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Abstract. A new method for multiplication of large integers and de-
signed for efficient software implementation is presented and compared
with the well-known “schoolbook” method that is currently used for
both software and hardware implementations of public-key cryptographic
techniques. The comparison for the software-efficient method is made in
terms of the required number of basic operations on small integers. It
is shown that a significant performance gain is achieved by the new
software-efficient method for integers from 192 to 1024 bits in length,
which is the range of interest for all current public-key implementa-
tions. For 1024-bit integer multiplication, the savings over the schoolbook
method is conservatively estimated to be about 33%. A new method for
multiplication of large integers, which is analogous to the new software-
efficient method but is designed for efficient hardware implementation,
is also presented and compared to the schoolbook method in terms of
the number of processor clock cycles required.

1 Introduction

Multiplication of large integers plays a decisive role in the efficient implemen-
tation of all existing public-key cryptographic techniques such as the Diffie-
Hellman and the elliptic-curve key-agreement protocols and the Rivest-Shamir-
Adelman (RSA) cryptosystem. The standard “schoolbook” method of multi-
plication is today the most used method for integer multiplication in practical
public-key systems, cf. pp. 630-631 in [I]. For very large integers beyond the range
of practical interest in current cryptographic systems, more efficient methods of
multiplication are known, cf. [2]. One of these methods that has some practical
significance is that due to Karatsuba and Ofman [3], which reduces the asymp-
totic complexity of multiplying two N-bit integers to 0(N'*%5) bit operations
compared to 0(N?) bit operations for the schoolbook method.

The main contribution of this paper is a new software-efficient method of mul-
tiplication that improves on the schoolbook method when used in any current
public-key cryptographic application. Section [ provides a brief description of
the schoolbook and the Karatsuba-Ofman methods. In Section B] we introduce
the new software-efficient method of multiplication and compare its complex-
ity with that of the schoolbook method. We also provide explicit performance
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figures for the new soft ware-efficient method and for the schoolbook method
for integers in the range from 192 to 1024 bits in length, which is the range
of interest for all current public-key techniques. In Section [4] we introduce a
new hardware-efficient method of multiplication, which is analogous to the new
software-efficient method, and we compare its complexity in hardware with that
of the schoolbook method.

2 Schoolbook and Karatsuba-Ofman Methods

Let 8 = 2" be the radix in which integers are represented for calculation. Nor-
mally, w is the word size in bits of the processor on which the algorithm is
implemented. By an n-symbol integer, we will mean an integer between 0 and
(™ —1 inclusive, i.e., an integer that can be written as an n-place radix-( integer.
Note that a symbol is a w-bit integer and that an n-symbol integer is an /N-bit
integer where N = nw.

Let A = (apn—1,an-2,..a9) and B = (bp_1,bn_2,..bg), where a; and b; are
w-bit integers, be two n-symbol integers. The result of their multiplication is
the 2n-symbol integer A - B where

n—1 n—1
A-B=> af ) b5
i=0 j=0

or, equivalently,
n—1ln—1

A-B=Y "> "a; b (1)
i=0 j=0
The schoolbook method of multiplication computes A - B essentially by carry-
ing out the n? multiplications of w-bit integers in (), one for each of the n?
terms, and adding coefficients of like powers of 3. The schoolbook method thus
requires n? multiplications of w-bit integers to calculate the product of two n-
symbol integers. The precise order in which the multiplications and additions
are carried out will not concern us here, but this order affects the “overhea d”
in implementing the schoolbook method.
For counting the number of additions required by the schoolbook method, it
is convenient first to write the 2w-bit integer a; - b; in (I) as ¢; ;5 + d; ; where
¢;,; and d; j are w-bit integers. Then () can be written as
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We note that there are only 2n distinct powers of 3 among the 2n? terms in (Z).
Because each addition of coefficients of some power of § reduces the number of
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terms by one, it follows that exactly 2n? — 2n = 2n(n — 1) additions of w-bit
integers are required to add the coefficients of like powers of 3 in (). Thus, the
schoolbook method requires 2n(n — 1) additions of w-bit integers to calculate
the product of two n-symbol integers. The additions of the terms in (@) with
coefficients c; ; are called “carry additions” because these terms originate from
the “overflow” into the next higher w-bits when two w-bit integers are multiplied.
Of the 2n(n — 1) additions of w-bit integers required by the schoolbook method,
exactly half are such carry additions. Finally, we note that each addition of w-bit
integers can result in a bit carry to another w-bit integer, which increments this
latter integer by 1. The schoolbook method requires a maximum of 2n(n — 1)
such carry-bit additions.

