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Abstract. Object migration is an often overlooked topic in distributed
object-oriented platforms. Most common solutions provide data serial-
ization and code mobility across several hosts. But existing mechanisms
fall short in ensuring consistency when migrating objects, or agents, in-
volved in coordinated interactions with each other, possibly governed by
a multi-phase protocol. We propose an object migration scheme address-
ing this issue, implemented on top of the Coordination Language Facility
(CLF). It exploits the particular combination of features in CLF: the
resource-based programming paradigm and the communication protocol
integrating a negotiation and a transaction phase. We illustrate through
examples how our migration mechanism goes beyond classical solutions.
It can be fine-tuned to consider different requirements and settings, and
thus be adapted to a variety of situations.

1 Introduction

Distributed systems use migration to perform load balancing, reduce network
traffic and support mobile users. Both the operating systems and the mobile
agents communities have extensively discussed the issues around process and
agent migration. Current proposed solutions do not however cover all the require-
ments of today’s enterprise distributed applications in domains such as electronic
commerce, workflow, and process control. Indeed, such applications are often
characterized by complex and dynamic relationships between distributed com-
ponents. Suspending and later resuming this type of system (totally or partially)
while preserving consistency becomes a real challenge. Nevertheless, maintenance
operations on the underlying hardware and software infrastructures often require
such operations to be performed. In order to ensure the continuous availability
of the affected applications some of their components have to be transparently
migrated from one node of the network to another.

In this article, we describe how the Coordination Language Facility (CLF)
provides advanced support for object migration. It includes the externalization
of migration control, and the reflexive use of the CLF middleware capabilities
in order to offer transactional and negotiated migration. This enables flexibility
and consistency.
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CLF is a middleware platform aimed at coordinating distributed active soft-
ware components over a Wide Area Network (typically the Internet). Mekano
is a set of reusable coarse grain components and component development tools,
compliant with the CLF middleware, that have been used in the implementation
of various distributed applications deployed across multiple intranets. Comple-
mentary information can be found in [2].

Section 2 presents the basic functionalities of CLF used for object migration,
section 3 describes the migration mechanism itself, section 4 gives examples of
use, section 5 discusses related work, and section 6 concludes the paper.

2 Fundamental Features

We have implemented our approach for object migration on top of the
CLF/Mekano platform. The migration facilities we describe could be imple-
mented with other distributed object-oriented platforms but this would impose
developing significant additional code in order to mimic some of the features
readily provided by CLF. This section presents these features along with the
minimum set of information needed to make this paper self contained.

2.1 Object Model

The CLF approach relies on the resource-based programming paradigm [5] that
we have extended in order to cope with the requirements of a distributed sys-
tem. We model objects as resource managers, the interactions between them as
transactional resource manipulations (e.g. removal and insertion of resources in
its simplest form) and the resources as tuples of strings. Each string element of
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a resource can either contain text, string-encoded objects (e.g. XML-encoded)
or marshalled objects (e.g. through Java [7] serialization).

The CLF object model goes beyond the classical dichotomy between data and
behavior. Indeed, among the data itself we distinguish two separate kinds: the
control data and the resources managed by the object (see figure 1). The control
data covers information related to resource management while the resources
represent the actual information contained in the object. For instance, the control
data contains the structures (e.g. locks) to manage concurrent access to the
object resources.

CLF enforces the traditional object encapsulation policy: resources are not
accessible directly but only through an interface. But, unlike traditional objects,
CLF objects offer two kinds of interfaces: direct methods and services. Direct
methods correspond to traditional remote method invocations on a single CLF
object while services allow the coordination of access to resources held by multi-
ple CLF objects. Both are described in more detail in the two following sections.

2.2 Direct Methods

Direct methods typically provide user interface functionality for CLF objects,
in particular for thin clients such as Web browsers. A direct method has the
following abstract signature:

Perform: input-method-parameters -> output-method-parameters

Direct method invocations are similar to Remote Procedure Calls [14] avail-
able in conventional middleware, e.g. CORBA, and renamed “Remote Method
Invocations” [8] in the Java world. Being HTTP-based, they can be invoked
through a simple URL call, providing various encoding options for the input
and output parameters. Initially they were designed to quickly add simple user
interfaces to a CLF application using direct methods whose parameters and
result encodings are directly supported by standard Web browsers (so called
“form-data” or “url-encoding” for input parameters and HTML for the result).
The now effective new generation of XML browsers and the standardization of
various flavors of XML-RPC[15] makes this approach even more valuable.

