Software Deployment Using Mobile Agents

Nils P. Sudmann and Dag Johansen*

Department of Computer Science, University of Tromsg, Norway,
nilss@cs.uit.no, dag@cs.uit.no

Abstract. In this paper we show how mobile agents can be applied
to software component updates in a distributed environment. One im-
portant aspect is that the control code for component updates can be
distributed at run time. Also, by selecting the right agent system one
gains flexibility in the choice of configuration languages.

1 Introduction

The principle of deploying web components over the Internet is currently touted
by key industrial players as the structuring approach for software systems. Com-
panies like, for instance, Microsoft (.NET), IBM (WebSpheres), Sun (JXTA), and
BEA (WebLogic) are all advocating web service architectures. The fundamental
idea is to download web service components over the network and install and
extend a core software base already running on the computers.

Fundamentally, this is not a new idea. Web components, application updates,
and similar extensibility techniques have been applied in, for instance, micro
kernel operating systems [Lie95/BSP'95|, in Java environments with applets
and servlets, and in mobile agent technologies [GKCRISJAOI8IBHRSIS]. The
difference, though, is the massive focus this type of deployment architectures
currently gets.

In this paper, we present the latest in a series of middleware toolkits, which,
in principle, is similar to these emerging web services platforms. This is TAcOMA
v2.2, a mobile agent system built to support software deployment over the net-
work. In TACOMA, in contrast to all other early mobile agent systems, general
software installation has always been a key requirement to support. In this pa-
per, we will show how to actually ship install logic along with the software
components to be installed.

The rest of this paper is organized as follows. In section 2] we introduce the
key concepts of TACOMA, the mobile agent system we use as infrastructure for
component deployment. In section[3], we discuss our software component deploy-
ment application. In section H] we discuss various design options for component
deployment using mobile agents, and finally, section Bl concludes this paper.

* This work was supported by NSF (Norges forskningsrad), DITS program, Norway
grant no. 112578/431 and 126107/431.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 97-[[07] 2002.
© Springer-Verlag Berlin Heidelberg 2002



98 Nils P. Sudmann and Dag Johansen

2 Concepts in TACOMA

Software component updates are inherently complex because components often
are interdependent. Hence, care must be taken during maintenance to avoid
breaking the system while it is in a inconsistent state. It is difficult and inflexible
to build a generic software deployment system. Rather, we need support code
that controls the actual update or install process and is supplied dynamically
as the software component is updated. Mobile agents are computations that are
able to relocate themselves from one host to another, and they are a convenient
way to dynamically supply control code for the update process in a distributed
setting.

In the TACOMA project [JvRSISIILVRT 02|, we started out almost 10 years
ago to build extensible servers with mobile code being deployed over the network.
This was initially used to extend remote weather servers in the Arctic with client
software [JH94]. We generalized and built several versions of our deployment
middleware, but with focus on mobile agent support. However, in contrast to all
other early mobile agent systems, our focus was on supporting agents written in
multiple languages. A typical mobile agent in TACOMA was a simple Perl script
that needed to be deployed throughout the network, or a C++ server extension
that had to be added to a single remote server.

Hence, a TACOMA mobile agent is basically a software component that has
to be deployed in a network of extensible servers. In principle, this is exactly the
same as what emerging industrial web service infrastructures provide, where our
mobile agent resembles a web service.

In TACOMA, a mobile agent collects initial state and state changes in a brief-
case. Once an agent is ready to move, its briefcase should contain a sufficient
snapshot of the state needed to pick up execution at another host. Briefcases
are further divided into a set of named folders, which themselves consist of a
list of elements. The element is the basic data type in this structure; it is in-
terpreted by the TACOMA system as an sequence of bytes. By convention, the
actual interpretation beyond this is left to the application receiving it.

A cabinet is a persistent site-bound briefcase that a mobile agent may allocate
and store data in for future visits to the host. Cabinets are used by our system
as repositories to store software packages and information about them.

