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Abstract. Alice wants to prove that she is young enough to borrow
money from her bank, without revealing her age. She therefore needs a
tool for proving that a committed number lies in a specific interval. Up to
now, such tools were either inefficient (too many bits to compute and to
transmit) or inexact (i.e. proved membership to a much larger interval).
This paper presents a new proof, which is both efficient and exact. Here,
“efficient” means that there are less than 20 exponentiations to perform
and less than 2 Kbytes to transmit. The potential areas of application
of this proof are numerous (electronic cash, group signatures, publicly
verifiable secret encryption, etc . . . ).

1 Introduction

The idea of checking whether a committed integer lies in a specific interval
was first developed in [2]. Such kind of proofs are intensively used in several
schemes: electronic cash systems [7], group signatures [11], publicly verifiable
secret sharing schemes [17,4], and other zero-knowledge protocols (e.g. [13,10]).
Nowadays, there exist two methods to prove that a committed integer is in a
specific interval:

– the first one (see e.g. [17]) allows to prove that the bit-length of the commit-
ted number is less or equal to a fixed value k, and hence belongs to [0, 2k−1].
Unfortunately, this method is very inefficient.

– the second one (see e.g. [2,8]) is much more efficient, but the price to pay is
that only membership to a much larger interval can be proven.

In this paper, we give a new method to prove that a committed number
belongs to an interval that is much more efficient than the first method and that
effectively proves, unlike the second method, that a committed number x ∈ I
belongs to I (and not a larger interval).

Throughout this paper, Zn denotes the residue class ring modulo n, and Z
∗
n

denotes the multiplicative group of invertible elements in Zn. | · | denotes binary
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length, a ‖ b is the concatenation of the strings a and b. We denote by ]I the
cardinal of the set I. For g ∈ Z

∗
n and a in the group generated by g, we denote

by logg(a) the discrete logarithm of a in base g modulo n, i.e. the number x
such that a = gx mod n which belongs to {−ord(g)/2, . . . ,ord(g)/2 − 1}, where
ord(g) is the order of g in Z

∗
n. We denote by PK(x : R(x)) a zero-knowledge

proof of knowledge of x such that R(x) is true.

1.1 Definitions

Definition 1 Let E = BC(x) be a commitment to a value x ∈ [b1, b2]. A proof
of membership to an interval [b1, b2] is a proof of knowledge that ensures the
verifier that the prover knows x such that E = BC(x) and that x belongs to
[B1, B2], an interval which contains [b1, b2].

Definition 2 Following the notations of definition 1, the expansion rate of a
proof of membership to an interval is the quantity δ = (B2 −B1)/(b2 − b1). This
quantity may or not be dependent on (b2 − b1).

We evaluate the quality of a proof of membership to an interval by the length
of the proof (which must be as short as possible) and by its expansion rate (which
must be as low as possible).

1.2 Known Results

In this subsection, we present three existing proofs of membership to an interval.
They are based on zero-knowledge proofs of knowledge of a discrete logarithm
either modulo a prime (Schnorr [19]) or a composite number (Girault [16]).

1.2.1 Classical Proof [17]
This protocol proves that a committed number x ∈ I = [0, b] belongs to I =
[0, 2k − 1], where the binary length of b is k.

Let p be a large prime number, let q such that q|p − 1, and g and h be
elements of order q in Z

∗
p such that the discrete logarithm of h in base g is

unknown by Alice. We denote by E(x, r) = gxhr mod p a commitment to x,
where r is randomly selected over Z

∗
p. Let x = x020 + x121 + · · ·+ xk−12k−1 for

xi ∈ {0, 1} and i = 0, 1, . . . , k − 1 be the binary representation of x. Alice sets
E(xi, ri) for i = 0, 1, . . . , k−1, where the ri are such that

∑
i=0,...,k−1 ri = r, and

proves for all i that the number hidden by E(xi, ri) is either 0 or 1 by proving
that she knows either a discrete logarithm of E(xi, ri) in base h or a discrete
logarithm of E(xi, ri)/g in base h. This can be done using proofs of knowledge
of a discrete logarithm [19] and a proof of knowledge of one out of two secrets
[5]. Bob also checks that

∏
i=0,...,k−1 E(xi, ri) = E(x, r).

Characteristics of this proof: For |p| = 1024 bits, |q| = 1023 bits, |b| = 512 bits,
and the Schnorr’s proof security parameter t = 90.
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– completeness: The proof always succeeds.
– soundness: A cheating prover can succeed with probability less than 1−(1−

2−89)512 < 2−80.
– zero-knowledge: Perfectly zero-knowledge in the random-oracle model defined

in [3].
– what is proven: x ∈ [0, 2k − 1].
– expansion rate: 1 ≤ δ < 2 (can be decreased to 1 by proving that both x and

b − x are k-bit numbers).
– length of the proof: 1,612,800 bits = 196.9 kB.

1.2.2 BCDG Proof [2]
This protocol proves that a committed number x ∈ I belongs to J , where the
expansion rate ]J/]I is equal to 3. We give here a slightly different presentation
from the one of the original paper.

Let t be a security parameter. Let p be a large prime number, let q such that
q|p−1, and g and h be elements of order q in Z

∗
p such that the discrete logarithm

of h in base g is unknown by Alice. We denote by E = E(x, r) = gxhr mod p a
commitment to x ∈ [0, b], where r is randomly selected over Z

∗
p.

For simplicity, we present an interactive version of the protocol which can be
easily turned into a non-interactive one using the Fiat-Shamir heuristic [15].

Protocol: PK[BCDG](x, r : E = E(x, r)∧ x ∈ [−b, 2b]).
Run t times in parallel:

1. Alice picks random ω1 ∈R [0, b] and sets ω2 = ω1 − b. She also randomly
selects η1 ∈R [0, q− 1] and η2 ∈R [0, q − 1], and sends to Bob the unordered
pair of commitments W1 = gω1hη1 mod p and W2 = gω2hη2 mod p.

2. Bob challenges Alice by c ∈R {0, 1}.
3. If c = 0, Alice sends to Bob the values of ω1, ω2, η1 and η2.

If c = 1, Alice sends to Bob the value of x+ωj, r+ηj for the value j ∈ {1, 2}
such that x + ωj ∈ [0, b].

4. Bob checks that W1 = gω1hη1 mod p and W2 = gω2hη2 mod p in the former
case and Wj = gωjhηj mod p, x + ωj ∈ [0, b] in the latter case.

Characteristics of this proof: For |p| = 1024 bits, |q| = 1023 bits, |b| = 512 bits,
t = 80 and l = 40.

– completeness: The proof always succeeds if x ∈ [0, b]
– soundness: A cheating prover can succeed with probability less than 2×2−t =

2−79.
– zero-knowledge: Perfectly zero-knowledge in the random-oracle model.
– what is proven: x ∈ [−b, 2b].
– expansion rate: δ = 3.
– length of the proof (on average): 225,320 bits = 27.5 kB.
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1.2.3 CFT Proof [8]
The main idea of this proof is roughly the same as the one of [2]. Let t, l and s
be three security parameters. This protocol (due to Chan, Frankel and Tsiounis
[7], and corrected in [8], and also due to [14] in another form) proves that a
committed number x ∈ I belongs to J , where the expansion rate ]J/]I is equal
to 2t+l+1 . Let n be a large composite number whose factorization is unknown by
Alice and Bob, g be an element of large order in Z

∗
n and h be an element of the

group generated by g such that both the discrete logarithm of g in base h and
the discrete logarithm of h in base g are unknown by Alice. Let H be a hash-
function which outputs 2t-bit strings. We denote by E = E(x, r) = gxhr mod n
a commitment to x ∈ [0, b], where r is randomly selected over [−2sn+1, 2sn−1].
This commitment, from [13], statistically reveals no information about x to Bob.

Protocol: PK[CFT ](x, r : E = E(x, r) ∧ x ∈ [−2t+lb, 2t+lb]).

1. Alice picks random ω ∈R [0, 2t+lb− 1] and η ∈R [−2t+l+sn +1, 2t+l+sn− 1],
and then computes W = gωhη mod n.

2. Then, she computes C = H(W ) and c = C mod 2t.
3. Finally, she computes D1 = ω+xc and D2 = η+rc (in Z). If D1 ∈ [cb, 2t+lb−

1], she sends (C, D1, D2) to Bob, otherwise she starts again the protocol.
4. Bob checks that D1 ∈ [cb, 2t+lb − 1] and that C = H(gD1hD2E−c). This

convinces Bob that x ∈ [−2t+lb, 2t+lb].

Characteristics of this proof: For |n| = 1024 bits, |b| = 512 bits, t = 80, l = 40
and s = 40.

– completeness: The proof succeeds with probability greater than 1 − 2l =
1 − 2−40 if x ∈ [0, b].