Direct methods enable a synchronous single-phase interaction with a single
CLF object. Services on the contrary allow to transactionally access and consis-
tently modify the resources held by a set of CLF objects.

2.3 Services and Interaction Protocol

A service of a CLF object corresponds to a partial view of the resources the
object manipulates. A three phase protocol deployed on top of the object services
specifies how to access these services and how to manipulate the underlying
resources. It allows in particular to coordinate the interaction within a set of CLF
objects. This protocol consists of three phases: negotiation, performance, and
notification. Each phase is in turn materialized through a set of corresponding
interaction verbs that are invoked as described below.
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First phase: negotiation. The negotiation phase asks a CLF service about offers
for actions on resources matching a given filter. On such a request, formulated
through the Inquire verb, the service returns a potentially infinite stream of
offers. Therefore the service returns an InquiryId allowing the requester to
access the corresponding offers one by one through the Next verb. For each
offer, an actionId allows the identification, and to reference it later in the
protocol. When no currently available resource matches the inquiry the Next
operation remains pending until a new offer becomes available. The latter
might happen either after internal changes within the object or through the
insertion of new resources (see the notification phase). The service can also
explicitly close the stream of offers by raising the no-more-value exception.
This happens if the service can guarantee that no new offer matching the
inquiry will ever become available. The requester can also Kill the inquiry if
he is no longer interested in corresponding offers. Finally, the requester may,
at any time, check the validity of an offer through the Check verb. The verbs
involved in the negotiation phase have thus the following abstract signature:

Inquire: input-service-parameters -> inquireId
Next: inquireId -> <output-service-parameters, actionId> | no-more-value
Kill: inquireId -> void
Check: actionId -> yes | no

Second phase: performance. The performance phase unrolls a classical two-
phase commit protocol ensuring the atomic execution of a set of actions found
during the negotiation phase. To achieve atomicity, the requester first attempts
to Reserve the resources corresponding to these actionIds. If successful, it
enacts all the actions through the Commit verb. Otherwise, if any reservation
fails, it Cancels all previously executed successful reservations. The verbs of
the performance phase have the following abstract signature:

Reserve: transactionId, actionId -> accept | soft-reject | hard-reject
Commit: actionId -> void
Cancel: actionId -> void

Third phase: notification. The notification phase allows for asynchronous cre-
ation of new resources. The verb Insert notifies their creation to the correspond-
ing services:

Insert: service-parameters -> void

2.4 Scripting Language

The CLF scripting language exploits the CLF object model and services through
the above described protocol. It views coordination as a complex block of inter-
related manipulations of resources held by a set of objects (called the participants
of the coordination).
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CLF scripts describe, through rules, the expected global behavior of such
blocks in terms of resulting resource manipulations, but abstracts away from
the detailed sequencing of invocations of the CLF interaction verbs required
to achieve such a behavior. This abstraction feature considerably simplifies the
design and verification of coordination scripts. It makes them highly platform
independent and hence, portable.

In a CLF application, dedicated CLF objects called coordinators enact the
coordination scripts. As any CLF object, coordinators manage resources, ac-
cessible through CLF services: these resources are CLF coordination scripts
and the rules which compose them. When a script is inserted in a coordina-
tor, it is immediately enacted. Being CLF objects, coordinators can participate
(i.e. occur as participants) in higher level coordinations, thus offering a reflexive
model of coordination. Moreover, it is possible to create and insert scripts on
the fly.

The CLF coordination scripting facility does not specify, per-se, any com-
puting feature. If computation is needed in a coordination (arithmetic compu-
tation, string manipulation etc.), it must be handled by a participant. However,
in the CLF distribution, a basic stateless computing facility is delivered with
the coordinator prototype in order to provide simple computation, verification
of assertions and timeout evaluation.

As shown later, we use the features and the power of this scripting language
to implement our object migration mechanism.

