown that
there can be considerable overhead associated with SSL channel initialization and en-
cryption of the data stream. Our current design does not clearly specify interactions

412 P.A. Gray, S. Chandramohan, and V.S. Sunderam

between the repository system and the distributed applications in which it is used. It
does not yet address functions pertinent to distributed databases such as transparency
control, concurrency etc. Some of the improvements in the security policy include pro-
viding for validation of files within the repository using message digests and encrypting
data stored in the repository. Our future work also includes implementing the repository
system using a language-independent scheme so that it can be easily adapted to existing
systems.

References

BN

b

10.

11.

12.

15.

16.

17.

18.

URL.: http://java.sun.com/products/jsse.

URL: http://www.openssl.org/doc/.apps/openssl.html.

PostgreSQL user’s guide. URL: http://www.postgresql.org/docs/user/user.html.

A. O. Freier, P. Karlton and P. C. Kosher. The SSL Protocol, version 3.0. Netscape Commu-
nications, Internet Draft, Nov 1996. URL: http://www.netscape.com/eng/ssl3/.

C. Catlett and L. Smarr. Metacomputing. Communications of The ACM, 35(6):44-52, 1992.
S. Chodrow, S. Cheung, P. Hutto, A. Krantz, P. Gray, T. Goddard, I. Rhee, and V. Sunderam.
CCF: A Collaborative Computing Frameworks. In IEEE Internet Computing, Jan/Feb 2000.

. Computer Emergency Response Team. Ongoing Network Monitoring Attacks. CERT Advi-

sory: CA - 94:01, Feb 1994.

. 1. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International

Journal of Supercomputing Applications, May 1997.

. L. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational

grids. In ACM Conference on Computers and Security, pages 83-91. ACM Press, 1998.
Internation Telecommunication Union. X.509: Information Technology - open systems in-
terconnection - the directory: Public-key and attribute certificate frameworks. ITU-T Rec-
ommendation, Mar 2000. To be published.

J. Barrett and R. Silverman. SSH, The Secure Shell: The Definitive Guide. O’Reilly, 1st
edition, 2001.

J. Martin and J. Leben. Client/Server Databases - Enterprise Computing. Prentice Hall P T
R, 1995.

. J. Steiner and C. Neuman and J. Schiller. Kerberos: An Authentication Service for Open

Network Systems. In Usenix Conference Proceedings, 1988.

. M. Dekker. Security of the Internet. The Froehlich/Kent Encyclopedia of Telecommunica-

tions, 15:231-255, 1997. URL: www.cert.org/encyc_article/tocencyc.html.

M. Migliardi and V. Sunderam. Heterogeneous Distributed Virtual Machines in the Harness
Metacomputing Framework.

M. Thomson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essari. Certificate-
based access control for widely distributed resources. In Proceedings of the Eighth Usenix
Security Symposium, Aug 99.

P. Gray and V. Sunderam. IceT: Distributed Computing and Java. Concurrency: Practice
and Experience, 11(9):1161-1167, Nov 1997.

T. H. Dunigan and N. Venugopal. Secure PVM. Technical Report TM-13203, Oak Ridge
National Laboratories, Aug 1996.

	Introduction
	The Repository System
	Background and Need
	Details of the Model

	Security, Authorization and Access Control
	Secure Query Processing Protocol

	A Reference Implementation of the Repository System
	Use of Java Secure Socket Extension API and Keytool
	Postgres Database

	Conclusions and Future Work
	References