– soundness: A cheating prover can succeed with probability less than 2−79.
– zero-knowledge: Statistically zero-knowledge in the random-oracle model.
– what is proven: x ∈ [−2t+lb, 2t+lb] = [−2120b, 2120b].
– expansion rate: δ = 2t+l+1 = 2121.
– length of the proof: 1,976 bits = 0.241 kB.

1.3 Our Results

The schemes we propose in this paper are much more efficient than the classical
proof and the BCDG proof, and their expansion rates are δ = 1 + ε for the first
one, and δ = 1 for the other one, where ε is a negligible quantity with respect to
1 if the considered interval is large enough (ε = 2−134 if the committed number
lies in [0, 2512 − 1]).

We briefly describe our algorithms: first note that it is sufficient to know how
to prove that a number is positive to prove that a number belongs to an interval.
Indeed, to prove that x belongs to [a, b], it is sufficient to prove that x − a ≥ 0
and b − x ≥ 0.
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Consider the following commitment scheme: to hide an integer x, Alice com-
putes E(x, r) = gxhr mod n, where n is a composite number whose factorization
is unknown by both Alice and Bob, g is an element of large order in Z

∗
n, h is an

element of large order of the group generated by g such that both the discrete
logarithm of g in base h and the discrete logarithm of h in base g are unknown
by Alice, r is randomly selected over [−2sn + 1, 2sn − 1] and s is a security
parameter. This commitment has been introduced in [13], and statistically re-
veals no information of x to Bob (see section 2.1). Note that this commitment
is homomorphic, i.e. E(x + y, r + s) = E(x, r)× E(y, s) mod n.

Assume that Alice commits herself to a positive integer x by E = E(x, r)
and wants to prove that x ∈ [a, b].

In our first scheme, Alice writes the positive integer x − a as the sum of x2
1,

the greatest square less than x and of ρ, a positive number less than 2
√

x − a
(and therefore less than 2

√
b − a). Then, she randomly selects r1, r2 in [0, 2sn−1]

such that r1+r2 = r and computes E1 = E(x2
1, r1) and E2 = E(ρ, r2). Then, she

proves to Bob that E1 hides a square in Z and that E2 hides a number whose
absolute value is less than 2t+l+1

√
b − a by a CFT proof. Finally, she applies

the same method to b− x. This leads to a proof that x ∈ [a− 2t+l+1
√

b − a, b +
2t+l+1

√
b − a]. The expansion rate of this proof is equal to 1 + (2t+l+2/

√
b − a),

which becomes close to 1 when b − a is large.
In our second scheme, we artificially enlarge the size of x by setting x′ = 2T x.

By using the first scheme, we prove that x′ ∈ [2T a − 2t+l+T/2+1
√

b − a, 2T b +
2t+l+T/2+1

√
b − a], and if T is large enough (i.e. T is such that 2t+l+T/2+1

√
b − a

< 2T ), Bob is convinced that x′ ∈ [2Ta − 2T + 1, 2T b + 2T − 1], so that x ∈
[a − ε, b + ε] where 0 ≤ ε < 1. So, as x is an integer, Bob is convinced that
x ∈ [a, b].

1.4 Organization of the Paper

In Section 2, we describe some building blocks used in our protocols: a proof that
two commitments hide the same secret, and a proof that a committed number is
a square. In Section 3, we describe our two schemes: a proof of membership to an
interval with tolerance and a proof of membership without tolerance. Then, we
extend our results to various commitments. In Section 4, we give an application
of our schemes. Finally, we conclude in Section 5.

2 Building Blocks

The schemes we present in this section are based on the following assumption,
introduced e.g. in [13]:

Strong RSA Assumption: There exist an efficient algorithm that on input
|n| outputs an RSA-modulus n and an element z ∈ Z

∗
n such that it is infeasible

to find integers e 6∈ {−1, 1} and u such that z = ue mod n.
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2.1 The Fujisaki-Okamoto Commitment Scheme

In this subsection, we briefly describe the commitment scheme we use throughout
this paper.

Let s be a security parameter. Let n be a large composite number whose
factorization is unknown by Alice and Bob, g be an element of large order in Z

∗
n

and h be an element of large order of the group generated by g such that both
the discrete logarithm of g in base h and the discrete logarithm of h in base g
are unknown by Alice.

We denote by E = E(x, r) = gxhr mod n a commitment to x in base (g, h),
where r is randomly selected over {−2sn + 1, ..., 2sn − 1}.

This commitment has first appeared in [13].

