The Prioritized and Distributed Synchronization in
Distributed Groups

Michel Trehel and Ahmed Housni

Université de Franche Comté, 16, route de Gray 25000 Besancon France,
{trehel, housni} @lifc.univ-fcomte.fr

Abstract. A simple and cheap algorithm is presented to allow prioritized mutual
exclusion. There are several groups. All the members of a same group have the
same level priority. Our algorithm is a token-based algorithm. Each group of
participants (site) is represented by a tree structure. Inside a group, the requests
are recorded in a global queue which circulates simultaneously and together
with the token. The participant holding the token is the root of the tree linked to
the router of the group. When a router transmits the token to another group, it
preserves the role of the router in its group. The relation between routers is also
represented by an rooted tree, the root is the router of the group holding the to-
ken. Besides a static logical structure similar to that used in Raymond's algo-
rithm, our algorithm manages a global requester queue. If the requesting site and
the owner of the token are in the same group, there is a reorganization of the
group tree. If they are not in the same group, the tree of the requesting site and
the tree of routers are reorganized. Algorithm in one group and extension to
some groups are presented.

1 Introduction

Prioritized mutual exclusion can be applied to speech allocation in a multi-role confer-
ence. The speakers of each role constitute a group and there is a priority level by
group. At a given moment, only one participant of only one group may speak to the
other ones. When the situation is limited to two groups, prioritized mutual exclusion
corresponds, for example, to a group of trainers and a group of trainees, in teleteach-
ing. The resource may be the speech. Trainers have priority on trainees. Some works
have been presented concerning the prioritized mutual exclusion. A. Goscinski’s [1],
algorithms lean on request broadcasts. The average number of messages is O(n) where
n is the number of sites. K. Harathi and T. Johnson [2] propose prioritized spin lock
mutual exclusion algorithms. The blocked processes spin on locally stored or cached
variables. The performances are improved, compared with the previous ones. Never-
theless, it is O(n). T. Johnson and R. Newman-Wolfe [4] developed three algorithms
giving approximately the same performances. They aimed at synchronizing the access
to processor memory. One of them uses a rooted tree as in Raymond’s approach [8].

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2073, pp. 294-303, 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Prioritized and Distributed Synchronization in Distributed Groups 295

The other two algorithms use a path compression technique to reduce the number of
messages. B. M. K. Qazzaz [5] gave an algorithm based on a binary tree. The priori-
tized nodes have a special position in the tree, what gives strong constraints to the
system. Mueller [7] proposed an idea derived from the M. Naimi and M. Trehel [9]
algorithm, associating a priority level with the requests. For that, the queue distributed
in [9] is replaced in [7] by local queues. Every site owns a local queue. When it re-
ceives a request, it compares the priority of the queue’s sites with the arriving request
priority, to reorder the queue. The average number of messages is O(Log(n)). In our
algorithm, there is a priority level by group. The presentation of the algorithm is
modular: one group (all the same priority), and many groups (one priority level by
group).

2 Our Algorithm for One Group

2.1 General Presentation

In this paper, the term “tree” is used when there is neither orientation neither root, and
“rooted tree”, when there is an orientation and a specific root. Both terms are included,
because both concepts are needed. Our algorithm in one group is closed to K. Ray-
mond’s algorithm [8]. Let us describe the idea. The participants are structured as a
logical tree. We will speak about the choice of the tree, function of performance con-
siderations. A root is chosen in the initial situation. The root is said privileged because
it owns the token. The choice of the root transforms the tree in a rooted tree. Every
site owns a local variable called its “father”, which indicates the direction of the root.
“Father” is nil at the root. Look at the figure 1 as an example. Suppose the root A is in
the critical section. If the nonprivileged node D wishes to enter the critical section, it
sends a “request” message to its “father” C. When receiving the “request” message,
the node C, if it is not the root, forwards the message to its “father” B. Thus a series of
“request” messages travels along the path from the requesting node D to the root A.
The message “request” is put in the memory of the root.
(A

(B)
(9

®

When the root releases the critical section, it sends the token to its neighbor B, in the
direction of the requesting node. If A has more than a neighbor, a specific technique is
necessary to determine to which node A must send the token. While sending the token,
A looses its quality of root and its “father” becomes B. Now, the “father” of B is nil.

D requests and gets the token
i [

Fig. 1. Transformation

296 M. Trehel and A. Housni

There is no change of the underlying tree, nevertheless the rooted tree is changed and
the new root is B. If B is not the requesting node (B is not D), B forwards the token to
its neighbor, in the direction of D. Thus a series of “token” messages travels from A to
D. When it is arrived in D, D owns the token and enters the critical section. The rooted
tree is reorganized and the new root is D.