2.5 Sample Script

The sample script detailed here is intended to show most of the CLF scripting
language features used later in this paper. More applied script examples may be
found in [3].

interfaces:
...
YP(Obj): -> Obj is LOOKUP YellowPages.Objects
apply(Obj,Serv,Y,Z): Obj,Serv,Y -> Z is DISPATCH

rules:
S(X) @ P(X,Y) @ ‘YP(Obj) @ apply(Obj, ’service’,Y,Z) <>- R(X,Z)

The tokens S, P, Q, R, YP, apply refer to CLF services declared in the interface
of some CLF objects (found and described in the name server, as shown later in
section 2.7). For each token, the parameters appear between parentheses. The
output parameters are underlined.

The logical name of the service can be statically defined (e.g. YP is linked
to the service Objects of the YellowPages object) or dynamically according to
the result of the instantiation of some parameters (e.g. the first two parameters
of the token apply refer to the object and service name, the latter being known
here only at run-time).
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If such a rule is inserted in a coordinator, it is executed as follows:

1. Resources satisfying properties S, P, Q, R, YP are found:
– The token S(X) finds some resource satisfying property S. The parameter

X is instantiated accordingly using a value returned from the service that
corresponds to S;

– The second token finds a resource satisfying the property P(X,Y) for
consistent values of X,Y.

– The token YP(Obj) finds some resource satisfying property YP. The back-
quote (‘) before the YP prevents the resource satisfying the YP(Obj) from
being extracted in the transaction phase (if any).

– The token apply is not statically linked to a logical name but will use
the first two parameters as the object and the service name that will be
used for the lookup. It is what we call the dispatch mechanism. The first
one, Obj, is returned by the previous token YP while the second is set to
the constant ’service’. It finds consistent values of Y,Z.

2. For each tuple of consistent values X, Y, Z, Obj, the rule is triggered and
transactionally extracts the resources satisfying S, P and apply.

3. A resource satisfying R(X,Z) is finally inserted.

2.6 Runtime

The CLF runtime provides the basic system facilities required for hosting and
managing CLF objects on a site (See figure 2). Among these facilities we use the
following for our migration mechanism:

– the managers (Search Manager, Concurrency Manager, Insert Manager) sup-
porting the CLF protocol interaction for the objects, i.e. the asynchronous as-
pects of Inquiry/Next (SM), concurrency control and deadlock avoidance for
Reserve/Cancel/Confirm (CM), event detection for Insert (IM), and garbage
collection for Kill/Check (SM).

– the communication blocks encapsulating the communication protocol on top
of which the CLF protocol verbs and the direct methods are implemented.
These blocks allow for decoupling of the requests from the communication
scheme (message passing, RPC) and the communication protocol (HTTP,
SSL, XML-RPC, RMI).

– the system facilities allowing remote interaction with a CLF object. These
facilities can allow for instance to start and stop an object within an ap-
plication. They can also trigger the instantiation of a CLF object from a
description or on the contrary to reify a CLF object into a description. The
latter two cases are normally used for deploying and controlling an appli-
cation. They are of particular interest in the context of object migration as
described in section 3.

The CLF runtime facilities are, in general, directly invoked by various types of
clients for deploying, monitoring and controlling CLF applications. However, we
have encapsulated some of them in the services of a dedicated CLF object (see
section 3.2) to be able to access and coordinate them through rule scripts.
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Fig. 2. CLF Runtime.

2.7 Name Server

The name server is a CLF object whose resources are access patterns binding
logical names of objects to their physical location. CLF objects register them-
selves at the name server. The name server allows the coordinators to lookup
the physical location of CLF objects from their logical names. This maps the
logical description of the coordination contained in the rule scripts to the actual
location of the CLF object service of an application distributed across several
hosts.

Ensuring that the information contained in the name server is always accurate
is of course essential to implement object migration. The possibility to access
the resources manipulated by the name server through a CLF rule provides a
simple way to modify them in a consistent manner during ongoing migration.

3 Object Migration Scheme

This section describes how the features presented in the previous section in-
teroperate to provide the global CLF migration mechanism. This mechanism
essentially relies on the reflexivity of the CLF platform. The basic idea is to
first transform an active CLF component into a static resource, then transport
it over the distributed system, just like any other resource, then instantiate it
on the destination site.

This section first describes how a CLF object enters a freezable state where it
can be safely and consistently transformed into a static resource. It then presents
how we encapsulated the CLF runtime into a CLF object, the object manager,
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providing services relevant to the migration scheme. We show in detail how these
services are customized, i.e. how the verbs of the CLF protocol directly trigger
the different methods readily provided by the runtime in order to realize the
various migration steps. Finally, we illustrate through a very simple scenario
how this allows us to manage object migration.