An agent core is a digitally signed immutable collection of initial state. It
is used to authenticate an agent. Agents without a core are considered anony-
mous, and are severely restricted in what they are authorized to do in a gen-
eral TACOMA configuration. In fact, in the configuration of TACOMA to general
component deployment, agents are rejected if they are not signed by a trusted
repository. The core is also used to validate the authenticity of the update con-
trol code and the software package. Only if the update control code is part of the
core, is it allowed to execute with the needed permissions to perform software
updates. This mechanism ensures that the code has not been modified while in
transit. In effect, we turned a general mobile agent system into a safe installation
toolkit. For more details, see [SJO0JSJO1].



Software Deployment Using Mobile Agents 99

An important aspect of TACOMA is the ability agents have to carry with
them other agents. This is done by taking a briefcase representation of an agent,
archiving it and incorporating it into the core of another agent. This agent may
at a later point fetch the archive from its core and activate the initial agent.

3 The Software Deployment Application

Our infrastructure contains one or more repositories that contain the latest ver-
sions of software packages. These packages can be used to update or install
new software at a number of hosts that are subscribing to the repository ser-
vice. However, we do not require that all the subscribing hosts share the same
software base after updates. That is, some hosts may be unavailable at update
time, and may lag behind in updates. Furthermore, impatient host owners may
update their software manually without waiting for a repository update. This
implies that repositories cannot use their knowledge of previous package updates
to determine future updates.

The repositories are TACOMA sites, containing software packages, and run-
ning a restricted version of our mobile agent system. A software package is a self
contained archive with a version number. Each package is associated with a probe
agent and a update control agent, which are package specific. In our system we
currently use Redhat rpm packages, since most of our implementation has been
centered around the Linux platform. These packages are stored in the TACOMA
cabinet of the local repository. Furthermore, we store a list of hosts subscribing
to the service.

Next, the software deployment application itself consists of two different
agents, the state collector agent (State.Coll) and the installer agent
(Pack.Install). The State.Coll agent travels in an itinerant style and col-
lects information about hosts. The second type consists of several copies that
work in parallel and does the actual software installation, see figure [I1

Like all TACOMA agents the snapshot of the State.Coll and Pack.Install
agent consists of a core that is digitally signed by the repository. The core con-
tains among others the command and control code and the list of nodes to visit.
As mentioned, clients will only accept agents whose core is signed by parties
they trust.

3.1 Step 1: The State.Coll Agent

The software update process starts at the repository. The repository regularly
collects the list of packages available, and the list of hosts that are subscribing
to its service. Next, the repository creates an agent core for the State.Coll
agent containing the list of updates, the client host list, the State.Coll code,
and a set of probe agents, one for each package, that determine the state of
that particular software package at the client. The core is digitally signed by the
repository with its key.

Now, the newly created State.Coll agent is activated. It examines its list
of hosts that it has to investigate. It then tries to relocate itself to a host on



100 Nils P. Sudmann and Dag Johansen

Step 1 Step 2

Fig.1. TAcomA Software distribution Architecture. SC = State.Coll, PI =
Pack.Install.

this list. Hosts unreachable at the moment will be re-tried later. Once it has
been relocated to and authenticated by the receiving host, it is activated and
the probe begins.

The State.Coll agent then activates each of the probe agents in sequence,
supplying them with the package version available at the repository. The probe
agent then determines the installed version of package it is designed for, and
returns a simple binary answer to the question of whether an update to the
State.Coll agent is needed or not.

Since all our updates currently come in the form of Red Hat rpm packages,
all our probe agents are currently identical. In order to probe the clients instal-
lation, they simply execute the local rpm command to collect version numbers
of installed packages. However, since the probe agent is dynamically supplied by
the repository, it can equally well determine package versions using other meth-
ods. For instance, for packages not installed by rpm, it can locate a compiled
binary by searching default installation paths for this package. Once a binary is
found, it searches through it for a version string.

After the State.Coll agent has executed all of its probe agents, it creates a
new entry in its briefcase that describes the the needed updates at the current
host. From this list of needed updates, it subtracts packages that are locally
cached, something which may happen because of unresolved dependencies, see
section B3] below.

Finally, it picks a new unvisited host from its host list and repeats, until it
has visited every host in its list. Hosts that are unreachable at any given time
are rescheduled to the end of the host list. However, once three attempts have
been made to reach a certain host, the State.Coll agent gives up, and deletes
the host from its list. The reasoning behind this is that the host will probably be
unavailable for some time, and will be caught by later runs of the State.Coll
agent. When the host list is exhausted, the State.Coll agent returns to the
repository.



Software Deployment Using Mobile Agents 101
3.2 Step 2: The Pack.Install Agent

The next step in our process is to disseminate the needed updates from the
repository to clients. In this step, we need to allow the package supplier some
control over the actual update process. This is achieved in the following way.

Once the State.Coll agent has returned to the repository, it compiles a list
of hosts and packages, and generates one Pack.Install agent for each. These
agents contain those packages that are needed at the host they are destined for.
Furthermore, for each Pack.Install agent, the repository collects the software
packages needed together with update control agents, one for each package. This
is inserted into the Pack.Install core, and digitally signed by the repository.

Next the State.Coll agent launches the Pack.Install agents in parallel.
Each Pack.Install agent travels to its host and begins installation. Once au-
thenticated and activated, the Pack.Install agent activates the update control
agents in sequence. These agents contain the actual control code that installs the
software, and may be application specific or, as in our case, generic. Since we use
the rpm package system, the update control agent simply executes the rpm tool
locally and does some parsing of its output to detect unresolved dependencies.

However, if the package to be installed consists of, for instance, source code,
the update control agent will be more complex, invoking compilers and linkers
in the process of updating the installed software. The update control agent may
even shut down running services, prior to updating them, and then restart them
when the update process is completed.

Once all of the update control agents have finished executing, Pack.Install
collects the results. However, to avoid flooding the repository, the Pack.Install
agent does not report back success to the repository once it has finished. It does,
however, respond to unresolved dependencies as discussed below.

3.3 Dependencies

Sometimes the Pack.Install agent may encounter unresolved dependencies
during installatio]. Such dependencies are duly noted and the installation
aborted. However, to avoid transporting the payload twice over the network,
the Pack.Install agent caches its payload in the local TACOMA cabinet. It
then converts itself to a State.Coll agent and returns to the repository with a
new list of packages that need to be collected.

If packages are needed but are unavailable in the repository, a human admin-
istrator is notified. Once the administrator has fetched the missing packages, he
may manually start the probing process again, or simply wait until the repository
does this at some later point.

1A new version of a package may require a new previously uninstalled package, or an
update of a package on which it depends.



102 Nils P. Sudmann and Dag Johansen

3.4 Privileges

The probe and update control agents all currently run with administrator privi-
leges, since most software updates in our system require this. Our security frame-
work is based on authentication using digital signatures, which in the end means
that client administrators must trust the repositories they subscribe to.

The advantage to this approach is that it can be applied to existing systems,
without the need for new security enforcement schemes. The disadvantage is
that it has a coarse granularity, basically all or nothing is allowed, and does not
follow the principle of least privilege advocated by security experts.

It is possible to extend our system to support a finer security granularity
based on different user accounts. For instance, it is possible to map package
suppliers to user accounts. This would require our system to authenticate the
individual probe and update control agents that State.Coll and Pack.Install
activates at the client. This modification is straightforward, since the probe and
update control agents are full-fledged agents; they can be required to have a
digitally signed core. Based upon this signature, which is the signature of the
package supplier rather than the repository, one can map package suppliers to
user accounts.

3.5 A Note on Performance

The State.Coll agent needs to do a full probe at clients of every package
available at its repository. The reason for this is simple. There is no way to
make sure that even the local TACOMA site has a correct view of the state of
locally installed packages. Even if we cached earlier probes, a local administrator
may have bypassed our system and made an update or downgrade manually.

Each package needs its own probe agent. Creating and activating an agent
locally imposes an overhead of about 300 ms, not counting the computation of
the probe agent itself. Once the number of packages becomes large, the overhead
of creating and activating probe agents will reach unacceptable levels.

For this reason, we give local administrators the ability to turn caching of
local probes on. This means that the probe agents will miss changes to the local
packages done manually, but it greatly reduces the overhead of the State.Coll
agent.

When caching is turned on, the results of local probes are stored in the local
file cabinet. The cache lists the package name, the last version number probed,
and whether an update is needed or not. The State.Coll then looks in the
cache before activating a probe agent to determine if the probe is necessary. The
probe is only launched when the package numbers differ or if the cache indicates
that an update is necessary.

4 Design Options for Software Deployment

This section discusses some of the main design alternatives we were faced with
when applying the mobile agent paradigm to software deployment problems. As



Software Deployment Using Mobile Agents 103

such, it also constitutes our argument that mobile agents are well suited for
software deployment.

4.1 Software Updates as Mobile Agents

One way to do software deployment using mobile agents is to select an appropri-
ate mobile agent system, and deploy software components as mobile agents. The
software components can then relocate themselves to another host as a mobile
agent, and replace an already running agent there.

The problem with this approach is that software components have to be
modeled and implemented as mobile agents. Most software components are not
mobile agents, and redesigning a software package as a set of mobile agents still
requires substantial work. Furthermore, most mobile agents systems execute
their agents in a virtual machine, an execution layer providing safe code exe-
cution and a homogeneous environment in a heterogeneous network. This often
conflicts with the needs of software upgrades that need to access the underlying
operating system.

What we need is a mechanism that allows mobile agents to wrap generic soft-
ware components, without modification of the software components themselves.
In order to support this, the software components have to be separated from
the update control and network code of the mobile agent. In this approach, the
software component is added as a passive payload to the agent, while the update
control and network code becomes the mobile agent.

The problem with this approach is that it requires some support from the
agent system. The update control code needs to be granted privileges beyond
those of a regular mobile agent in order to affect the system outside the safe
sandbox of the agent environment. Either these privileges are granted indirectly
through a service of the local agent system, or directly by running the update
control code with all privileges needed to perform an update. In either case,
some trust of the authenticity of the payload (the software component) and the
update control code has to be achieved.

4.2 Single Itinerary Agent or Parallel Agents

The natural mobile agent approach to software installation is a single itinerant
mobile agent. This agent is loaded with the software to be installed. It then
travels to all the hosts which need to be updated in order, and installs its payload
at them. The advantages are linked to the benefits of mobile agents. The update
process puts little strain on network resources, since the agent updates one host
at a time. The number of updates sent over the network is n, where n is the
number of subscribing clients, with one additional status message sent back to
the repository. Furthermore, since the mobile agent is autonomous, it operates
asynchronously with no need for further control.

This approach has, however, its drawbacks. First, if hosts do not share exactly
the same software base, parts of the payload might not be needed at a host.
Furthermore, it is prone to failure, since the failure of a single host can potentially



104 Nils P. Sudmann and Dag Johansen

terminate the entire upgrade process. This is a common problem for mobile
agents, and solutions have been developed [JMST99MvRSS96]. However, these
solutions add to the complexity of the system, and are not always suited for our
setting.

A second alternative is to perform the update in parallel, using n agents, one
for each host that is to be updated. Now, each agent can configure its payload to
the needs of the host it is going to update. This may potentially lower payload
size, and thus network usage. The number of updates sent over the network is
still equal to the number of hosts, n, while the number of status messages rises
from 1 to n in this approach. The failure of one site no longer affects the agents
updating other sites, so costly fault-tolerance mechanisms for mobile code need
not be employed. However, since updates are performed in parallel, care must
be taken not to stress the network when the agents are initially shipped, and
status messages are sent back to the repository.

4.3 Global and Local Repositories

The second approach above scales poorly for truly large systems. In a setting
with not only one local network, but thousands of local networks each containing
several hundred hosts, the parallel update approach would need several hundred
thousands of update agents that are shipped from a single repository. A supplier
of software components may wish to spread this load between several different
repositories.

Furthermore, local administrators would probably like additional control over
updates emerging from a single global repository. For instance, if the global
repository does aggressive updates (using its user base for cheap beta test-
ing), local repositories may elect to delay updates until confidence in stability is
achieved.

We used the following approach to solve these problems. Some hosts subscrib-
ing to a repository service may in fact act as repository services themselves. Any
payload of an update agent from its parent repository is inserted into the local
temporary repository. A system administrator may at his/her leisure move up-
dates from the temporary repository to the local repository, making the update
available to its local subscribers.

End users are able to subscribe to any repository, unless restricted by local
policies. So end users may still live dangerously on the edge, by subscribing to
an aggressive repository instead of a possibly more careful local repository.

4.4 Client State

Another problem is getting information about the clients of the repository. This
includes what software components we need to update them. Having the clients
themselves poll a server for updates is a common method today. The trouble
with this approach is that the client has no idea about what updates are avail-
able and when. A client would need to get a list of all components available at
the repository at frequent intervals, and compare it with the locally installed



Software Deployment Using Mobile Agents 105

components. This wastes network bandwidth and puts additional strain on the
repository.

Another approach is to have the repository probe all the clients subscribing
to its service once a new component becomes available. Here the problem is that
clients may be unavailable since they are disconnected or the network might be
partitioned for a while. Clients that missed an update due to partition may not
be aware of this fact. These clients will eventually become updated during the
next regular repository probe.

We used a hybrid approach that combined the pull and push methods. Clients
that are simply disconnected or turned off may issue a probe once the connection
is re-established.

4.5 Mandatory and Optional Software

Basically, from a system administrators view, there are two types of software,
optional software and mandatory software. Mandatory software consist of soft-
ware the system operator deems necessary for the correct operation of the local
network site. This includes things like security updates, virus checkers, and mon-
itoring software. Other software packages are optional, and tailored toward the
needs of the end user, which are not critical to the correct behavior of the target
host.

To accommodate for these two classes of software, we have repository en-
tries that are tagged as mandatory by the repository administrator. These are
installed without interfering with the subscribing end user. Information about
optional software is mailed to the end user, who may elect to include the software
upon the next update. Once optional software is installed, further updates will
be installed without user interference.

4.6 The Insecurity of Mobile Code

Another problem with the use of mobile agents is the safety requirements a
generic mobile agent system must fulfill in order to execute foreign code. This
is usually achieved by running the code on safe virtual machines that enforce
safety [GMISIWTLAGY3]. These techniques isolate the system from the mobile
agent, and the agent is then restricted to access the system through well defined
services.

This voids our argument that mobile agents are useful in software deploy-
ment. We argued that the software that is to be deployed needs some control of
the update process at a host. This control may be very system specific, and re-
quire access to the system beyond that provided by virtual environment offered.

Instead, we found that executing code based upon authentication and suf-
ficient trust is much more suited in this setting. Thus, we have a closed set of
virtual machines that are only available to agents whom we trust. Once access
to these virtual machines is granted to a mobile agent, it may execute without
further limitations. In our context, this means that our system is a closed agent



106 Nils P. Sudmann and Dag Johansen

system. Only mobile agents authenticated as repository agents gain access to
the system while regular agents are denied access.

5 Conclusion

In this paper, we have shown how mobile agents can be used to do software
component deployment. However, we have just demonstrated the potential in
this technique. Currently, there is little reason for the Pack.Install agent to
be a full-fledged mobile agent. Since the system currently uses only one type
of software package (the Redhat rpm format), the agent can be replaced with
a simple message from the repository to a service agent at the client. However,
by using mobile agents, our model support arbitrary software packages, that
may even be vendor specific, since the control code of the update is dynamically
downloaded to the client.

The same argument goes for the State.Coll agent. The State.Coll agent
benefits from several of the befits inherent in the mobile agent paradigm, such
as asynchronous operation, preservation of bandwidth, and usefulness in discon-
nected environments. However, critics may say that the advantages gained by
using mobile agents to collect state information about client hosts may not match
the cost of having to deploy a mobile agent system in the first place. But, since
the code that collects the state is supplied by the repository and dynamically
uploaded to the client host, using mobile agents provides more flexibility. Thus,
our approach demonstrates a fundamental principle in which mobile agents may
be used to support application controlled updates.

The base agents are in place, and we are currently working on a tool set that
allows repository administrators greater control over the deployment process.
With this tool set, administrators can for instance schedule updates to happen at
a specific time. Currently, administrators have to manually update repositories,
even if the repository itself is a client to a parent repository. The administrator
tool set will allow the administrator to automate this process, allowing for a tree
of repositories where updates trickle down from a common root.

References

[AO98] Y. Aridor and M. Oshima. Infrastructure for Mobile Agents: Require-
ments and Design. In Proceedings of 2nd International Workshop on Mo-
bile Agents (MA ’98). Springer Verlag, September 1998.

[BHRS98] J. Baumann, F. