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Abstract. This paper presents the evaluation of the solution quality of heuristic
algorithms developed for scheduling multiprocessor tasks in a class of multi-
processor architecture designed for real-time operations. MIMD parallelism and
multiprogramming support are the two main characteristics of multiprocessor
architecture considered. The solution methodology includes different techniques
including simulated annealing, tabu search, as well as well-known simple prior-
ity rule based heuristics. The results obtained by these different techniques are
analyzed for different number of jobs and machine configurations.

1   Introduction

In order to cope with the computing requirements in many real-time applications, such
as machine vision, robotics, and power system simulation, parallelism in two direc-
tions, space (data or control) and time (temporal), are exploited simultaneously [4, 10].
Multitasking computing platforms are particularly developed to exploit this computing
structure. These architectures provide either a pool of processors that can be parti-
tioned into processor clusters or processor arrays prearranged in multiple layers.
PASM [11], NETRA[2] or IUA [12] are the examples to such architectures. In both
approaches a communication mechanism is provided among processor clusters to
support pipelining of tasks. The computing platform achieves multi-tasking (or multi-
programming) by allowing simultaneous execution of independent parallel algorithms
in independent processor groups. This class of computers is specially developed for
applications where operations are repetitive. A good example to this computing struc-
ture is real-time computer vision, where overall structure is made of a stream of re-
lated tasks. Operations performed on each image frame can be categorized as low,
intermediate and high level. The result of an algorithm in low level initiates another
algorithm in intermediate level and so on. By exploiting available spatial parallelism,
algorithms at each level can be split into smaller grains to reduce their computation



62         M.F. Ercan, C. Oguz, and Y.-F. Fung

time. In addition, when continuous image frames are processed, temporal parallelism
can be exploited to improve computing performance even further. That is, algorithms
at each level can be mapped to a processing layer (or cluster) of a multi-tasking archi-
tecture and executed simultaneously to create a pipelining effect. In the remainder of
this paper, as well as in our problem definition, we will name a single pipeline, made
of multiprocessing tasks (MPT), as a job.

In general, high performance parallel computing requires two techniques: program
partitioning and task scheduling. Program partitioning deals with finding best grain
size for the parallel algorithm considering the trade-off between parallelism and over-
head. There are many techniques introduced in literature including simple heuristics,
graph partitioning techniques, as well as meta-heuristics [1,4]. The main approach in
these studies is to partition a task into subtasks considering network topology, proces-
sor, link, memory parameters and processor load balance to optimize the performance
of computation. On the other hand, task scheduling deals with optimally scheduling
MPTs so that overall makespan of the parallel application can be minimized. Various
aspects of task scheduling have been studied in literature including deterministic and
dynamic tasks, periodic tasks, preemptive, and non-preemptive tasks [1,2,4].

In different to these studies, we focus on job scheduling problem. As mentioned a
job consists of multiple interdependent MPTs. The job scheduling problem is basically
finding a sequence of jobs that can be processed on the system in minimum time. This
problem as it stands is very complex; therefore we study a more restricted case in
terms of computing platform and job parameters. In this paper, we consider jobs with
deterministic parameters processed on a multi-tasking architecture with only two lay-
ers (or clusters). In our earlier study, we have developed list based heuristic algorithms
especially for dynamic scheduling of jobs [6]. In the dynamic case, once a schedule is
obtained it is implemented by control processors of the physical system. Most of the
multi-tasking architectures employ a master-slave organization at each independent
layer where master processor is responsible for initiating the processes. These heuris-
tics provided fast solutions though their minimization of makespan were limited. On
the other hand, for the deterministic cases scheduling can be done off-line during pro-
gram compilation stage. This allows to employ more complex local search algorithms
such as simulated annealing, tabu search, and genetic algorithms. These algorithms
typically search for improved solutions until a stopping criterion is reached. It is most
likely to find a better solution with these algorithms though their execution time is
long due to their iterative nature. In this paper, we study simulated annealing and tabu
search algorithms and evaluate their performances. In the following, a formal defini-
tion of the problem, simulated annealing and tabu search algorithms, and computa-
tional studies will be presented.