3.1 Reification and Freezable State

Migration requires the target object to enter a freezable state, where the data
representing the current execution state of the object can be captured. Once
this state is reached, we can easily transform the dynamic object into a static
description, the reified object. From the reified object we can later re-instantiate
the corresponding CLF object, possibly at a different location.

Freezable State Definition. Thanks to the clear distinction on one hand
between control data (state of the inquiries and the transactions) and on the
other hand the resources managed, we can easily define the freezable state of
a CLF object as a state where the control data set is empty. In fact, as the
resources are tuples of strings, they can be directly stored and recovered. So,
for the freezable state we only have to consider the control data set: it contains
information about the state of multi-phase interactions involving the object.
In CLF, an empty control data set corresponds with the situation where no
critical operation modifying the object resources is pending. In this case, the
reified object (the set of resources together with the object description) entirely
describes the object and can thus be used for object migration. This reified
object is exactly the one used when starting objects at deployment time. Thus
restarting objects after migration does not necessitate any specific additional
code.

Freezing an object. As explained, to reach a freezable state, we have to flush
the control data set. We now define in the following a process to guarantee that
no new control data appear and that the control data set decreases and finally
becomes empty. We therefore have to consider all interactions that modify the
control data set of an object. The direct methods represent synchronous single-
phase interactions which can only access the resources through the services. We
can thus ignore them in this context. The CLF protocol however is a multi-phase
interaction protocol that allows for the modification of the object resources. The
control data set represents the state of this interaction. To reach a freezable state
we therefore have to consider the different phases and verbs of the CLF protocol:

– The verbs belonging to the negotiation phase are idempotent: they do not
modify the resources. Thus, even if the negotiation phase implements a multi-
phase protocol: an Inquiry followed by a potentially infinite number of Nexts.
It can be aborted without harm. Indeed, the coordinator will detect that the
negotiation phase was aborted, in the same manner as if the object became
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unavailable. In this case, the coordinator will restart the Inquiry when the
object becomes available again, possibly at another location.

– The verbs belonging to the performance phase are non-idempotent: they can
reserve and remove resources. They implement a two-phase commit proto-
col. The execution state of the protocol, in particular the reservation of a
resource involved in a transaction, is stored in the object control data ; it
might be complex to store and recover. Furthermore, by policy, CLF trans-
actions are guaranteed to be short-lived. A reserved resource is either rapidly
consumed through a Commit or released through a Cancel. Thus, the ap-
propriate solution to reach a freezable state is to temporarily reject any new
transaction and to wait until all ongoing transactions are completed.

– The notification phase only consists of the Insert verb and implements a
synchronous one-phase interaction, that does not impact the control data
set. Furthermore, it can be delayed without harm, as the coordinator will
repeat pending insertions until they are acknowledged by the object. An
object can therefore be frozen independently from pending notifications.

To sum up, the steps to freeze an object are:

1. break the connection for Inquiry/Next verbs simulating somehow a stopped
object ;

2. return a soft-reject for any Reserve. A soft-reject tells the coordinator to
retry the reservation later again if still required1 ;

3. accept Commit/Cancel as usual ;
4. accept Insert invocations, but only until the control data set is empty. After
that, apply the same treatment as for Inquiry/Next. Just like for the In-
quiry/Next, the coordinator will retry the Insert invocations once the object
becomes available again.

5. Once the object is freezable (i.e. the control data set is empty), we close the
connection for any subsequent invocation, and freeze its state.

The CLF interaction model (services + direct methods) ensures that a freezable
state will eventually be reached for every object.

3.2 Encapsulating the CLF Runtime

As described in the previous section the CLF runtime provides methods to start
a CLF object and then to control it. Among these methods, the following ones
are relevant for the migration process:

– EnableObjectIsolation(objectname)
Triggers the processing of incoming invocations as described in the previous
section for reaching a freezable state. At the same time the object is unreg-
istered from the name server, preventing other useless subsequent lookups.

1 In fact, the transaction is retried only if none of the other participants has returned
a hard-reject implying the abortion of the transaction as a whole.
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– DisableObjectIsolation(objectname)
Resumes the normal management of incoming invocations and registers the
object again on the name server.