2.2 Hypotheses

2.2.1. Network
The network is the initial rooted tree. The link between two sites is bi-directional, so
that the communications can be sent after a reorganization of the rooted tree.

2.2.2 Communication

There is no loss, duplication or modification of messages. Transmission times are
random, but finite. If several messages arrived simultaneously in a site, they are
treated sequentially. Nevertheless a message can arrive when a site is in the critical
section. From one site to another, the messages arrive in the order in which they have
been sent. Communications run at least two times faster than the passage in critical
section.

2.2.3 Critical Section
A site must wait reception of the critical section and releasing it before requesting it
again. It stays in the critical section for a finite time.

2.2.4 Specifications
Mutual exclusion: Every site which requests the critical section has to obtain it after a
finite time. However, it is not true when there are groups with different priorities.

2.3 Principles of the Algorithm

2.3.1 Token

It is a token-based algorithm. When the root releases the critical section, it sends the
token in the direction of the requesting site. Every site crossed during the transmission
of the token earns then loses the quality of the root.

2.3.2 Routing

The principle of the transmission of the request to the root was seen in the general
presentation: the variable “father” gives the direction of the root. The token has to
come back from the root to the requesting site. For that, the following technique is
used: Every site i owns a routing table, i. e., it knows for every site j the first node on

The Prioritized and Distributed Synchronization in Distributed Groups 297

the path from i to j in the tree. This principle is used in Internet (RIP). These tables
remain unchanged. The following is an example of the routing table of A (table 1 and
Figure 2).

Table 1. Routing table of A

A B C D E F
nl B C C C C

G
C

Fig. 2. the direction of the root

2.3.3 Queue
The requests are queued in the queue located at the root. When the root releases the

critical section, it serves the head of the queue (FIFO service).

3 Example

E requests the critical section:
The variable “request” is true for E (Table 3). As E is not the root, it transmits the

request to its father.

Table 2. Initial state of the system Table 3. E requests the critical section

A B C D E F G A B C D E F G
Father | nil A A C C E E Father nil A A C C E E
Request| F F F F F F F Request F F F F T F F
Queue | nil nil nil nil nil nil nil Queue nil nil nil nil nil nil nil
F: False, T: True, nil: empty

C receives the request from E and A receives the request from C:

As C is not the root, it transmits the request to its father. The table of variables is not
changed. A puts E at the end of its local queue. The queue was empty, now it only
contains the requesting-site. A is the root, is not in critical section (request = false),
then its father becomes C which is the first node on the path to E (Table 4). The qual-
ity of rooted tree is lost for a short time. A is the father of C, C is the father of A). A
sends the token and the queue to C to inform C that now it will be the new root.

Table 4. A has received the request of E Table 5. C has received the token from A
A B C D E F G A B C D E F G
Father C A A C C E E Father r C A nil C C E E
Request F F F F T F F Request F F F F T F F
Queue E nil nil nil nil nil nil Queue nil nil E nil nil nil nil

298 M. Trehel and A. Housni

C receives the token and becomes the root:

C puts E in its local queue. The arrow “C to A” is now inverted. C is a temporary root
(Table 5 and Figure 3). After this, the token is transmitted to E and the father of C
becomes E. During a short time, the quality of rooted tree is lost (E is the father of C,
C is the father of E). C sends the token and the queue to E.

()
Q ®
(5 ®

© ®

Fig. 3. C gets the token

E receives the token, becomes the root and enters its critical section:

The arrow “E to C” is now inverted. E becomes the root (Table 6 and Figure 4). C
enters its critical section. If another site requests the critical section, the request will
be transmitted to E.

Table 6. E receives the token e

A B C D E F G G@

Father C A E C nil E E
Request | F F F F T F F @ Q
Queue |nil nil nil nil E nil nil G G

Fig. 4. E receives the token

4 Algorithm’s Specification

The algorithm is presented as a series of procedures: ""Requesting critical section",
"Receiving request”, "Receiving token", ""Release critical section". A site can enter
the critical section in "Requesting critical section" and "'Receiving token". The pro-
cedure "Check the queue" details what to do after releasing the critical section. Pre-
cisely a site must check if another site has requested, and, in this case, it must send
him the token.

