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Abstract. Cryptography and Coding Theory are closely knitted in
many respects. Recently, the problem of Decoding Reed Solomon Codes
(aka Polynomial Reconstruction) was suggested as an intractability as-
sumption upon which the security of cryptographic protocols can be
based. This has initiated a line of research that exploited the rich al-
gebraic structure of the problem and related subproblems of which in
the cryptographic setting. Here we give a short overview of recent works
on the subject and the novel applications that were enabled due to this
development.

1 Background

The polynomial reconstruction (PR) problem with parameters n, k, t is a natural
way of expressing the problem of (list-)decoding Reed Solomon Codes: given a
set of n points over a finite field, it asks for all polynomials of degree less than
k that “fit” into at least t of the points. Translated to the coding theoretic
context, PR asks for all messages that agree with at least t positions of the
received codeword, for a Reed Solomon code of rate k/n.

Naturally, PR received a lot of attention from a “positive” side, i.e. how to
solve it efficiently. When t ≥ n+k

2 then PR has only one solution and it can be
found with the algorithm of Berlekamp and Welch [BW86] (n+k2 is the error-
correction bound of Reed-Solomon codes). The problem has been investigated
further for smaller values of t ([Sud97,GS98,GSR95]). These works have pointed
to a certain threshold for the solvability of PR. Specifically, the problem appears
to be hard if t is smaller than

√
kn, (the best algorithm known, by Guruswami

and Sudan [GS98], finds all solutions when t ≥ √kn).
We note here that apart from any direct implications of efficient list-decoding

methods in the context of coding theory, these algorithms have proved instru-
mental in a number of computational complexity results such as the celebrated
PCP theorem. There are numerous other works in computational complexity
that utilize (list-)decoding techniques such as: the average-case hardness of the
permanent [FL92,CPS99], hardness amplification [STV99], hardness of predict-
ing witnesses for NP-predicates [KS99] etc.
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Perhaps the most notable work which applies the “negative” side of error-
correction decoding (i.e., its inherent hardness for certain parameters) is the
McEliece’s cryptosystem [McE78]. Recently, in the work of Naor and Pinkas
[NP99], the above well-studied Reed-Solomon list-decoding problem (namely:
PR) has been looked at from a “negative” perspective, i.e. as a hard problem
which cryptographic applications can base their security on.

It is important to stress that from a cryptographic perspective we are not
interested in the worst-case hardness of PR but rather on the hardness of PR
on the average. It is easy to see that PR on the average (termed also noisy PR)
has only one solution with very high probability (note that we consider PR in a
large prime finite field). It is believed that the noisy PR is not easier than the
PR. This is because given an instance of the PR it is possible to randomize the
solution polynomial (but it is not known how to randomize the noise, only to
k-wise randomize it). This justification was presented by [NP99] who gave the
basic suggestion to exploit the cryptographic intractability of this problem.

2 The Work of [NP99]

In [NP99] the PR problem is first exploited in concrete and efficient crypto-
graphic protocol design. They presented a useful cryptographic primitive termed
“Oblivious Polynomial Evaluation” (OPE) that allowed the secure evaluation of
the value of a univariate polynomial between two parties. In their protocol the
security of the receiving party was based on closely related problem to PR (later,
due to the investigation of [BN00], the protocol of OPE was easily modified to
be based directly on the PR problem [BN00,NP01]). We note here that a related
intractability assumption appeared independently in [MRW99].

Various useful cryptographic applications based on OPE, were presented in
[NP99] such as password authentication and secure list intersection computation.
OPE proved to be a useful primitive in other settings, see e.g. [Gil99,KWHI01].

The assumption of [NP01] is essentially the following: given a (random) in-
stance of PR, the value of the (unique with high probability) solution polyno-
mial over 0 is pseudorandom for every polynomially bounded observer. Under
this “pseudorandomness” assumption it can be easily shown that the receiving
party in the OPE protocol is secure. Note that this assumption appears to be
stronger than merely assuming hardness on the average.

3 Structural Investigation of PR

In [KY01b] we investigate cryptographic hardness properties of PR. The main
theme of this work is outlined below.

Given a supposedly computationally hard problem, it is important to identify
reasonable related (sub)problems upon which the security of advanced crypto-
graphic primitives such as semantically-secure encryption and pseudorandom
functions can be based. This practice is ubiquitous in cryptography, e.g. the



Polynomial Reconstruction Based Cryptography 131

Decision-Diffie-Hellman problem is a subproblem related to the discrete-loga-
rithm problem upon which the semantic security of ElGamal encryption is based;
the Quadratic Residuosity Problem is a subproblem related to Factoring (and
modular square roots) upon which the semantic security of [GM84] is based, etc.
In [KY01b] a similar route is followed: first a suitable related subproblem of PR
is identified and then advanced cryptographic primitives based on this problem
are extracted. The problem is related to distinguishing one of the indices that
correspond to the polynomial points in a PR-instance. Distinguishing between
the points of the polynomial solution and the random points in a PR-instance
appears to be naturally related to the supposed hardness of PR. The correspond-
ing assumption is called Index-PR-Assumption (IPR). Subsequently under this
assumption, we show

1. A PR instance conceals its solution in a semantic level: any algorithm that
computes a function on a new value of the polynomial-solution (which is not
given in the input) that is distributed according to an adversarially chosen
probability distribution has negligible advantage.

2. The PR-Instances are pseudorandom.

Regarding the Polynomial Reconstruction Problem itself as the assumption,
we show that it has interesting robustness properties under the assumption of
almost everywhere hardness. In particular, solving PR with overwhelming prob-
ability of success is shown to be equivalent to:

1. Computing a value of the solution-polynomial at a new point with non-
negligible success for almost all PR-instances.

2. Computing the least-significant-bit of a new value with non-negligible ad-
vantage for almost all PR-instances.

These results suggest that PR and its related subproblem are very robust
in the cryptographic sense and seem to be suitable problems for further crypto-
graphic exploitation. A direct application of our work is that the OPE protocol
of [NP99,NP01] can be shown semantically secure (based on the IPR assumption
instead).

4 Multisample Polynomial Reconstruction

A straightforward way to generalize PR so that additional cryptographic applica-
tions are allowed is the following: we can associate with any PR instance a set of
indices (called the index-set) that includes the indices of the “good” points that
correspond to the graph of the (with high probability unique) polynomial that
“fits into” the instance. In the Multisample Polynomial Reconstruction (MPR)
Problem, the given instance contains a set of r (random) PR-instances with the
same index-set. The challenge is to solve all PR-instances.

MPR was defined in [KY01a] and further investigated in [BKY01]. This lat-
ter work points to a hardness threshold for the parameter r. Specifically MPR
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appears to be hard when r is smaller than n/t. MPR has similar robustness
properties as PR and is likewise sensitive to partial information extraction.
These properties are investigated in [KY01c] under the corresponding Index-
MPR-Assumption.

5 Cryptographic Applications

In [KY01a] a general family of two-player games was introduced together with an
efficient protocol construction that allowed a variety of novel applications, such as
a deterministically correct, polylogarithmic Private Information Retrieval (PIR)
protocol. The security of these games, that involved the composition of many
multivariate polynomials, bilaterally contributed by the two parties, was based
on the hardness of MPR. Other applications of this work include: secure com-
putation of the Lists’ Intersection Predicate (a stringent version of the List In-
tersection Problem [NP99] where the two parties want to securely check if the
two private lists have a non-empty intersection without revealing any items) and
Settlement Escrows and Oblivious Bargaining/Negotiations, which are protocol
techniques that are useful in the e-commerce setting.

In [KY01b,KY01c] PR and MPR are employed in the setting of symmetric
encryption to produce stream/block ciphers with novel attributes including:

– Semantic Security.
– Error-Correcting Decryption.
– The capability of sending messages that are superpolynomial in the security
parameter (namely, a cryptosystem with a very short (sublinear) key size).

– Double homomorphic encryption over the underlying finite field operations
(with bounded number of multiplications).

6 Conclusion

The rich algebraic structure of Polynomial Reconstruction (PR), its related prob-
lem (IPR) and its multisample version (MPR), has proved valuable in the cryp-
tographic setting. On the one hand, PR and its variants appear to be robust in
the cryptographic sense and can be used as a basis for advanced cryptographic
primitives (as exemplified in [KY01b,KY01c]). On the other hand, several inter-
esting cryptographic protocols that take advantage of the algebraic properties
of the problem have been introduced together with their applications in secure
computing and e-commerce (as seen in [NP99,KY01a]).
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