The Karatsuba-Ofman method [3] is a divide-and-conquer technique for com-
puting the components of C' = A - B based on the following observation. Sup-
pose that A and B are n-symbol integers where n = 2¢. Let A = ﬂQt_lAl + Ap
and B = %' By + By where Ag, Ay, By and B; are 2t~l-symbol integers.
Then A- B = CgﬁT + 0152#1 + Cp, where Cy = Ay - By, Co = Ay - By, and
Cy = (Ag+ A1) - (Bo+ By) — Cy— Cs. Tt follows that C = A- B can be computed
by performing three multiplications of 2¢~!-symbol integers together with two
additions and two subtractions of such integers. This procedure is iterated con-
ceptually ¢ times, i.e., until the integers reach the size of one symbol (w-bits), at
which point the multiplications and additions are actually performed. This algo-
rithm requires only 3! ~ n'-5%% multiplications of w-bit integers, compared to n?
such multiplications for the schoolbook method. Combining Karatsuba-Ofman
algorithm with schoolbook multiplication may have some practical significance.
However, the recursive nature of the Karatsuba-Ofman algorithm results in such
a significant overhead that its direct application to integers of the size used in
current public-key cryptography is not efficient, cf. pp. 630-631 in [1].

3 A Software-Efficient Multiplication Method

3.1 The Underlying Idea

Our new software-efficient multiplication method is based on the formula

n—1lu—1 n—1 n—1 n—1
AB =" (au+ay) (butb,)B" 42 " au-buf7 =D 5> au-buB". (3)
u=1 v=0 u=0 v=0 u=0

We will use the same notation here as we used for the schoolbook method except
that we will write the radix as 8 = 2V rather than as 5 = 2% for a reason that
will become apparent in Subsection B.2l.

It is easy to check by multiplying out and combining terms that (@) gives
the correct result for multiplication. We note here for future use that n(n —1)/2
additions of W-bit integers are required to form the coefficients a,,+a, in (@) and
another n(n—1)/2 such additions are required to form the coefficients b, +b,. To
facilitate the counting of multiplications and further additions of W-bit integers
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needed to implement the multiplication formula (B)), it is convenient to write
Ay + ay = ay, vﬂJraS“m

where aC” ", 1s the carry bit and ag'y" is the least significant W-bits of the sum
of the TW-bit integers a, and a,. Usmg analogous notation for the sum of the
W-bit integers b,, and b,, we can write (B) in the manner

n—1lu—1

A-B=Y (a8 +a) - (b5,8+ 030 - U

u=1v=0
n—1 n—1 n—1

+2 Z Qo+ buﬁgu - Z ﬂ’U Z Ay * buﬁu
u=0 v=0 u=0

or, equivalently,

n—1lu—1
_ cb 1¢cb Qutv+2
A-B= E g g b B

u=1 v=0
n—1u—1
E E cb gSum cb sum\ gutv+1

+ bu v%u,v Ay, vbu v )6
u=1 v=0

n—1u—1

+ Z Z asum bsumﬁu—i-v

u=1 v=0
n—1
+2 Z Ay - by B2
niTO n—1
- Z ﬁv Z Ay * buﬁu (4)
v=0 u=0

The only multiplications of W-bit integers occur within the third, fourth
and fifth lines in (H). Each of the (g) = @ terms in the third line requires
one such multiplication. Each of the n terms within the sum on u in the fourth
line also requires one such multiplication and these are the same products as
are required in the fifth line. Thus, to implement the multiplication formula (3]
requires a total of 21 5 Dyn= ”("ZH) multiplications of W-bit integers, which
we note is about half that required by the schoolbook method when we choose
W = w as is required for a direct comparison.