2   Basic Parameters and Problem Definition

We consider a set J of n  independent and simultaneously available jobs to be proc-
essed in a computing platform with two multiprocessor layers where layer j  has mj



Performance Evaluation of Heuristics for Scheduling Pipelined Multiprocessor Tasks         63

identical parallel processors, 2,1=j . The level of pipeline in each job is the same

and compatible with the number of processing layers available in the computing plat-
form. Each job J Ji ˛  has two multiprocessor tasks (MPTs), namely )1,(i  and )2,(i .

),( jiMPT should be processed on  ijsize  number of processors simultaneously at

layer j  for a period of  pij  without interruption ni ,...,2,1( =  and )2,1=j . Hence,

each ),( jiMPT  is characterized by its processing time, pij , and its processor re-

quirement, nisizeij ,...,2,1( =  and )2,1=j . All the processors are continuously avail-

able from time 0 onwards and each processor can handle no more than one MPT at a
time. Jobs flow through from layer 1 to layer 2 by utilizing any of the processors and
by satisfying the MPT constraints. The objective is to find an optimal schedule for the
jobs so as to minimize the maximum completion time of all jobs, i.e. the makespan,
Cmax .

As in most allocation methods, we assume that processors are capable of simulta-
neously executing a task and performing a communication. This assumption is also
based on the practical fact that majority of novel parallel architectures possess such
feature. In our computations, communication cost between the subtasks is considered,
though, for the sake of simplicity, this cost is included in pij  as part of the total time

that processors are occupied while performing a task.

3   Task Mapping Heuristic

Task mapping heuristic allocates tasks from a given job list by simply evaluating
processor availability of the underlying hardware and requirements of MPTs. The
algorithm performs following steps:

Step 1. Given a sequence S  of the jobs, construct a schedule in layer 1 by assigning
the first unassigned )1,(iMPT of job iJ  in S  to the earliest time slot where at least

sizei1  processors are available.

Step 2. As the MPTs are processed and finished in layer 1 in order, their counterpart
became available to be processed in layer 2. Hence, schedule available MPTs to the
earliest time slot in layer 2 by also taking into account their sequence in S .

4   Simulated Annealing

The stochastic methodologies can be used to improve the quality of allocations.
Simulated annealing [9], SA, is an example to such methods. It performs heuristic hill
climbing to transverse a search space in a manner, which is resistant to stopping pre-
maturely at local critical points that are less optimum than the global one. As it is
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known, in order to achieve this, SA scheme moves from one solution to another with
the probability defined by the following equation:
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np where ED  is the difference in cost between the current solu-

tion and the new solution and )(nT  is a control parameter, which is also called ‘tem-

perature’ at step n . A new state is accepted whenever its cost, or energy function, is

better than the one associated with the previously accepted state. T is analogous to
temperature associated with physical processes of the annealing. In general, T , is

initialized with the value initT  and is then decreased in the manner dictated by the

associated cooling schedule until it reaches the freezing temperature.
In order to apply SA to a practical problem several decisions have to be made. Next,

we present our approach for each of these decisions.
Initial Solution: The initial solution is generated by setting all jobs in ascending or-

der of job indices.
Neighborhood generation mechanism: A neighbor of the current solution is ob-

tained in various ways. One method is to exchange two randomly chosen jobs from the
priority list. This method is called interchange neighborhood. A special case of inter-
change neighborhood is simple switch neighborhood. It is defined by exchanging a
randomly chosen job with its predecessor. Third method is called shift neighborhood,
which involves removing a randomly selected job from one position in the priority list
and putting it into another randomly chosen position.  We have employed a prelimi-
nary computational experiment to examine the performance of these three methods.
The results showed that the best performing neighborhood generation mechanism is
interchange method. It is followed by shift and simple switch methods. Hence, inter-
change method is employed in our further experiments.