Variables of site 1

Const me =..{ identity of the site }

N =.. { total number of sites }
Type Site = 1,.., N U {nil} { nil means indefinite }
Var Request: Boolean {says if the site has requested}

Father: site{Gives the organization of the rooted tree}
Q-head, requesting-site: Site {temporary variables}

The Prioritized and Distributed Synchronization in Distributed Groups 299

Routing: Array [Site] {Routing [j] is the first node on
the path from i to j}
Queue: ordered set of [Site];
Type of messages Reqg {transmission of a request}
Token {Transmission of the token}
Procedure Initialization

Begin
Father := ..{ nil for the root, else father }
Request := false;
Routing :.. { the routing table is different for every
node}
Queue := nil;
End

General procedures
Put off (queue) { Put a site off the queue}
Chain (queue, requesting site)
{ It is the concatenation of a queue and a site}

Procedure Requesting critical-section

Begin
Request := True
If (father = nil) then
begin
Queue := {me}
PERFORM CRITICAL SECTION
RELEASE CRITICAL SECTION
end
Else
Send (reqg, me) to father
Endif
Endprocedure

Procedure Receiving request (req, requesting-site)
Begin
If father = nil) then

Begin
queue := Chain (queue, requesting-site)
If (not request) then {the root is not in
its critical section}
begin
father:= Routing (requesting-site)
Send (token, queue) to Routing (re-
questing-site)
Queue := nil
endif
end

else {The site has only to transmit the request}
Send (req, requesting-site) to father
endif
Endprocedure

300 M. Trehel and A. Housni

Procedure Release critical-section

Begin
Request := False
Put off (queue) {I have finished with the critical
section}
CHECK THE QUEUE (queue)
Endprocedure

Procedure Check the queue (queue)
Begin
If (not (queue = nil)) then
Begin
Q-head := head (queue)
Father := Routing (Q-head)
Send (token, queue) to father
Queue := nil
Endprocedure

Procedure Receiving token (token, received-queue)
Begin

Queue := received-queue
father := nil
If me = head (queue) then
Begin
PERFORM CRITICAL SECTION
RELEASE CRITICAL SECTION
End
else
CHECK THE QUEUE (queue)
endif
Endprocedure

5 Mutual Exclusion and Liveness Are Satisfied

Only a site owns the token and is authorized to send it to another one. That ensures
mutual exclusion. The queue is FIFO. When a request is arrived in the queue, we are
ensured that the corresponding site will obtain the critical section. It remains to check
that every request arrives to the queue. That is not difficult because we are in a tree:
there is no cycle. There is only a problem: a request can go from A to B during the
time when token goes from B to A. That means the request does not take the shortest
path, nevertheless it will arrive in the queue because the communications are two
times faster than the passage in critical section (see hypotheses).

The Prioritized and Distributed Synchronization in Distributed Groups 301

6 Study of Performances

Let us count the average number of messages in the case of one group for a particular
rooted tree. The height of a node i is defined as the number of nodes from i to the root
(i and the root included). This means the height of the root is 1. If the root requests the
critical section, no messages are exchanged. When another node i, of height h, , re-
quests the critical section, the number of messages is 2 (h, 1), i. e. (h, —1) to transmit
the request to the root, and (h, —1) messages to transmit the token from the root to i.
Suppose the probability of requesting the critical section, for node i, is p, .

Lemma 1 : the average number of messages in a given rooted tree is:2 p; (h; 1)

Note If j is the root, (h, —1) is equal to d (i, j) where d is the distance between the 2
nodes.
Corollary: the average number of messages in a given rooted tree is 2 p;d(j,i) .

e.g., the average number of messages for Figure 5c is 2p +4p, +4p +4p..

It has been seen that, when the token has arrived at the requesting site, the tree is not
changed, but there is another root. For instance, if 1 requests the critical section, the
new rooted tree will be that one of Figure 5b. For a given tree, whatever the root, if i
requests the critical section, the graph becomes a rooted tree of root i.

Sa 5b 5c

Fig. 5. Requests of 1 and 2.

This gives:

Lemma 2 For a given tree, the probability that the rooted tree of root i appears, is p..
Then, this implies that the average number of messages of a tree will be the sum of the
products of the probabilities of the rooted trees by the average numbers of messages:

n n
Lemma 3 The cost (average number of messages) of a tree is: 2 pip;dQ,j).
i=1 j=1
We have proved [3] that the cheapest tree is the star with the greatest probability at the
center. The cost is less than 4 messages. However, star is not a good structure for fault
tolerance, because the center is frequently impelled. Raymond obtains an average
number of messages of O(Log (n)) by simulation, in the case of equiprobability.

302 M. Trehel and A. Housni
7 Algorithm for n Groups

Maekawa [6] has written an algorithm by groups without priority. For us, groups are
disjoint and every group has a priority level. When there are some requests in the
queue, they are sorted in function of priorities. There is a router by group. The same
structure (rooted tree) is defined between the routers than between the sites of a group.
And the algorithm between the groups is nearly the same than between the routers of a
group. The token is owned by the site at the root of the group, whose the router is at
the root. When a site requests the critical section, it sends its request towards the root
of its group. If the token is in the group, the request is put in the queue. A reorganiza-
tion of the queue is processed in function of the site’s request’s priorities. When the
site in critical section releases it, the token is sent to the first site of the queue (this site
has the maximum priority). If the token is not in the group, the request is sent to the
router of the group, which sends it to the group owner of the token (figure 6). The
detailed program is given in [3].