– isObjectFreezable(objectname) -> status
Returns a status, either ’ok’, or ’notOk’, meaning if the control data set is
already empty or not. Once ’ok’, this is a stable state as long as the isolation
is not disabled.

– ReifyObject(objectname) -> objectDescription,resourceSet
Returns the static description of the (frozen) object: object description (ob-
ject type name and configuration parameters) and resources currently man-
aged.

– InstantiateObject(objectname,objectDescription)
Instantiates a new object according to the object description and registers
it under the name objectName on the name server.

To benefit from the transactional semantics for object migration, and to
fully take advantage of the reflexivity provided by CLF, we encapsulated these
methods through a CLF object, the object manager. This object offers two CLF
services: reify and instantiate. As we show in the following, these services are
implemented in such a way that they call the above described methods, correctly
mapping the migration process to the phases and verbs of the CLF protocol.
Object migration in CLF is implemented as a coordination of the appropriate
services of two object managers.

3.3 Service Reify

Reifying an object consists in transforming an active object into a static piece
of data, typically a resource, that will later allow the re-activation of the cor-
responding object, possibly at another location. Reification is handled through
the CLF object manager containing the object to reify.

The Reify service of a CLF object manager manages resources that are tuples
of arity three. The first field corresponds with the logical name of the object
to reify, the second one with object description (type name and configuration
parameters), and the last one with its current set of resources. The values of the
second and third fields are XML documents containing the description of the
object: the set of modules corresponding to the objects static code, and the set
of resources held by the object.

With respect to the CLF protocol described in section 2.3 the Reify service
implements the following behavior:

– Inquire: On this verb the freezing process of the requested object is trig-
gered. The < objectname > parameter, provided as input, denotes the object
to reify. The second and third parameters will contain as output the rei-
fied form of the corresponding object. On such an Inquiry a new thread is
launched, triggering the following reification process:
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1. invoke the method EnableObjectIsolation(< objectname >) ;
2. loop until the method IsObjectFreezable(< objectname >) returns

′ok′ ;
3. invoke the method ReifyObject(< objectname >) to obtain the reified
form < objectDescription > and < resourceSet > of the object ;

4. insert through an internal API the resource (< objectname >,

< objectDescription >,< resourceSet >) into the service enabling it to
respond to a Next.

– Next: This verb blocks until the resource corresponding to the reified object
becomes available as described above. Then, it returns an actionId to access
and reserve this resource.

– Kill: This verb cancels the object freezing process associated with the
InquiryId input parameter. The method disableObjectIsolation allows
to stop this process and to restore the normal processing of external inter-
actions.

– Check, Reserve: These verbs have their usual meaning with respect to the
CLF protocol (see section 2.3).

– Cancel: This verb has the same effect as Kill, i.e. interrupting the freezing
of the object.

– Commit: This verb destroys the frozen object definitively (within this object
manager): it removes all remaining data allocated to the object.

– Insert: Invoking this verb raises an exception ; it has no sense with respect
to the Reify service.

3.4 Service Instantiate

Instantiating an object consists of creating an active object from its reified form.
This is handled through the Instantiate service of the target object manager.

The Instantiate service has three parameters identical to the Reify service
but they are all input parameters.

The particularity of this service is that it can be used in two ways. Used on
the right hand side of a rule, in the notification phase (verb Insert), it simply
instantiates the object corresponding to the inserted resource. Used on the left
hand side of a rule, in the negotiation and performance phases, it verifies possible
preconditions for object reification (verb Reserve). As a consequence the whole
object migration process can be cancelled and renegotiated as we will see in
section 3.5.

With respect to the CLF protocol described in section 2.3 the Instantiate
service implements the following behavior:

– Inquire: The given object name and reified description are associated with
an inquireId. An associated resource corresponding to the given object
name and the reified description is inserted into the service through an in-
ternal API.

– Next, Cancel: These verbs have their usual meaning in the CLF protocol
(see section 2.3).
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– Kill: This verb removes the corresponding resource created through the
implementation of the Inquire verb from the service.

– Reserve: This verb checks in advance if the object can actually be instan-
tiated from its reified form. This verification can have several facets. For
instance, we can verify that all the required libraries or system resources are
available at the target site. If any of these conditions are not verified then
the associated object migration can be aborted and possibly renegotiated.