In counting additions of W-bit integers, we consider the worst case where all
the carry bits au . and bzbv are equal to 1. It is again convenient to write the
2W-bit integer a, - b, in @) as ¢, 0 + d, where ¢, and d, are W-bit integers,
and to write a3y - b3 in (@) as ;'3 + diy where &' and &5} are W-bit

integers. We can then rewrite (@) for this worst case as

n—1lu—1

A'B:ZZ/B”-HHQ

u=1 v=0
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n—1lu—1 n—1lu—1
sum Qutv+1 sum Qu+v+1
+ E E a’u,v ﬂ + E E bu,v ﬂ
u=1v=0 u=1 v=0
n—1lu—1 n—1lu—1
§ § sum Qutv+1 § § sum Qu—+v
+ Cuyv ’8 + du,v
u=1v=0 u=1 v=0

n—1 n—1
+) (cut )BT 4D (d + du) B
u=0 u=0

n n—1
SDIPICEET AL

u=0 v=0

with the convention that ¢; = d; = 0 for j < 0 and for j > n. Upon setting
€y = Cy—1+d, and then v = ¢—v in the last line, we can rewrite this equivalently
as

n—1lu—1
4-5- 55 g

u=1 v=0
n—1lu—1 n—1lu—1

+ Z Z azqur)nﬂu+v+1 + Z Z bilfqr;rlﬁu+v+1
u=1 v=0 u=1v=0
n—1lu—1 n—1lu—1

DIOILEELED IO DL
u=1 v=0 u=1v=0
n—1 n—1

+ Z(cu + Cu)ﬂ2u+1 + Z(du + du)ﬂ2u
u=0 u=0
2n—1 n—1

=D D el (5)
=0 v=0

The terms e; = ¢;_1 +d; for i =0, 1, ... , n require n — 1 additions of W-bit

integers for their formation because the terms for ¢ = 0 and ¢ = n, namely dj
and c¢,_1 respectively, require no additions. We next consider the number of
additions of W-bit integers required to form the coefficients

n—1
si:Zei,v fori=0,1,...,2n—-1
v=0

that appear in the fifth line of (&). We observe that we can rewrite this sum
separately over two ranges of the index as

si:Zeizsi_l—&—ei fori=0,1,...n—1 (6)
=0
and 4
Sop—1—i = Z@n_j =Sop_i+en_; fori=0,1,...n—1. (7)

=0
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where we have taken sg = so,, = 0. We see that n — 2 additions of W-bit integers
are required to form the nested sums in (@) and another such n — 2 additions
are required to form the nested sums in (). Hence a total of 3(n — 1) additions
of W-bit integers are required to form all the coefficients in the fifth line of ().

The summation in the first line of (&) concerns only carry bits, which we will
consider later. There are n(n — 1) terms in the second line, another n(n — 1)
terms in the third line, 4n terms in the fourth line, and 2n terms in the fifth
line—a total of 2n2 + 4n terms. But there are only 2n distinct powers of 3 in
B) so that 2n? + 4n — 2n = 2n? + 2n additions of W-bit numbers are required
to combine the like powers of 5. To this, we must add the n(n — 1) additions
of W-bit integers required to form the coefficients a,, + a, and b, + b, in (@) as
well as the 3(n — 1) additions required to form the coefficients in the last line
of (B). This gives a total of 3n? + 4n — 3 additions of W-bit integers required
to implement the multiplication formula ([B). We note that this is greater by
a factor of about % than the 2n(n — 1) additions required by the schoolbook
method when we choose W = w as is required for a direct comparison.

Finally, we note that the first line of (&) specifies $n(n— 1) additions of carry
bits (in this worst case) and each of the 3n? +4n — 3 additions of W-bit numbers
can also result in a carry bit. Thus, to implement the multiplication formula (3]
requires a maximum of Zn(n + 1) — 3 carry-bit additions.