Proposition 1 E(x, r) is a statistically secure commitment scheme, i.e.:

– Alice is unable to commit herself to two values x1 and x2 such that x1 6= x2

(in Z) by the same commitment unless she can factor n or solve the discrete
logarithm of g in base h or the discrete logarithm of h in base g. In other
words, under the factoring assumption, it is computationally infeasible to
compute x1, x2, r1, r2 where x1 6= x2 such that E(x1, r1) = E(x2, r2).

– E(x, r) statistically reveals no information to Bob. More formally, there ex-
ists a simulator which outputs simulated commitments to x which are statis-
tically indistinguishable from true ones.

As Alice only knows one couple of numbers (x, r) such that E = gxhr mod n,
we say that x is the value committed by (or hidden by) E, and that E hides the
secret x.

2.2 Proof that Two Commitments Hide the Same Secret

Let t, l, s1 and s2 be four security parameters. Let n be a large composite
number whose factorization is unknown by Alice and Bob, g1 be an element
of large order in Z

∗
n and g2, h1, h2 be elements of the group generated by g1

such that the discrete logarithm of g1 in base h1, the discrete logarithm of h1

in base g1, the discrete logarithm of g2 in base h2 and the discrete logarithm of
h2 in base g2 are unknown by Alice. Let H be a hash-function which outputs
2t-bit strings. We denote by E1(x, r1) = gx

1hr1
1 mod n a commitment to x in base

(g1, h1) where r1 is randomly selected over [2s1n + 1, 2s1n − 1], and E2(x, r2) =
gx
2hr2

2 mod n a commitment to x in base (g2, h2) where r2 is randomly selected
over [−2s2n + 1, 2s2n − 1].

Alice secretly holds x ∈ [0, b]. Let E = E1(x, r1) and F = E2(x, r2) be two
commitments to x. She wants to prove to Bob that she knows x, r1, r2 such that
E = E1(x, r1) and F = E2(x, r2), i.e. that E and F hide the same secret x.

This protocol is derived from proofs of equality of two discrete logarithms
from [6,12,1], combined with a proof of knowledge of a discrete logarithm modulo
n [16].
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Protocol: PK(x, r1, r2 : E = E1(x, r1) ∧ F = E2(x, r2)).

1. Alice picks random ω ∈ [1, 2l+tb−1], η1 ∈ [1, 2l+t+s1n−1], η2 ∈ [1, 2l+t+s2n−
1]. Then, she computes W1 = gω

1 hη1
1 mod n and W2 = gω

2 hη2
2 mod n.

2. Alice computes c = H(W1 ‖ W2).
3. She computes D = ω + cx, D1 = η1 + cr1, D2 = η2 + cr2 (in Z) and sends

(c, D, D1, D2) to Bob.
4. Bob checks whether c = H(gD

1 hD1
1 E−c mod n ‖ gD

2 hD2
2 F−c mod n).

It is shown in [9] that a successful execution of this protocol convinces Bob
that the numbers hidden in E and F are equal provided the Strong RSA problem
is infeasible.

Characteristics of this proof: For |n| = 1024 bits, |b| = 512 bits, t = 80, l = 40,
s1 = 40 and s2 = 552.

– completeness: The proof always succeeds.
– soundness: Under the strong RSA assumption, a cheating prover can succeed

with probability less than 2 × 2−t = 2−79.
– zero-knowledge: Statistically zero-knowledge in the random-oracle model if

1/l is negligible.
– length of the proof: 2, 648 + 2|x| bits = 3672 bits = 0.448 kB.

2.3 Proof that a Committed Number is a Square

Let t, l, and s be three security parameters. Let n be a large composite number
whose factorization is unknown by Alice and Bob, g be an element of large order
in Z

∗
n and h be an element of the group generated by g such that both the

discrete logarithm of g in base h and the discrete logarithm of h in base g are
unknown by Alice. Let H be a hash-function which outputs 2t-bit strings. We
denote by E(x, r) = gxhr mod n a commitment to x in base (g, h) where r is
randomly selected over [−2sn + 1, 2sn − 1].

Alice secretly holds x ∈ [0, b]. Let E = E(x2, r1) be a commitment to the
square of x (in Z). She wants to prove to Bob that she knows x and r1 such that
E = E(x2, r1), i.e. that E hides the square x2.

The first proof that a committed number is a square has appeared in [13].

Protocol: PK(x, r1 : E = E(x2, r1)).