– Commit: This verb instantiates the object from its reified form. It removes the
corresponding resource created through the implementation of the Inquire
verb from the service. Once instantiated, the object registers itself under the
given name on the name server.

– Insert: This verbs triggers the instantiation of an object from the given
reified object description, without verifying any preconditions. Once instan-
tiated, the object registers itself under the given name on the name server.

3.5 Migration Scripts

Object migration consists of three steps: object reification, transportation, and
instantiation. As discussed in the previous section the CLF object managers
provide services for object reification and instantiation. Coordination scripts
initiate and handle object migration through these services. They achieve object
transportation simply by passing the reified object description from the source
object manager Reify service to the target object manager Instantiate service.

Migration scripts can be generated on the fly, either on user request or re-
sponding to a particular monitored run-time condition of the distributed system.
Once inserted into the coordinator they are automatically enacted.

In the following, we show two elementary migration rules and will provide
more practical examples in the next section. The first rule describes the uncon-
ditional migration of an object obj1 from a source object manager objMgr1 to
a destination object manager objMgr2:

objMgr1.reify(’’obj1’’,objectDescription,resourceSet) <>-
objMgr2.instantiate(’’obj1’’,objectDescription,resourceSet)

In this case the instantiation of obj1 on objMgr2 is taken for granted. Indeed,
as the token appears on the right hand side of the rule, the instantiation is
handled through the Insert verb of the Instantiate service. Thus no preconditions
for instantiating the object on the target object manager are verified.

If preconditions have to be verified before migration, the instantiate token
has to appear on the left hand side of the rule:

objMgr1.reify(’’obj1’’,objectDescription,resourceSet) @
objMgr2.instantiate(’’obj1’’,objectDescription,resourceSet) <>-

The instantiation is now handled through the Inquire, Reserve, and Commit
verbs of the Instantiate service, thus including the verification of basic precon-
ditions for instantiating the object on the target object manager.
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As we will see in the next section, several objects can be atomically mi-
grated within a single transaction. Also, further constraints to be verified before
commiting the migration can be integrated in the rule.

4 Examples of Use

As shown in the previous section, CLF scripts explicitly describe object reifi-
cation, transportation, and instantiation and this, externally to the concerned
objects. We now illustrate this further through different migration scripts.

4.1 Cloning Objects

Simple Cloning. The first example rule shows how to clone an object and to
start the clone on another machine, within another object manager:

objMgr1.reify(’’obj1’’,objectDescription,resourceSet) <>-
objMgr1.instantiate(’’obj1’’,objectDescription,resourceSet) @
objMgr2.instantiate(’’obj2’’,objectDescription,resourceSet)

Here the original object obj1 is reified and re-instantiated on the original site
objMgr1 while the clone obj2 is instantiated on a second site objMgr2.

Cloning and Load Balancing. Here, we go one step beyond and split the resources
of the original object into two before cloning.

objMgr1.reify(’’obj1’’,objectDescription,resourceSet) @
split(resourceSet,part1,part2) <>-
objMgr1.instantiate(’’obj1’’,objectdescription,part1) @
objMgr2.instantiate(’’obj2’’,objectDescription,part2)

The token split appearing on the left hand side of the rule is implemented
via a simple stateless computation service directly enacted by the coordinator
(see section 2.4). On the right hand side two instantiate tokens instantiate the
two clones with separate sets of resources on different object managers.

4.2 Contextual Migration

Our scripting approach also enables more complex migration schemes, allow-
ing to trigger and manage migration transactionally. Contextual migration is
an example. Indeed, transactions allow to verify a global context or condition
among distributed components: within a transaction, the involved components
can agree on the global distributed condition, thus triggering migration accord-
ingly. Obviously, the considered context can be linked to the objects themselves,
the application, the user, the distributed system or any combination of them.

As an illustration, consider the common situation where the system adminis-
trator of a machine starts a shutdown process with a countdown. This typically
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warns other human users of the machine that the machine will be stopped. In
reaction, they can stop their activities, save their work, and possibly log in to
another machine or just wait until the machine is up again. However, for an
autonomous software component, this situation is critical. Without the external
help of a human, the shutdown will kill the component. This is an issue for a
lot of applications that need to run continuously, e.g. knowledge management,
workflow, electronic-commerce, or on-line trading for example.