3.2 Achieving Efficiency

As we have just seen, the direct implementation of formula (B)) for multiplication
of nW-bit integers requires only about half as many multiplications, but about
50% more additions, of W-bit integers compared to the schoolbook method
when we take W = w. To convert the multiplication formula (3)) into an efficient
method for multiplication of N-bit integers on a w-bit processor, we first set
N = nsw and then split the problem of multiplication into (1) the problem of
multiplying N-bit integers using a virtual processor with word size W = sw,
followed by (2) the problem of implementing the necessary multiplications and
additions of W-bit integers using the actual processor with word size w. We solve
the first problem by implementing the multiplication formula (), after which we
solve the second problem by implementing the necessary multiplications of sw-bit
integers by the schoolbook method. We now count the number of multiplications
and additions of w-bit integers required by this “hybrid method” for multiplying
N-Dbit integers.

As was shown in Subsection Bl, the multiplication of N-bit integers, where
N = nW, according to the multiplication formula (@) requires % multiplica-
tions of W-bit integers where W = sw. Each such multiplication when performed
by the schoolbook method requires s? multiplications and 2s(s — 1) additions of
w-bit numbers, as well as 2s(s — 1) carry-bit additions. Thus, the multiplications
performed in the first step of the hybrid method result intal numbers of w-bit
integer operations shown in the following table: The multiplication of N-bit
integers, where N = nW, according to the multiplication formula (B) requires
3n2 + 4n — 3 additions of W-bit integers where W = sw. Each such addition is
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multiplications ‘ additions ‘ carry-bit additions
1s’n(n+1) ‘ s(s—=1)n(n+1) ‘ s(s—=Dn(n+1)

equivalent to s additions of w-bit integers and s carry-bit additions. Thus, the
the additions performed in the first step of the hybrid method result in the total
numbers of w-bit integer operations shown in the following table: Finally, the

multiplications ‘ additions ‘ carry-bit additions
0 ‘ (3n2+4n73)s‘ (3n% 4+ 4n — 3)s

multiplication of N-bit integers, where N = nW, according to the multiplica-
tion formula (3) requires in the worst case Zn(n + 1) — 3 carry-bit additions for
W-bit integers where W = sw. Each such carry-bit addition for sw-bit integers
is equivalent to a single carry-bit addition for w-bit integers so that the carry-
bit additions performed in the first step of the hybrid method result in the total

numbers of w-bit integer operations shown in the following table:

multiplications ‘ additions ‘ carry-bit additions
0 ‘ 0 ‘ Inn+1)—3

Tallying the counts in the three previous tables gives the figures shown in
the following table:

For ease of comparison, we include here the table of counts for schoolbook
method as calculated in Section

3.3 Numerical Examples

Ezample 1: Consider the multiplication of 1024-bit integers [where we note that
1024 is a length commonly used for current implementations of the RSA cryp-
tosystem and of the Diffie-Hellman key agreement protocol] on a processor with
word size w = 16 bits. As a basis for comparison, we assume that one 16-bit
addition constitutes 1 unit of computation as also does one carry-bit addition,
but that one 16-bit multiplication constitutes 2 units of computation.

The specifications N = nsw = 1024 and w = 16 give ns = 64 and hence
the allowed values of (n,s) are (1,64), (2,32), (4,16), (8,8), (16,4), (32,8) and
(64,1). Calculating the cost for each of these choices with the aid of the values
in Table 1 shows that the choice n = s = 8 yields the minimum cost of 16,457
computational units for the new software-efficient method, but the choice n = 4
and s = 16 is nearly as good with a cost of 16,739 units. For the choice n =
s = 8, the number of multiplications, additions and carry-bit additions are 2304,
5800 and 6049, respectively. By comparison, we calculate from Table 2 that the



252 Gurgen H. Khachatrian et al.

Table 1. Total counts of w-bit integer operations for the software-efficient multiplica-
tion method for nsw-bit integers

multiplications additions carry-bit additions
1n(n+1) |s[(s+2)n”+ (s+3)n—3]|s[(s +2)n* + (s + 3)n — 3]
+In(n+1)—3

Table 2. Total counts of w-bit integer operations for the schoolbook multiplication
method for nsw-bit integers

multiplications | additions | carry-bit additions
(sn)? 2sn(sn — 1) 2sn(sn —1)

schoolbook method has a cost of 24,320 computational units arising from the
4096 multiplications, 8064 additions, and 8064 carry-bit additions that must
be performed. In this example, the new software-efficient multiplication method
uses about one-third less computation than does the schoolbook method.

Ezample 2: Consider the multiplication of 192-bit integers [which is one of the
lengths for the Elliptic curve system recommended for the FIPS 186-2 standard]
on a processor with word size w = 8 bits. Again we assume that one 8-bit
addition or one carry-bit addition constitutes 1 unit of compution, but that one
8-bit multiplication constitutes 2 units of computation.

The specifications N = nsw = 192 and w = 8 give ns = 24 and hence the
allowed values of (n, s) are (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2) and
(24,1). Calculating the cost for each of these choices with the aid of the values
in Table 1 shows that the choice n = 4 and s = 6 yields the minimum cost of
2719 computational units for the new software-efficient method, but the choice
n = 3 and s = 8 is virtually as good with a cost of 2727 units. For the choice
n = 4 and s = 6, the number of multiplications, additions and carry-bit additions
are 360, 966 and 1033, respectively. By comparison, we calculate from Table 2
that the schoolbook method has a cost of 3360 computational units arising from
the 576 multiplications, 1104 additions, and 1104 carry-bit additions that must
be performed. In this example, the new software-efficient multiplication method
uses about 19% less computation than does the schoolbook method.

It should be pointed out that actual performance results for the new software-
efficient multiplication method may well be substantially better than predicted by
our analysis, which was made using worst-case assumptions. For instance, our
8-bit implementation of the new software-efficient multiplication method on a
Pentium 2 processor for the parameters of Example 2 actually used about 40%
less computation than did the schoolbook method, rather than only 19% less as
our analysis had predicted.
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4 A Hardware-Efficient Multiplication Method

The following formula, analogous to (3]), is the basis for our new hardware-
efficient method of multiplication:

A-B= (Z_: ﬁ”)(i ay - bu ") + Z_: z_: (G — ay) - (by — by)B T, (8)
v=0 u=0 u=1v=0

The complexity of implementing multiplication according to (B)) is comparable to
that for implementing multiplication according to ([B]). Which method is superior
depends on the computational environment. For example, using &) will give
fewer carry-bit additions but will require sign checks. In general the use of (B)
is better suited to hardware implementations and therefore we now analyze the
use of (§) in a hardware implementation by estimating the number of clock
cycles needed to multiply two N-bit numbers A and B. We will compare this
performance to a hardware implementation of the schoolbook method using the
shift-and-add technique, which requires N clock cycles when all N bits can be
processed in parallel.

Let N = nW and consider the multiplication formula (8) where a; and b; are
W-bit numbers. Calculating all n(n—1) required differences (a;—a;) and (b; —b;)

in the second double summation of () requires w = n — 1 clock cycles if

the same resources as for the schoolbook method are used. Formula (8) requires

nntl) multiplications of W-bit numbers. Because n such multiplications can be

2
performed in parallel, another W(ww clock cycles are needed. Summing the

n(n+1)

results of these multiplications requires in the worst case an additional ——5—

clock cycles. The total number of clock cycles required for the multiplication

A - B is thus
(n+1) n(n+1)

2 D 2
which is about half that required by the schoolbook method for large N = nWWV.

W ([ +n—1, (9)

Example 3: Suppose that A and B are 1024 bit numbers and consider the choice
W =128 and n = 8. Multiplication according to (@) requires at most 683 clock
cycles compared to 1024 clock cyles for the schoolbook method using the shift-
and-add technique, a reduction of 33%.

5 Conclusion

The analyses of the new software-efficient multiplication method and of the new
hardware-efficient multiplication method both show that a significant perfor-
mance improvement over the schoolbook method can be obtained for all current
applications in public key cryptography. Moreover, our complexity estimates for
the new methods are conservative—actual gains can exceed those predicted, as
was pointed out in Example 2.
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