- A, B, C are routers,

-A, A, are sites of group A,
- B, B, are sites of group B,
- C, C,are sites of group C.

p— ~——=-

Fig. 6. Example for three structured groups.

8 Mutual Exclusion Is Satisfied

The proof of mutual exclusion is the same than in one group. Concerning deadlock, it
is the same thing: deadlock is impossible. Nevertheless, there is absence of equity in
prioritized mutual exclusion, because it is the aim of the system: it is possible that
reordering the queue prevents a site to obtain the critical section.

9 Performances

There are thee kinds of messages : messages inside a group, messages from a router to
another one, and messages between the routers and the sites. If the structure of group
is a star, the cost is less than 4 messages. It will be the same for the communications
between the routers. The result is that with a star for each group and a star between the
routers, the number of messages is less than 12. That is really less than 12 if there are
particular groups with great probabilities. Heterogeneity is a good factor of economy.
Nevertheless, as for one group, the star is not a good structure for fault tolerance,
because the center is frequently impelled.

The Prioritized and Distributed Synchronization in Distributed Groups 303
10 Conclusion and Perspectives

The advantage of this algorithm is its simplicity, for one or many groups. A first ob-
jective is to validate the program. We think a proof with a validation tool will be sim-
pler to obtain than with a mathematical proof. Concerning the performance, it is the
same thing: performance by simulation will be simpler to obtain than mathematical
performance. We have only considered the number of messages as measure of per-
formance. We will have to consider also the efficiency for fault tolerance. That will
give us completely different approach. There is always a problem concerning priori-
tized problems. It is possible that a site which requests critical section cannot obtain it.
It would be interesting to give him the critical section after a maximum number of
other sites. We intend to rewrite a new algorithm, to satisfy this specification.

References

A. Goscinski. "Two algorithms for mutual exclusion in real-time distributed computer
systems", The Journal of Parallel and Distributed Computing, 9: pp.77-82, (1990).

2 K. Harathi and T. Johnson, "A priority synchronization algorithm for multiprocessors",
Technical Report tr93.005. Available at[ftp.cis.ufl.edu:cis/tech-reports| (1993).

3 A. Housni, M. Tréhel, "Specification of the prioritized algorithm for N groups", intern
paper, Laboratore d’Informatique de l'université de Franche Comté, France, February
(2001).

4 T. Johnson, R. E. Newman-Wolfe "A comparison of fast and low overhead distributed
priority locks", Journal of Parallel and Distributed Computing 32 (1): pp.74-89 (1996).

5 B. M. K. Qazzaz "A new prioritized mutual exclusion algorithm for distributed systems",
Doctoral Thesis, Dept of Comp. SCI., Southern Illinois University, Carbondale, (1994).

6 M. Maekawa, "A N Algorithm for Mutual Exclusion in Decentralized Systems," ACM
Transactions on Computer Systems, Vol3, pp. 145-159 (1985).

7 F. Mueller "Prioritized token-based mutual exclusion for distributed systems", 12th
IPPS/SPDP, Orlando, Florida USA, (1998).

8 K. Raymond, "A tree-based algorithm for distributed mutual exclusion" ACM Transactions
on Computer Systems Volume 7, Issue 1, pp.61-77 (1989).

9 M.Tréhel, M. Naimi, "A distributed algorithm for mutual exclusion based on data structures
and fault-tolerance”, 6" annual IEEE conference on computers and communications,
Phoenix, Arizona, February (1987).

ftp://ftp.cis.ufl.edu:cis/tech-reports

	1 Introduction
	2 Our Algorithm for One Group
	2.1 General Presentation
	2.2 Hypotheses
	2.2.1. Network
	2.2.2 Communication
	2.2.3 Critical Section
	2.2.4 Specifications

	2.3 Principles of the Algorithm
	2.3.1 Token
	2.3.2 Routing
	Fig. 2. the direction of the root
	2.3.3 Queue

	3 Example
	4 Algorithm™s Specification
	5 Mutual Exclusion and Liveness Are Satisfied
	6 Study of Performances
	7 Algorithm for n Groups
	Fig. 6. Example for three structured groups.
	8 Mutual Exclusion Is Satisfied
	9 Performances
	10 Conclusion and Perspectives
	References