The following rule allows us to manage the necessary migration process:

systemEvent(’’shutdown’’,objectMgrSrc) @
objectname(objectMgrSrc,’’Objectname’’,obj) @
reify(objectMgrSrc,’’Reify’’,obj,objectDescription,resourceSet) @
possibleDestination(objectDescription,objectMgrDst) @
instantiate(objectMgrDst,’’Instantiate’’,objectDescription,resourceSet) @
generateMsg(obj,’’shutdown’’,objectMgrSrc,objectMgrDst,msgTitle,msgBody)
<>-
email(’’clf@xrce.xerox.com’’,’’appMgr@xrce.xerox.com’’,msgTitle,msgBody)

Captured system events of type shutdown trigger this rule. As soon as a
resource corresponding with such an event becomes available along with the
involved objectMgrSrc (first token), we fetch all objects it hosts (2nd token).
Here the use of the dispatch mechanism that fixes the object and the service
name linked to the token objectname only at run-time (the token systemEvent
instantiates the object manager variable objectMgrSrc and the service name is
a constant ”objectname”). For each object hosted by the concerned object man-
ager, we initiate reification (3rd token, also a dispatch) and then fetch a possible
destination (4th token). For each possible destination the token instantiate
(dispatch) checks that instantiation is effectively possible. Finally, the last token
builds a notification e-mail message through a simple computation service.

As soon as a global solution for all tokens on the left hand side of the rule is
found, the respective operation of the services is performed, effectively migrating
the corresponding object. The email token encapsulating a simple e-mail client,
on the right hand side of the rule notifies the application administrator that the
object has migrated. Note that the reified object is a single resource, meaning
that as soon as it has been consumed, no other instantiation of the rule can be
applied. This ensures that each object migrates only once.

4.3 Transactional Migration of a Set of Objects

Transactional migration of a set of objects at the same time is another inter-
esting case easily covered by our approach. Consider, for instance, the case of a
powerful server, hosting several dozens of objects, that has to be stopped. Here,
we would like all objects to migrate to other hosts of the system. In this context
several issues arise. First, as all the objects need to migrate at the same time, we
have to ensure that the migration process does not lead to overloaded hosts, e.g.
that the first possible host in the list of available ones receives all the migrating
objects. Thus, a solution relying on an unconditional migration is not suitable.
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Secondly, for performance issues we have to keep certain groups of objects col-
located. Their migration has to be managed via a single rule ensuring that they
either all migrate to the same site or none of them migrates (see section 3.5).
In such cases, as the scripts are very specific to a given problem, they have to
be dynamically generated. Dedicated rules detecting shutdown events can trig-
ger their generation on the fly and insert the resulting rules into a coordinator
enacting them.

5 Related Work

The migration problem in itself is not new and some existing systems provide
mechanisms enabling process or object migration. In this section we compare
our approach to three classes of systems providing similar facilities: operating
systems, object-oriented systems, and mobile agent platforms.

5.1 Operating Systems

In the operating systems [9] community, process migration is a well-known re-
search topic: it is used to support load balancing, increase reliability and avoid
communication overhead by exploiting locality. Operating systems implement
migration at a lower level than the one addressed in this paper. But the issues
to solve and the decisions on design are similar.

A first problem is to capture the execution state of a process to suspend
its execution and to later resume it on a different node. This task is usually
complex. In our approach, the CLF resource-based programming paradigm and
the associated object model allow the definition of a freezable execution state,
as described in section 3.1.

A second issue is the control of the migration process. Depending on the
intended use of the migration capabilities, different operating systems adopt dif-
ferent solutions on who controls this mechanism: the kernel, a manager process,
the migrating process itself, the system administrator or any other user. In some
systems [4], the source and the destination nodes can negotiate the migration,
on the basis of the available resources. In our approach, as the CLF rules control
the migration process (see section 4) we allow any entity of the system to create
and enact such rules via the coordinator. Furthermore, with the CLF protocol,
negotiation naturally comes into the picture.

A third major topic is to ensure the availability of the process environment
and resources (in the operating system sense) after migrating to a different ma-
chine. We do not address this issue. Providing a generic solution to migrate the
legacy systems, databases or Web services we encapsulate with CLF objects is
beyond the scope of this paper.