1. Alice picks random r2 ∈ [−2sn + 1, 2sn − 1] and computes F = E(x, r2).
2. Then, Alice computes r3 = r1−r2x (in Z). Note that r3 ∈ [−2sbn+1, 2sbn−

1]. Then, E = F xhr3 mod n.
3. As E is a commitment to x in base (F, h) and F is a commitment to x in base

(g, h), Alice can run PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n),
the proof that two commitments hide the same secret described in section
2.2. She gets (c, D, D1, D2).

4. She sends (F, c, D, D1, D2) to Bob.
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5. Bob checks that PK(x, r2, r3 : F = gxhr2 mod n ∧ E = F xhr3 mod n) is
valid.

The soundness of this protocol is clear: if Alice is able to compute F and a
proof that E and F are commitments to the same number x̃ resp. in base (F, h)
and (g, h), then Alice knows x̃, r̃2 and r̃3 such that E = F x̃hr̃3 = gx̃2

hx̃r̃2+r̃3 =
gx̃2

hr̃1 mod n. Then, this proof shows that Alice knows x̃2, a square which is
hidden in the commitment E. In other words, a successful execution of this
protocol convinces Bob that the value hidden in the commitment E is a square
in Z.

Technical proofs of the soundness and the zero-knowledgeness of this protocol
are easily obtained from the properties of the previous protocol.

Characteristics of this proof: For |n| = 1024 bits, |b| = 512 bits, t = 80, l = 40
and s = 40.

– completeness: The proof always succeeds.
– soundness: Under the strong RSA assumption, a cheating prover can succeed

with probability less than 2 × 2−t = 2−79.
– zero-knowledge: Statistically zero-knowledge in the random-oracle model if

1/l is negligible.
– length of the proof: 3, 672 + 2|x| bits = 4696 bits = 0.573 kB.

3 Our Schemes

3.1 Proof that a committed number belongs to an interval

Let t, l and s be three security parameters. Let n be a large composite number
whose factorization is unknown by Alice and Bob, g be an element of large order
in Z

∗
n and h be an element of the group generated by g such that both the

discrete logarithm of g in base h and the discrete logarithm of h in base g are
unknown by Alice. We denote by E(x, r) = gxhr mod n a commitment to x in
base (g, h) where r is randomly selected over [−2sn + 1, 2sn − 1].

3.1.1 Proof with Tolerance: δ = 1 + ε.
The above protocol allows Alice to prove to Bob that the committed number
x ∈ [a, b] belongs to [a− θ, b + θ], where θ = 2t+l+1

√
b − a.

Protocol: PK[WithTol.](x, r : E = E(x, r) ∧ x ∈ [a − θ, b + θ]).

1. [Knowledge of x]
Alice executes with Bob:
PK(x, r : E = E(x, r))

2. [Setting]
Both Alice and Bob compute Ẽ = E/ga mod n and Ē = gb/E mod n. Alice
sets x̃ = x − a and x̄ = b − x. Now, Alice must prove to Bob that both Ẽ
and Ē hide secrets which are greater than −θ.
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3. [Decomposition of x̃ and x̄]
Alice computes:

x̃1 = b√x − ac, x̃2 = x̃ − x̃2
1,

x̄1 = b√b − xc, x̄2 = x̄ − x̄2
1.

Then, x̃ = x̃2
1 + x̃2 and x̄ = x̄2

1 + x̄2, where 0 ≤ x̃2 ≤ 2
√

b − a and 0 ≤ x̄2 ≤
2
√

b − a.
4. [Choice of random values for new commitments]

Alice randomly selects r̃1 and r̃2 in [−2sn+1, ..., 2sn−1] such that r̃1+r̃2 = r,
and r̄1 and r̄2 such that r̄1 + r̄2 = −r.

5. [Computation of new commitments]
Alice computes:

Ẽ1 = E(x̃2
1, r̃1), Ẽ2 = E(x̃2, r̃2),

Ē1 = E(x̄2
1, r̄1), Ē2 = E(x̄2, r̄2).

6. [Sending of the new commitments]
Alice sends Ẽ1 and Ē1 to Bob. Bob computes Ẽ2 = Ẽ/Ẽ1 and Ē2 = Ē/Ē1

7. [Validity of the commitments to a square]
Alice executes with Bob

PK(x̃1, r̃1 : Ẽ1 = E(x̃2
1, r̃1)),

PK(x̄1, r̄1 : Ē1 = E(x̄2
1, r̄1)).

which prove that both Ẽ1 and Ē1 hide a square.
8. [Validity of the commitments to a small value]

Let θ = 2t+l+1
√

b − a. Alice executes with Bob the two followingCFT proofs:
PK[CFT ](x̃2, r̃2 : Ẽ2 = E(x̃2, r̃2) ∧ x̃2 ∈ [−θ, θ]),
PK[CFT ](x̄2, r̄2 : Ē2 = E(x̄2, r̄2) ∧ x̄2 ∈ [−θ, θ]).

which prove that both Ẽ2 and Ē2 hide numbers which belong to [−θ, θ],
where θ = 2t+l+1

√
b − a, instead of proving that they belong to [0, 2

√
b − a].

Sketch of Analysis:
After a successful execution of this protocol, Bob is convinced that :

– Ẽ1 and Ē1 hide numbers which are positive integers, as they are squares
(Step 7).

– Ẽ2 and Ē2 hide numbers which are greater than −θ (Step 8).
– Alice knows the values hidden by Ẽ and Ē (Step 1 and 2).
– The number hidden in Ẽ is the sum of the number hidden in Ẽ1 and of the

number hidden in Ẽ2, and so are Ē, Ē1 and Ē2 (Step 6).

So, Bob is convinced that Ẽ and Ē hide numbers which are greater than −θ,
as they are the sum of a positive number and a number greater than −θ.

Let x be the number known by Alice (from step 1) and hidden by E. Bob is
convinced that x − a is the value hidden by Ẽ and b − x is the value hidden by
Ē. So, Bob is convinced that x− a ≥ −θ and b − x ≥ −θ, i.e. that x belongs to
[a− θ, b + θ], where θ = 2t+l+1

√
b − a.

Expansion Rate: Following Definition 2, the expansion rate is equal to :

δ =
(b + θ) − (a − θ)

b − a
= 1 +

2θ

b − a
= 1 + ε
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where:

ε =
2θ

b − a
=

2t+l+2

√
b − a

≤ 2t+l+2−b |b−a|
2 c

ε is negligible if and only if |b − a| ≥ 2t + 2l + 2z + 4, where z is a security
parameter. If it is the case, the expansion rate is equal to δ = 1 + 2−z.

Characteristics of this proof: for |n| = 1024 bits, |b−a| = 512 bits t = 80, l = 40
and s = 40.

– length of the proof: 13860 bits = 1.692 kB.
– expansion rate: δ = 1 + ε, where ε ≤ 2t+l+2−b |b−a|

2 c = 2−134.

3.1.2 Proof without Tolerance: δ = 1.
The above protocol allows Alice to prove to Bob that the committed number
x ∈ [a, b] belongs to the desired interval [a, b].

To achieve a proof of membership without tolerance, we artificially enlarge
the size of x by setting x′ = 2T x, where T = 2(t + l+1)+ |b− a|. Let E′ = E2T

.
E′ is a Fujisaki-Okamoto commitment to x′ = 2T x that Alice can open.

By using the first scheme, Alice proves to Bob that she knows the value x′

hidden by E′ is such that x′ ∈ [2Ta−2t+l+T/2+1
√

b − a, 2T b+2t+l+T/2+1
√

b − a]
by a CFT proof (instead of proving that x′ ∈ [2Ta, 2T b]).

As T = 2(t + l + 1) + |b− a|, we have:

θ′ = 2t+l+T/2+1
√

b − a < 2t+l+T/2+1 × 2d(|b−a|−1)/2e

< 2T/2 × 2t+l+1 × 2d(|b−a|−1)/2e

< 2T/2 × 2T/2

< 2T

Then, if Bob is convinced that x′ ∈ [2Ta − θ′, 2T b + θ′], he is also convinced
that x′ ∈]2Ta − 2T , 2T b + 2T [.

Provided Alice does not know the factorization of n, she is unable to know
two different values in Z hidden by E′. So, necessarily, x′ = 2T x. The proof
convinces Bob that 2T x ∈]2Ta − 2T , 2T b + 2T [, and so that x ∈]a − 1, b + 1[.
Finally, as x is an integer, Bob is convinced that x ∈ [a, b].

Protocol: PK(x, r : E = E(x, r)∧ x ∈ [a, b]).

1. [Setting]
Both Alice and Bob compute E′ = E2T

, where T = 2(t + l + 1) + |b − a|.
2. [Proof]

Alice executes with Bob:
PK[WithTol.](x′, r′ : E′ = E(x′, r′)∧x′ ∈ [2Ta−2t+l+T/2+1

√
b − a, 2T b+

2t+l+T/2+1
√

b − a].

Characteristics of this proof: for |n| = 1024 bits, |b−a| = 512 bits, t = 80, l = 40
and s = 40.

– length of the proof: 16176 bits = 1.975 kB.
– expansion rate: δ = 1.
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3.2 Extensions

The above protocols can be used to prove that:

– a discrete logarithm modulo a composite number n whose factorization is
unknown to Alice belongs to an interval. Let g be an element of large order
in Z

∗
n and h be an element of the group generated by g such that both the

discrete logarithm of g in base h and the discrete logarithm of h in base g
are unknown by Alice. Let x be such that y = gx mod n. Alice randomly
selects r and computes y′ = hr mod n. She proves to Bob that she knows
a discrete logarithm of y′ in base h, and then that yy′ = gxhr mod n is a
commitment to a value which belongs to the given interval.

– a discrete logarithm modulo p (a prime number or a composite number
whose factorization is known to Alice) belongs to an interval. Let x be such
that Y = Gx mod p. Alice randomly selects r and computes E = E(x, r) =
gxhr mod n, a commitment to x. Then, she executes with Bob PK(x, r :
Y = Gx mod p ∧ E = gxhr mod n) (see Appendix A) and PK(x, r : E =
gxhr mod n ∧ x ∈ [a, b]).

– a third root (or, more generally, a e-th root) modulo N belongs to an interval.
Let x be such that Y = x3 mod N . Alice randomly selects r and computes
E = E(x, r) = gxhr mod n, a commitment to x. Then, she executes with
Bob PK(x, r : Y = x3 mod N ∧ E = gxhr mod n) (see Appendix B) and
PK(x, r : E = gxhr mod n ∧ x ∈ [a, b]).

Note: to prove that a committed number x lies in I ∪ J , Alice proves that x
lies in I or x lies in J by using a proof of “or” by [5].

4 Application to Verifiable Encryption

As one of the several applications of proofs of membership to an interval, we
present in this section an efficient (publicly) verifiable encryption scheme.

Alice has sent two encrypted messages to Charlie and Deborah, and wants
to prove to Bob that the two ciphertexts encrypt the same message.

Charlie and Deborah use the Okamoto-Uchiyama [18] cryptosystem, i.e. Cha-
rlie holds a composite number nC = p2

CqC (|pC | = |qC| = k), an element gC ∈
Z
∗
nC

such that the order of gpC−1
C mod p2

C is pC , and Deborah holds a composite
number nD = p2

DqD (|pD| = |qD| = k), an element gD ∈ Z
∗
nD

such that the order
of gpD−1

D mod p2
D is pD.

We denote by hC = gnC

C mod nC and hD = gnD

D mod nD.
To encrypt a message m such that 0 ≤ m ≤ 2k−1 intended to Charlie, Alice

computes EC = gm
C hrC

C mod nC , where rC is randomly selected over Z
∗
nC

. In the
same way, she encrypts the same message m intended to Deborah by computing
ED = gm

DhrD

D mod nD.
Now, Alice wants to prove to Bob that the two ciphertexts EC and ED

encrypt the same message.
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First, she executes with Bob PK(m, rC , rD : EC = gm
C hrC

C mod nC ∧ ED =
gm

DhrD

D mod nD), a proof of equality of two committed numbers with respect to
different moduli (see Appendix A). This only proves that she knows an integer
m such that m mod pC and m mod pD are respectively the messages decrypted
by Charlie and Deborah. Note that if m is greater than pC and pD, then m mod
pC 6= m mod pD. So it is necessary that Alice also proves to Bob that m is
less than pC and pD. Alice uses the proof of membership to an interval without
tolerance presented in section 3.1.2: PK(m, rC : EC = gm

C hrC

C mod nC ∧ m ∈
[0; 2k−1]). Then, necessarily, m mod pC = m mod pD: Bob is convinced that
Alice has secretly sent the same messages to Charlie and to Deborah.

5 Conclusion

We have presented in this paper efficient proofs that a committed number belongs
to an interval and give examples of applications, more particularly an efficient
verifiable encryption scheme. By their efficiency, they are well suited to be used
in various cryptographic protocols.

Acknowledgements

We would like to thank Marc Girault for helpful discussions and comments.

References

1. Bao, F.: An Efficient Verifiable Encryption Scheme for Encryption of Discrete
Logarithms. Proceedings of CARDIS’98 (1998)

2. Brickell, E., Chaum, D., Damg̊ard, I., Van de Graaf, J.: Gradual and Verifiable
Release of a Secret. Proceedings of CRYPTO’87, LNCS 293 (1988) 156–166

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols. Proceedings of the First Annual Conference and Communica-
tions Security (1993) 62–73
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A Proof of Equality of Two Committed Numbers in
Different Moduli

This proof originally appeared in[4] and independently in [10] in a more general
form.

Let t, l and s be three security parameters. Let n1 be a large composite
number whose factorization is unknown by Alice and Bob, and n2 be another
large number, prime or composite whose factorization is known or unknown by
Alice. Let g1 be an element of large order in Z

∗
n1

and h1 be an element of the
group generated by g1 such that both the discrete logarithm of g1 in base h1

and the discrete logarithm of h1 in base g1 are unknown by Alice. Let g2 be
an element of large order in Z

∗
n2

and h2 be an element of the group generated
by g2 such that both the discrete logarithm of g2 in base h2 and the discrete
logarithm of h2 in base g2 are unknown by Alice. Let H be a hash-function which
outputs 2t-bit strings. We denote by E1(x, r1) = gx

1hr1
1 mod n1 a commitment

to x in base (g1, h1) where r1 is randomly selected over {−2sn + 1, ..., 2sn − 1},
and E2(x, r2) = gx

2hr2
2 mod n2 a commitment to x in base (g2, h2) where r2 is

randomly selected over {−2sn + 1, ..., 2sn − 1}.
Alice secretly holds x ∈ {0, . . . , b}. Let E = E1(x, r1) and F = E2(x, r2) be

two commitments to x. She wants to prove to Bob that she knows x, r1, r2 such
that E = E1(x, r1) and F = E2(x, r2), i.e. that E and F hide the same secret x.

http://www.zurich.ibm.com/~jca/
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Protocol: PK(x, r1, r2 : E = E1(x, r1) mod n1 ∧ F = E2(x, r2) mod n2).

1. Alice picks random ω ∈ {1, . . . , 2l+tb − 1}, η1 ∈ {1, . . . , 2l+t+sn − 1}, η2 ∈
{1, . . . , 2l+t+sn − 1}. Then, she computes W1 = gω

1 hη1
1 mod n1 and W2 =

gω
2 hη2

2 mod n2.
2. Alice computes c = H(W1 ‖ W2).
3. She computes D = ω + cx, D1 = η1 + cr1, D2 = η2 + cr2 (in Z) and sends

(c, D, D1, D2) to Bob.
4. Bob checks whether c = H(gD

1 hD1
1 E−c mod n1 ‖ gD

2 hD2
2 F−c mod n2).

Note that this protocol can be used to prove the equality of more than two
committed numbers, or to prove the equality of a committed number modulo n1

and a discrete logarithm modulo n2 by setting r2, η2 and D2 to zero.

B Proof of Equality of a Third Root and a Committed
Number

This proof is derived from [14].
Let n1 be a large composite number whose factorization is unknown by Alice

and Bob, and n2 be another large composite number whose factorization is
known or unknown by Alice. Let g1 be an element of large order in Z

∗
n1

and h1 be
an element of the group generated by g1 such that both the discrete logarithm of
g1 in base h1 and the discrete logarithm of h1 in base g1 are unknown by Alice.
We denote by E1(x, r1) = gx

1hr1
1 mod n1 a commitment to x in base (g1, h1)

where r1 is randomly selected over {−2sn + 1, ..., 2sn − 1}. We also denote by
E2(x) = x3 mod n2 a RSA(n2, 3) encryption of x.

Alice secretly holds x ∈ {0, . . . , b}. Let E = E1(x, r1) and F = E2(x) =
x3 mod n2 be a commitment to x and a RSA encryption to x. She wants to
prove to Bob that she knows x and r1 such that E = E1(x, r1) and F = E2(x),
i.e. that E and F hide the same secret x.

Protocol: PK(x, r1, r2 : E = E1(x, r1) mod n1 ∧ F = E2(x) mod n2).

1. Alice computes α = F−x3

n2
(in Z), G2 = E1(x2, r2), G3 = E1(x3, r3) and

Z = E1(αn2,−r3).
2. Alice proves to Bob that E, G2 and G3 are commitments to the same value

respectively in bases (g1, h1), (E, h1) and (G1, h1), and that she knows which
value is committed by Z in base (gn2

1 , h1).
3. Bob checks these proofs, computes T = gF

1 mod n1 and checks that T =
G3Z mod n1.
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