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Abstract. Assessment of normal and abnormal anatomical variabil-
ity requires a coordinate system enabling inter-subject comparison. We
present a binary minimum entropy criterion to assess affine and nonrigid
transformations bringing a group of subject scans into alignment. This
measure is a data-driven measure allowing the identification of an intrin-
sic coordinate system of a particular group of subjects. We assessed two
statistical atlases derived from magnetic resonance imaging of newborn
infants with gestational age ranging from 24 to 40 weeks. Over this age
range major structural changes occur in the human brain and existing at-
lases are inadequate to capture the resulting anatomical variability. The
binary entropy measure we propose allows an objective choice between
competing registration algorithms to be made.

1 Introduction

Assessment of normal and abnormal anatomical variability requires a coordinate
system enabling inter-subject comparison [1,2,3]. Several nonrigid registration
algorithms have been proposed for comparing anatomy or for the construction
of statistical atlases [4,5,6,7,8,9,10,11,12,13], and each has advantages that make
it attractive for these applications in some circumstances but also disadvantages
that potentially may limit the applicability.

We restrict our consideration here to only those nonrigid registration algo-
rithms that attempt to project anatomy from a source to a target with a plau-
sible model of deformation. If we allow arbitrary nonrigid transformations then
anatomically implausible deformations can be constructed to generate arbitrar-
ily good alignments. For example, one construction to achieve perfect intensity
matching of two volumes is the following: for each voxel of the target, scan across
the source until a voxel with matching intensity is found, and then project this
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voxel from the source into the target. As long as the source has the same or
larger intensity range as the target this will result in a perfect intensity match
but will tell us nothing useful about how to project the anatomy of the source
to match the target.

We propose below an objective criterion for comparing the quality of a sta-
tistical atlas. We define a statistical atlas of anatomy as a group of acquisitions
in a common coordinate system. Typical measures available in a statistical atlas
are the mean and variance of the underlying acquisition signal intensity at each
voxel, and very often, a segmentation of each acquisition is also carried out. In
order to assess the quality of the alignment, we require a tissue segmentation of
some type be available. The segmentation allows us to compare the spatial dis-
tribution of the structures of interest for the particular application or anatomy
for which such an atlas is intended.

We define perfect alignment as every voxel of an acquisition being in cor-
respondence with precisely the same anatomy in each scan. Under these cir-
cumstances, comparing the segmentations of each scan we would find the same
structure identified at each voxel. Variability between the acquisitions can be
considered encoded by the transformations that bring them into alignment. For
example, a scan of the brain might be brought into alignment with a group of
scans, first by an affine transformation correcting for rotation, translation and
scale differences, and then a nonrigid transformation correcting for local shape
variations. In this case the interesting anatomical variability of the scan is en-
coded by the nonrigid transformation that brings it into the common coordinate
system.

In information theory, the information (or uncertainty) associated with a sig-
nal is referred to as the entropy of the signal [14]. Entropy-based methods were
first used in medical image registration by [15,16]. Recently Miller et al. [17]
proposed using pixelwise entropies across a set of binary images as a measure of
their joint alignment. Here, we apply this technique to multi-valued volumes in
three-dimensions with the goal of constructing a probabilistic anatomical atlas
in an intrinsic coordinate system in order to describe anatomical variability. We
propose computing the voxelwise entropy of the segmentations of each structure
of the scans (as defined below). This measure of entropy is zero for a set of scans
in perfect alignment as described above. Under these circumstances, a perfect
nonrigid registration algorithm has been able to capture all of the anatomical
variability and encode it in the nonrigid transformation, leaving the uncertainty
of the atlas (or coordinate system) as zero. For a practical nonrigid registra-
tion algorithm, we may expect that the entropy of the atlas does not reach the
desirable value of zero, in which case the anatomical variability that the non-
rigid registration can capture is encoded in the set of transformations bringing
the scans into alignment, and crucially the amount of anatomical variability not
captured by the nonrigid registration algorithm is indicated by the entropy of
the aligned segmentations.

Therefore, we propose to assess a statistical atlas by measuring the binary
entropy of the aligned segmentations voxelwise. We consider the minimum en-
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tropy statistical atlas as defining an intrinsic coordinate system for the anatomy
under consideration.

2 Method

We consider here the application of constructing a statistical atlas of magnetic
resonance images of newborn infants with a gestation age ranging from 24 to 40
weeks. Over this period major developmental changes in the human brain take
place [18].

We applied affine (translation, rotation and scale parameters only, no shear
parameters were considered) and nonrigid registration to construct a statisti-
cal atlas from tissue classifications of the above subjects. We used a minimum
entropy criterion as an objective measure of the quality of the statistical atlas
generated by affine transformation alone and by affine and nonrigid registration
together.

2.1 MRI Acquisition

Spoiled Gradient Recalled Acquisitions in the Steady state (SPGR) with a
voxel size of 0.7x0.7x1.5 mm3 (coronal T1w) and Conventional Spin Echo (axial
T2w/PDw) MR acquisitions with a voxel size of 0.7x0.7x3.0 mm3 of newborn in-
fants are acquired at our institution under a protocol with IRB approval. Twenty
two acquisitions of subjects with gestational age (GA) < 34 weeks were analysed.
For each subject, T2w and PDw volumes were resampled to align with and have
the same voxel size and acquisition order as the T1w volumes.