Finally, the biggest issue concerns Inter-Process Communication, i.e. how to
cope with communication channels which are open when migration is requested,
messages which arrive during migration and the new, different process location
after migration. The various adopted solutions include buffering messages and
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handling the process location through name servers. In our approach, we first
empty the control data set, i.e. the communication state, of the migrating object
(see section 3.1). During migration, the coordinator buffers further interaction
requests. Afterwards it tries to perform them again, automatically retrieving the
new, updated location of the migrated object from the name server.

5.2 Object-Oriented Systems

The object-oriented paradigm seems particularly well-suited to migration [1]: it
provides data encapsulation. The encapsulated data in principle directly repre-
sents the object state. It also standardizes the address scheme through global
namespaces. Both features directly support object migration. Still, coherently
stopping and migrating an active object engaged in interaction with several
other objects remains difficult. With respect to this problem, our model goes
one step beyond, distinguishing between control data and resources as described
in section 2.

Some existing systems provide language-level support for migration [13]. This
approach requires the addition of new keywords to the language, and hence
to build new compilers. Besides this, it often requires additional code such as
marshalling/unmarshalling routines and to explicitly define which objects can
migrate. Our migration mechanism does not impose such constraints: within
CLF a component developer does not need to do anything special to benefit
from object migration.

5.3 Mobile Agents

In the mobile agents community migration is obviously a central issue. In fact,
the aim is to optimize locality through agent mobility: rather than communi-
cating with other agents remotely, a mobile agent decides to travel close to the
agent or service with whom it wants to communicate and then communicates
locally. Mobile agents are in general considered to be self-contained and au-
tonomous. A typical example is the commercial agent traveling on behalf of a
client from one electronic market place to another, negotiating each time with
the locally available providers. This approach of mobility seems rather restricted,
in contrast with the consistent migration of objects involved in multiple complex
interactions with others, as provided by our approach.

The OMG “Mobile Agent Facility” specification [11] defines mobility aspects
for agent systems. Roughly an agent can travel from one location to another
having its class and state serialized and sent to the destination location. There
the information is deserialized and the agent resumes execution according to its
state. This specification contains no particular considerations about consistent
migration. Voyager [10] and Aglets [6] for instance implement a corresponding
mechanism. However, Voyager only guarantees consistent handling of ”synchro-
nized” methods for mobile agents. The programmer has to ensure that no other
methods are active when an agent receives a travel request. With Voyager and
Aglets the programmer has furthermore to ensure that all entities referenced
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by a possibly mobile agent are serializable. Thus, just like in object-oriented
systems, in mobile agents platforms the programmer has to provide specific ad-
ditional implementation aspects needed for mobility. Within our approach, we
reuse intrinsic mechanisms of the platform and thus, we can say that migration
comes almost for free.

6 Conclusion

In CLF, as opposed to most existing systems, migration control is explicit. CLF
rules, external to the migrating object(s), initiate and control the migration
process. These rules can be very simple or rather complex depending on the
migration conditions to express. This allows for high flexibility and control of
the migration process at different levels:

– initiating the migration: the migrating object itself, the user, the application,
or the underlying system.

– triggering the migration: the verification of local or distributed application
and system conditions, the capture of external events, or predefined mile-
stones.

– negotiated migration: migration can be simply imposed, or negotiated, e.g.
between the source and the destination object managers. Also the destination
of the migration process can be negotiated with a site broker.

– transactional migration: migration can concern only a single object or a set
of objects as a whole.

In CLF the migration logic of an application is specified independently of
the application logic itself. This allows systems-oriented developers to take care
of the migration logic whereas application-oriented developers may design the
application logic.

Our migration scheme goes beyond classical ones, in the sense that we do
not migrate code but the description of an object that is used to re-create it at
the destination. Thus, we consider several migration axes:

– space: an object travels across space in the underlying distributed system.
This is classical migration.

– versions: an object travels across versions in the sense that it can be reified
in one version and instantiated later on in an updated version. Moreover,
the migration script could modify the object description on the fly, during
migration.

– environment: an object can travel from one implementation language to an-
other, e.g. initially running in a Python [12] virtual machine and then with
the same resources transferred to a Java virtual machine. This is of particu-
lar interest when some components have to be migrated to portable devices
imposing a particular system/language combination.

In order to complete our migration facilities, we plan to build tools (and in
particular visual tools) to better harness the power of the CLF scripting language
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for controlling object migration. The goal is to enable both application designers
and system administrators to use higher level concepts to configure the migration
mechanism.
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