Objective function: The value of the objective function is defined as minimal value

obtained for the completion time of all jobs, i.e. the makespan, Cmax .

Cooling Strategy: A simple cooling strategy is employed in our implementation.

Temperature is decreased in an exponential manner with 1-= ii TT l  where 1<l . In

our implementation, l  value is selected as 0.998 after repetitive experiments.
Initial Temperature: It is important to select an initial temperature high enough to

allow a large number of probabilistic acceptances.  The initial value of temperature is

selected using the formula: 
)ln( 0x

E
T
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o

D= .  Here  avgED  is the average increase in the

cost for a number of random transitions. Initial acceptance ratio, 0x , is defined as the

number of accepted transitions divided by the number of proposed transitions. These
parameters estimated after 50 randomly permuted neighborhood solution of the initial
solution.

Stopping criterion: We have employed two stopping rules simultaneously. The first
rule is the fixed number of iterations. The second rule compares average performance
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deviation of the solution from the lower bounds and if it is less then 1% procedure is
ended.

5   Tabu Search

Tabu search, TS, is another local search method, which is guided by the use of adap-
tive memory structures [7]. This method has been successfully applied to obtain opti-
mal or sub-optimal solutions to optimization problems. The basic idea of the method is
to explore the solution space by a sequence of moves made from one solution to an-
other solution. However, to escape from locally optimal solutions and to prevent cy-
cling, some moves are classified as forbidden or tabu. In the basic short term strategy

of TS, if there is no better solution found than the current one, ns , a move to the best

possible solution, s , in the neighborhood )( nsN  (or a sub-neighborhood

)()( nn sNsN ˝¢ in the case )( nsN  is too large to be explored efficiently) is per-

formed. A certain number of the last visited solutions are stored in tabu list such that if

a solution s  is already in the list, the move from current solution ( ssn fi ) is pro-

hibited.
One of the main decision areas of TS is specification of a neighborhood structure

and possibly of a sub-neighborhood structure. The three neighborhood generation
strategies, discussed earlier in SA section, are also experimented with TS and inter-
change strategy is found to be the most effective one. For the sub-neighborhood

)( nsN ¢ , we pick at random a fixed number of solutions in )( nsN .

In the tabu list, we keep a fixed number of last visited solutions. We have also ex-
perimented keeping track of moves made instead of the solution sets. In this case, the
computation time was shorter though we did not observe any significant advantage
over the solution provided. We have experimented two methods for updating tabu list.
These are the elimination of the farthest solution stored in the list, and removing the
worst performing solution from the list. For the second method, an additional list to
keep makespan values of the solutions in tabu list is required since the performance of
a solution is measured with the makespan. This method resulted in slightly better per-
formance than the first one. However, the tactical choices to improve the efficiency of
the TS algorithm are somewhat longer than the SA and for this problem case perform-
ance of TS algorithm with the standard choices were slightly behind the SA.

6   Computational Experiments

Our computational study aims to analyze performance of the SA and TS methods on
the minimization of makespan, as well as to investigate the effect of task characteris-
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tics, and processor configurations on the performance. We consider different process-
ing time ratios and different processor configurations for the randomly generated
problems as explained below. In order to make sure a comparable computational effort
committed by each heuristic, the stopping criterion for the following experiments
defined as a fix number of solutions visited. This number has been set at 5000. We
also compared these results with our earlier study where we have analyzed perform-
ance of several list-based heuristics for the job-scheduling problem.

The number of jobs was selected as 50,30,10=n . We have selected following

two processing time ratios as defined in [10]. These are a) ]40,1[~1 Upi and

]40,1[~2 Upi  b) ]40,1[~1 Upi  and ]20,1[~2 Upi ),...,2,1( ni = . The num-

ber of processors of multi-layer system was chosen according to following two con-

figurations: a) More processors at layer 1, kmm 22 21 ==  ; b) Identical number of

processors at each layer, 21 mm = ; where .3,2,1=k
For every ),( jiMPT , an integer processor requirement at layer j  was generated

from a uniform distribution over [ jm,1 ] ( ni ,...,2,1=  and 2,1=j ). For each

combination of processing time ratio and processor configuration of the architecture
25 problems were generated which are used to test the performance of SA and TS
algorithms. In this section, we present the results of our computational study. For
comparison, we have also included the performance of four best performing priority
based heuristic algorithms from our earlier study where we have experimented 48
different heuristics that are a combination of 24 sequencing rules and two task map-
ping heuristics. The first heuristic algorithm, H1, obtains a sequence of jobs by apply-
ing Johnson’s algorithm, JA, [8] assuming that 1== jij msize  ( ni ,...,2,1= and

2,1=j ). Whereas, in the second heuristic algorithm, H2, a sequence of jobs obtained

by first sorting tasks in non-increasing order of layer 2 processor requirements and
then by sorting each group of tasks requiring same number of processors in non-
increasing order of their layer 2 processing times. The sequencing rule in the third
algorithm, H3, obtains a job list by simply sorting tasks in non-increasing order of
layer 2 processing times.  In heuristic H4, a set of job sequence is obtained by sorting
the tasks in non-increasing order of 2211 iiii sizepsizep + . In addition, we have also

included the result of a heuristic based on random selection of jobs.  All the algorithms
are implemented using C++ and run on a PC with 350 Mhz Pentium II processor.
Results are presented in terms of Average Percentage Deviation (APD) of the solution
from the lower bound. The percentage deviation is defined as

100)))((( max ·- LBLBHEC where )(max HEC  denotes the Cmax obtained by

heuristic algorithms, that is SA, TS or list based heuristics. LB  indicates the mini-
mum of five lower bounds used [6]. The APD of each solution are presented in Fig-
ures 1 and 2.
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Fig. 1. Average percentage deviation of each algorithm for P1:P2=40:40.
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Fig. 2. Average percentage deviation of each algorithm for P1:P2=40:20.

The computational study shows that in all the cases SA and TS significantly outper-
form random sampling heuristic. In all the experiments, these metaheuristics delivered
a better solution than random sampling ranging as high as 81 percent and as minimum
as 14.5 percent. In none of the experiments, random selection encounters a solution at
lower bounds or closer. The makespan minimization achieved by both SA and TS are
quite similar, though, in most of the cases SA delivers a better result. In most of the
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cases, SA converges to a reasonable solution within 500 iterations while TS converges
within 1000 iterations.

It is also observed that in general the APD results of algorithms are better for the
processing time ratio of 40:20 than the ratio 40:40. This can be explained as having a
larger range for the main characteristic of the problem makes it difficult to schedule
tasks, as it is more likely to have unbalanced processor loads. From Figures 1 and 2,
APD seems to decrease as the number of jobs increases for each heuristic algorithm.
This is explained as the number of job increases lower bound becomes more effective
and close to the optimal solution. APD also deteriorates with the increasing number of
processors. In addition, with increasing layer 2 to layer 1 processor ratio APD deterio-
rates. As layer 2 processors dictates the completion time of jobs, the increase of num-
ber of processors at this layer also increases the possibility of having idle processors,
which consequently reduces the efficiency.

7   Summary

In this paper, a job-scheduling problem on a multi-tasking multiprocessor environment
is considered. A job is made of interrelated multiprocessor tasks, which are modeled
with their processing requirements and processing times. Two metaheuristic
algorithms have been applied for the solution and their performance have been
evaluated based on their capacity to minimize makespan. We compared these results
with our earlier study where we have developed heuristic algorithms using simple
sequencing rules. The results showed that metaheuristics significantly outperformed
the list based heuristics. However, due to their large computation times they can be
used in deterministic cases. So far, we have considered restricted case of the problem;
a more general case will be dealt in our further study.
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