2.2 Tissue Classification

A sequence of image processing algorithms was used to segment each of the MRI
acquisitions into separate tissue classes: cortical graymatter (GM), subcortical
GM, unmyelinated white matter (WM), myelinated WM and cerebrospinal fluid
(CSF). These algorithms were designed to reduce imaging system noise, and to
classify tissue types on the basis of MR intensity and expected anatomy derived
from a template. Anisotropic diffusion filtering was used to smooth noise without
blurring fine details. Supervised spatially varying template moderated classifi-
cation was used to identify tissue classes [19]. This analysis is a supervised non-
parametric multispectral classification algorithm which identifies tissue classes
in the data set by comparison to a set of prototype tissue values selected by
an expert operator, knowledgeable in both developmental neuronanatomy and
pediatric MR-imaging.
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2.3 Minimum Entropy Affine Alignment

Following [17], we define the joint voxelwise entropy of a collection of J binary
volumes, Sj , j ∈ 1...J , each brought into alignment by a transform Tj , as

E(T1(S1), T2(S2), ...TJ(SJ )) =
N∑

i=1

H(vi)

where N is the number of voxels of the volumes, vi is the binary random variable
defined by the values of voxel i across the images and H(·) is the discrete entropy
function.

We want an entropy expression for a tissue classification derived from MRI
acquisitions of subjects. We treat each tissue class as a separate binary volume,
compute the entropy independently for each tissue class as above and sum the
entropy for each to obtain the total entropy of a given alignment of a collection
of tissue classifications. An alternative entropy expression would be simply the
entropy of the multi-valued tissue distributions, i.e. not treating each tissue class
independently.

A minimum entropy alignment seeks to identify the set of transforms Tj

which minimizes the entropy of the collection i.e.

arg min
T1,...,TJ

E(T1(S1), T2(S2), ..., TJ(SJ )).

A local optimization method has been proposed to solve this optimization si-
multaneously for each transform [17]. However, here we propose to approximate
this by fixing one volume and computing the minimum entropy transform be-
tween this and the other tissue classifications using a previously described fast,
robust and accurate affine registration method suitable for tissue classifications
[20]. We therefore solve the optimization problem :

argmin
T

′
k

E(I(S1), T
′
k(Sk)), ∀k ∈ 2...J,

where I(·) is the identity transform, and hence we construct the atlas with
entropy

E(I(S1), T
′
2(S2), ..., T

′
J (SJ)).

2.4 Nonrigid Registration

We describe in this section the nonrigid registration algorithm we used for the
experiments reported below. However, the primary focus of this work is to de-
scribe the method for evaluating any particular nonrigid registration algorithm,
and the method we apply here (which is quite successful) is simply one of many
that should be evaluated and compared.

Prior to computing a nonrigid registration, the above affine registration is
used to remove global rotation, translation and scale differences. The nonrigid
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registration algorithm we used for our experiments here is a generalization of the
method proposed by Ferrant and co-workers [21]. In that work, displacements
were estimated from segmentations of two scans by an active surface match, and
the nonrigid deformation between surfaces was computed by solving a linear
elastic physics-based model. Here we replace the active surface matcher with a
brute force normalized cross correlation search from regions of high local struc-
ture. Again, displacements away from these regions are computed by solving a
linear elastic physics-based model.

Local Structure Detection Sparsely sampled points with regions of high local
structure were obtained by smoothing MR acquisitions with an edge-enhancing
noise smoothing nonlinear diffusion filter, computing the magnitude of the gra-
dient, and selecting points two standard deviations above the mean magnitude
of the gradient.

Correspondence Measurement The normalized cross-correlation function allows
comparison of regions of two scans. The function peaks for the displacement that
best aligns the two regions. We use a brute force search in a limited search range
to identify the best local match for each point of high local structure.

Interpolation with a Linear Elasticity Model The above two procedures identify
sparse estimates across the image with known displacements. These are applied
as boundary conditions in a linear elastic solver analogously to that previously
described [21].

3 Results

Figure 1 and Figure 2 illustrate the construction of statistical atlases using affine
only and affine and nonrigid registration. Five tissue class atlases and the cor-
responding mean SPGR intensity for the recovered transformations are shown.
We can observe that the nonrigid registration produces a spatial distribution of
tissue classes that is better localized, and indeed, has a lower entropy (measured
in bits per voxel) for each of the well-aligned tissue classes (CSF, cortical gray
matter, myelinated white matter), and an equivalent entropy for the two tissue
classes which remain difficult to spatially localize — unmyelinated white matter
and basal ganglia (for which the nonrigid registration produces a better spatial
alignment, but due to their small size is not different in the first two decimal
places of the entropy measure).

4 Discussion and Conclusion

Two reports have discussed related concepts, described below, for encoding
anatomical variability in a statistical atlas. These are the ideas of compact en-
coding of anatomical variability [13] and a “minimum variance frame” [11]. We
observe that the minimum entropy criterion derived from segmentations that we
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(a) CSF (b) Basal ganglia (c) Cortical gray matter
0.06 bpv 0.05 bpv 0.17 bpv

(d) Myelinated white (e) Unmyelinated white (f) Average SPGR
matter 0.05 bpv matter 0.14 bpv intensity

Fig. 1. Minimum entropy alignment of tissue classifications from subjects with
GA < 34 weeks with affine registration. The above figure shows a single slice
from class atlases obtained with minimum entropy affine registration for (left
to right) CSF, basal ganglia, cortical gray matter, myelinated white matter and
unmyelinated white matter. The entropy per voxel for each tissue class atlas
independently is noted in units of bits per voxel (bpv).

propose here encapsulates both the concepts of compact encoding of anatomical
variability in a formally precise fashion without the requirement of an explicit
shape representation, and of maximizing the overlap of corresponding anatomical
structures.

Ashburner and Friston [13] proposed a low resolution nonrigid registration
algorithm optimizing over a few hundred parameters, justifying this approach as
having low computational cost and being sufficiently accurate when correspon-
dence between different individuals (and between structure and function) is not
guaranteed. They noted the requirement for a compact encoding of structural
variability, suitable for exploitation by a more advanced nonrigid registration
algorithm.

Collins [11, pp.28–38] provides an excellent overview of the Talairach atlas
and related methods, together with a summary of the primary limitations and
restrictions of this form of atlas. These limitations provide motivation to search
for an objective criterion with which to identify an intrinsic coordinate system
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(a) CSF (b) Basal ganglia (c) Cortical gray matter
0.04 bpv 0.05 bpv 0.15 bpv

(d) Myelinated white (e) Unmyelinated white (f) Average SPGR
matter 0.04 bpv matter 0.14 bpv intensity

Fig. 2. This shows the tissue class atlases obtained with nonrigid registration
for (left to right) CSF, basal ganglia, cortical gray matter, myelinated white
matter and unmyelinated white matter.

in which a probabilistic atlas can be constructed. Collins constructed a mean
atlas by aligning and averaging scans of 305 primarily male, primarily young
subjects. He found regions of misalignment as compared to the Talairach atlas
and attributed these to normal anatomical variability between the subject of the
Talairach atlas and those of his cohort. Interestingly, Collins [11, p.36] proposed
reconstructing a new atlas in a minimum variance frame as a mechanism for
identifying a data-driven “best” coordinate system. This does not yet appear to
have been done, possibly due to the difficulty of aligning cortical structures, for
which the nonrigid registration algorithm of [11] is explicitly not designed.

Entropy is invariant to the specific label assigned to each tissue. The numeric
label assigned to each tissue is irrelevant. It is only the frequency of occurrence
of the tissue for a particular voxel that matters. This is not true of the variance
measure, which is dependent upon the values assigned to each tissue.

Since entropy is the negative of the average log likelihood, a minimum entropy
method can be interpreted as a maximum likelihood method. Minimizing the
entropy by transforming a single volume is equivalent to maximizing the mean
log likelihood of the voxels in that volume under the distribution implied by the
set of scans. So if we view our allowable transformations as being equally likely,
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then minimum entropy alignment can be interpreted as maximum likelihood
alignment under the model implied by the set of volumes [17]. Its maximum
value occurs when there is greatest disorder, i.e. an even distribution of labels
over a particular voxel (not necessarily true for variance). Its minimum value
occurs when there is least disorder, i.e. all labels for a particular voxel are the
same. This property is shared by the variance criterion.

A minimum entropy criterion provides a means to obtain a coordinate sys-
tem intrinsic to the data being studied. Anatomical variability captured by the
registration algorithm is encoded in the transformations bringing subject scans
into alignment, and the amount of anatomical variability not captured by the
registration algorithm is indicated by the binary entropy of segmentations of the
aligned data. We propose that this criterion can be applied to assess the align-
ments obtained by affine and nonrigid registration algorithms. The minimum
entropy alignment of segmentations of the subject scans represents the best en-
coding of the anatomical variability. Hence, this is a principled mechanism for
identifying a common coordinate system for a group of subjects under study. The
same reasoning applies when other anatomical structures, such as the ventricles
or the hippocampal formation are to be studied — again a minimum entropy
criterion allows the identification of an intrinsic coordinate system in which to
study the structure.

The work described here has not dealt in detail with constraints upon the
capacity of the transform aligning the anatomy. It is possible to construct trans-
forms which minimize the entropy of the collection without meaningfully describ-
ing anatomical variability. For this reason it is desirable to study the capacity of
the transforms allowed. In principle, the transforms should be selected from the
group defined by normal anatomical variability, which is unfortunately unknown.
An alternative may be to select a class of transforms a priori and seek the min-
imum entropy atlas constructed with a minimum description length constraint
on the allowable transforms.

Applying this approach to scans of newborn infants grouped by age should
allow the construction of a spatiotemporal atlas of the developing brain.
Acknowledgements: This investigation was supported by NIH P41 RR13218,
NIH P01 CA67165 and NIH R01 RR11747. The authors greatly appreciate the
help of Marianna Jakab in enabling this research.
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