
Cryptanalysis of SBLH

Goce Jakimovski and Ljupčo Kocarev

Institute for Nonlinear Science
University of California, San Diego

9500 Gilman Drive,
La Jolla, CA 92093-0402

lkocarev@ucsd.edu

Abstract. SBLH is a 256-bit key stream cipher that is used in Business
Security’s products for voice, fax and data communication. The cipher is
claimed to be quite unique and yet very powerful. In this brief report, we
suggest a possible chosen ciphertext attack on SBLH. We show that with
224 ciphertext/plaintext pairs, one can successfully recover the active key
of length 217 bits.

1 Introduction

SBLH is a patented stream encryption algorithm developed by Business Security
[1]. One may summarize the description of the algorithm in [1] using the following
quote:

The algorithm has been in use in our products nearly ten years, during
which it has been extensively analyzed by ourselves, our customers and
various governments. All analytical effort pointed to the same conclusion,
SBLH is a strong algorithm.

The structure of the algorithm is very simple. It consists of four building
blocks: two memories and two encoders. In early versions of systems built around
SBLH, the memories were filled with random data generated by hardware source.
In modern versions, a 256-bit key is used by the key expansion algorithm to create
the active key. In this paper we show that with 224 ciphertext/plaintext pairs,
one can successfully recover the active key in SBLH of length 217 bits. This is
the outline of the paper. In the next section we present a general description of
the algorithm, while in Section 3 we show how the active key of SBLH can be
recovered using a chosen ciphertext attack.

2 General Description of SBLH

SBLH is a stream cipher i.e. the algorithm converts plaintext to ciphertext one
bit at a time. It generates a stream of pseudorandom bits, which is XOR-ed
with the plaintext to form the ciphertext. The ciphertext is then fed back into
the algorithm making the output dependent on both the key and the previous

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 144–151, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Cryptanalysis of SBLH 145

Fig. 1. The encryption process in SBLH

ciphertext. Figure 1 gives an outline of how the encryption process works in
SBLH. Overlay is just another word for keystream.

As previously mentioned, each keystream bit is a function of the key and
some of the previous ciphertext bits. More specifically each keystream bit is a
function of the key and the 64 previous ciphertext bits. Thus, the algorithm
is self-synchronizing. If a bit error or a bit slip occurs this will only affect the
following 64 bits. After that, the algorithm will be synchronized again. The price
we have to pay for self-synchronization is error expansion. Any single error will
always affect the following 64 bits. Decryption with SBLH is very similar to
encryption. The same keystream used during the encryption is once more added
to the ciphertext. This produces the original plaintext. In order to reproduce the
keystream used to encrypt, we put the XOR after the data is fed into SBLH.
The data that was fed back into SBLH during the encryption is now fed into
SBLH during the decryption. The algorithm will therefore produce the same
keystream. The decryption process is shown in Figure 2.

Fig. 2. The decryption process in SBLH

The internal structure of SBLH is quite unique, and the concept is very
simple. SBLH is constructed from four simple building blocks, two memories and
two encoders. This concept can be used in a wide variety of different algorithms.
Key size, error propagation and self-synchronization are some of the parameters



146 G. Jakimovski and L. Kocarev

that can be easily adjusted by modifying the basic building blocks of SBLH.
Figure 3 describes the structure of SBLH working in encryption mode.

Fig. 3. The structure of SBLH

SBLH takes as input a bit stream (in figure 3 the bit stream is the ciphertext).
A bit from the input stream enters the first encoder E1 where it remains for some
time T1. During this time the bit and n − 1 other bits currently in E1 are used
by the encoder to produce a sequence of addresses in memory M1. A equivalent
way of modeling E1 is as a function of n bits, E1(x0...xn−1) = a1, where a1 is
an address in memory M1.

The value stored in M1 at the address a1, generated by E1, is fetched and
passed to the second encoder E2. E2 is very similar to E1. The second encoder
E2 is a function of m bits, E2(x0...xm−1) = a2, where a2 is an address in memory
M2. The result of E2 is used to fetch a value from M2. The value at address a2 of
memory M2 is used as overlay to produce the ciphertext. The error propagation
and self-synchronization properties of SBLH are completely determined by the
depth of the convolutional encoders E1 and E2. In this case, the encoder E1
has 16 bits memory; the output from E1 is dependent on the last 16 bits. The
second encoder E2 has 48 bits memory. Together E1 and E2 have 64 bits of
memory, which equals the error propagation/self synchronization of SBLH. The
conclusion is that the size of the memory of SBLH matches the sum of the sizes
of memories in the encoders E1 and E2.

The memories M1 and M2 must each be filled with 216 bits of random data.
The contents of M1 and M2 form the active key. In early versions of systems
built around SBLH, the memories were filled with random data generated by
hardware source. This made the key length equal to 216 bits. In modern versions
the memories are filled with pseudorandom data. The actual key length has been
reduced to 256 bits, which is expanded into memories M1 and M2. An overview
of the key expansion can be found in figure 4.

The expansion starts with 256-bit random key being loaded into a memory.
Then the shift-register is loaded with initial value. Before the algorithm can
produce any output it has to perform a run-up (the algorithm goes through a
sequence of steps without producing any output).



Cryptanalysis of SBLH 147

Fig. 4. The key expansion algorithm

3 Chosen Ciphertext Attack

In this section we will describe a chosen ciphertext attack on SBLH. We use the
following notation:

ci – the ciphertext bit in the i-th moment;
a1,i = E1(ci−15 . . . ci) – output of the encoder E1 in the i-th moment;
si = M1(a1,i) – bit stored at address a1,i in the memory M1;
a2,i = E2(si−47 . . . si) – output of the encoder E2 in the i-th moment;
oi = M2(a2,i) – overlay bit i.e. bit stored at address a2,i in the memory M2.
Now, let us consider two ciphertext sequences c′

0, c
′
1, . . . c

′
n and c′′

0 , c′′
1 , . . . c′′

n

(n ≥ 63), such that
s′

i = s′′
i , i = n − 47, . . . , n − 1. (1)

If M1(a′
1,n) = M1(a′′

1,n) i.e. the bit stored at address a′
1,n = E1(c′

n−15 . . . c′
n)

is equal to the bit stored at address a′′
1,n = E1(c′′

n−15 . . . c′′
n), then s′

n = s′′
n.

Therefore, a′
2,n = E2(s′

n−47 . . . s′
n) equals a′′

2,n = E2(s′′
n−47 . . . s′′

n) and o′
n =

M2(a′
2,n) = M2(a′′

2,n) = o′′
n. If M1(a′

1,n) �= M1(a′′
1,n) i.e. the bit stored at address

a′
1,n = E1(c′

n−15 . . . c′
n) and the bit stored at address a′′

1,n = E1(c′′
n−15 . . . c′′

n) are
different, then the equality o′

n = o′′
n will hold with some probability δ. We will

assume that δ has some fixed value less than one. If the number of zeroes in the
memory M2 equals the number of ones and a2,i is uniformly distributed, then
δ = 1

2 .
Example 1. The most obvious way to achieve s′

i = s′′
i , i = n−47, . . . , n−1 is to

choose the ciphertext sequences such that c′
i = c′′

i , i = 0, . . . , n−1. Let c′
i = c′′

i =
1, i = 0, . . . , n− 1 , c′

n = 1 and c′′
n = 0. In this case, the condition (1) is satisfied,

a′
1,n = E1(1111111111111111), a′′

1,n = E1(1111111111111110), s′
n = M1(a′

1,n)
and s′′

n = M1(a′′
1,n). If M1(a′

1,n) = M1(a′′
1,n) , then s′′

n = s′
n ⇒ a′′

2,n = a′
2,n ⇒



148 G. Jakimovski and L. Kocarev

o′′
n = o′

n. If M1(a′
1,n) �= M1(a′′

1,n), then o′′
n = o′

n iff M2(E2(s′′
n−47 . . . s′′

n)) =
M2(E2(s′

n−47 . . . s′
n)) . The last equation is satisfied with some probability δ.

The previously described property of the algorithm can be exploited to check
whether the bits at some addresses A1 = a′

1,n and A2 = a′′
1,n in the memory

M1 are equal or not. We submit for decryption two ciphertext sequences c′
i

and c′′
i ,i = 0, . . . 63, such that s′

i = s′′
i , i = 16, . . . 62, E1(c′

48 . . . c′
63) = A1 and

E1(c′′
48 . . . c′′

63) = A2 (we’ll not discuss the existence of the sequences, because
for the addresses that will be used in the attack it is easy to construct such
sequences). From the ciphertext and corresponding plaintext sequences we com-
pute o′

63 and o′′
63 . If o′

63 �= o′′
63, then s′

63 �= s′′
63 i.e. the bit at address A1 and the

bit at the address A2 are different. If o′
63 = o′′

63, then we are not sure whether
M1(A1) = M1(A2) or M1(A1) �= M1(A2) (as mentioned before, we’ll assume
that the probability of the event o′

63 = o′′
63, when M1(A1) �= M1(A2) is δ).

Hence, if o′
63 = o′′

63 we repeat the previously described procedure. We repeat the
procedure until event o′

63 �= o′′
63 happens. If, after large number of repetitions,

o′
63 = o′′

63 is always satisfied, then we assume that M1(A1) = M1(A2) i.e. the bit
at address A1 in the memory M1 is equal to the bit at address A2 in the memory
M1. The probability that we made a mistake is δt → 0, t → ∞, where t is the
number of repetitions of the procedure. We will assume that M1(A1) = M1(A2)
if o′

63 = o′′
63 during t = 256 repetitions.

Example 2. Suppose we want to check whether the bits at addresses A1 and
A2, where A1 = E1(1111111111111111) and A2 = E2(1111111111111110), are
equal. We submit for decryption the following ciphertext sequences:

1111 . . . 11
︸ ︷︷ ︸

40bits

101010101111111111111111

1111 . . . 11
︸ ︷︷ ︸

40bits

101010101111111111111110

From the resultant plaintexts we compute o′
63 and o′′

63. If o′
63 �= o′′

63, then we
assume that M1(A1) �= M1(A2). If o′

63 = o′′
63, then we submit for decryption two

new ciphertext sequences:

1111 . . . 11
︸ ︷︷ ︸

40bits

111010101111111111111111

1111 . . . 11
︸ ︷︷ ︸

40bits

111010101111111111111110

From the resultant plaintexts we compute the new overlay bits o′
63 and o′′

63.
If o′

63 �= o′′
63, then we assume that M1(A1) �= M1(A2), while if o′

63 = o′′
63, we

repeat the procedure. If, after 256 repetitions, o′
63 = o′′

63 is always satisfied, we
assume that M1(A1) = M1(A2).

Let M1(A1) = M1(A2). We can use this fact to determine the relation be-
tween bits at some addresses A′

1 and A′
2. This is done in the next example.



Cryptanalysis of SBLH 149

Example 3. Let us assume that during the procedure described in example 2
it was determined that M1(A1) = M1(A2). We can also determine the relation
between M1(A′

1) and M1(A′
2), where A′

1 = E1(1111111111111110) and A′
2 =

E1(1111111111111100). Since s′
63 = s′′

63 for all ciphertext sequences used in the
previous example, we can construct the following procedure for checking whether
the bits at addresses A′

1 and A′
2 are equal or not. Submit for decryption two

ciphertext sequences:

1111 . . . 11
︸ ︷︷ ︸

40bits

1010101011111111111111110

1111 . . . 11
︸ ︷︷ ︸

40bits

1010101011111111111111100

From the resultant plaintexts compute o′
64 and o′′

64. If o′
64 �= o′′

64, then
M1(A′

1) �= M1(A′
2). If o′

64 = o′′
64, then submit for decryption two new ciphertext

sequences:
1111 . . . 11
︸ ︷︷ ︸

40bits

1110101011111111111111110

1111 . . . 11
︸ ︷︷ ︸

40bits

1110101011111111111111100

From the resultant plaintexts we compute the new overlay bits o′
64 and o′′

64. If
o′
64 �= o′′

64, then we assume that M1(A′
1) �= M1(A′

2), while if o′
64 = o′′

64, we repeat
the procedure. If, after 256 repetitions, o′

64 = o′′
64 is always satisfied, we assume

that M1(A′
1) = M1(A′

2) .

In the examples 2 and 3, it was shown how relations between bits of the
memory M1 could be determined. Each new relation that can’t be derived from
the previous relations reveals one bit of the contents of M1. More relations we
construct, more information about the contents of M1 we gain. If the number of
relations is large enough, we can determine all 216 bits of M1. In the following,
we describe systematic procedure for constructing relations between the bits of
M1.

0. Initialize an array r of 216 × 216 elements. The elements of r contain
information about the relations between the bits of M1. If the relation between
the bit at address E1(a) and the bit at address E1(b) is not determined, then
r[a][b] = r[b][a] = 2. If the relation between the bit at address E1(a) and the
bit at address E1(b) is determined and M1(E1(a)) = M1(E1(b)), then r[a][b] =
r[b][a] = 1. If the relation between the bit at address E1(a) and the bit at address
E1(b) is determined and M1(E1(a)) �= M1(E1(b)), then r[a][b] = r[b][a] = 0. In
this step, it holds r[a][b] = 2(a �= b) and r[a][b] = 1(a = b).

1. According to example 2, for all a and b such that a⊕b = 0000000000000001
find out how the bits at addresses E1(a) and E1(b) are related. If M1(E1(a)) =
M1(E1(b)), then set r[a][b] = r[b][a] = 1. If M1(E1(a)) �= M1(E1(b)), then set
r[a][b] = r[b][a] = 0.

2. According to example 3, for all a and b such that r[a][b] = 1 and a ⊕
b = 0000000000000001 we can determine the relation between M1(E1(a′)) and



150 G. Jakimovski and L. Kocarev

M1(E1(b′)), where a′ = (a << 1) mod 216 and b′ = (b << 1) mod 216. We
note that a′ ⊕ b′ = 0000000000000010. If the relation between M1(E1(a′)) and
M1(E1(b′)) is already determined (r[a′][b′] �= 2), do nothing. If r[a′][b′] = 2, then
find out how the bits at addresses E1(a′) and E1(b′) are related and update the
array r. By updating the array r we mean entering the new relation and all the
relations that can be derived using the new and the previous relations.

3. The fourth step is analogous to the previous step. In this step, for all a
and b such that r[a][b] = 1 and a ⊕ b = 000000000000001� (� denotes arbitrary
value) we can determine the relation between M1(E1(a′)) and M1(E1(b′)), where
a′ = (a << 1) mod 216 and b′ = (b << 1) mod 216. We note that a′ ⊕ b′ =
00000000000001�0. If the relation between M1(E1(a′)) and M1(E1(b′)) is already
determined (r[a′][b′] �= 2), do nothing. If r[a′][b′] = 2, then find out how the bits
at addresses E1(a′) and E1(b′) are related and update the array r.

...
16. In a similar way, new relations between bits at addresses E1(a′) and

E1(b′) are derived using the relations determined in the previous step. For a′

and b′ holds that a′ ⊕ b′ = 1 � � � � � � � � � � � � � �0.
17. In this step, the entries of the encoder E1 are grouped into classes using

the array r. The grouping is performed so that the number of classes is minimal.
Let N denotes the number of classes. Each class Ki, i = 1, . . . N consists of two
subsets K1

i and K0
i . The following must hold: (i) a, b ∈ K1

i (or a, b ∈ K0
i ) iff

r[a][b] = r[b][a] = 1, (ii) a ∈ K1
i and b ∈ K0

i iff r[a][b] = r[b][a] = 0, (iii) a ∈ Ki

and b ∈ Kj , i �= j iff r[a][b] = r[b][a] = 2.
18. 2N possible contents of M1 are constructed using the classes Ki. For each

of these contents, the content of M2 is determined and tested using the existing
ciphertext/plaintext pairs. If the content of M2 can be uniquely determined i.e.
there is no address A such that in one moment M2(A) = 0 and in the other
M2(A) = 1, we consider the pair (M1, M2) as a possible value of the active key.

The efficiency of the attack depends on the number of classes N . Suppose
that the entries of the encoder E1 are grouped into classes after each step. Let
Ni denotes the number of classes after i-th step, let li = 216

Ni
denotes the average

class length and let Li denotes maximum possible average class length after the
i-th step. We note that L1 = 2, L2 = 4, . . . , L16 = 216. Figure 5 depicts the
values of D(i) = Li − l̄i and d(i) = D(i)

Li
, where l̄i is an arithmetic mean of li

calculated for 210 randomly chosen contents of M1.
It is obvious that the difference D tends to zero. This is due to the fact that

the average number of elements of the classes increases with every step, and thus,
the number of relations that can be derived increases too. On the other hand,
the required number of new relations decreases with every step. Therefore, the
number of contents of M1 for which N > 1 is negligibly small.

When N = 1, there are only two possible contents of M1. Therefore, the
active key is one of the two possible pairs (M1, M2). Which one, it can be easily
checked. The number of relations needed to group the entries of the encoder



Cryptanalysis of SBLH 151

Fig. 5. D(i) and l(i) versus i. See the text for details.

E1 in one class is 216 − 1. The number of required ciphertext/plaintext pairs is
(216 − 1) × 256 ≈ 224.

References

1. Business Security AB, Lund, Sweden, http://www.bsecurity.se


	Introduction
	General Description of SBLH
	Chosen Ciphertext Attack

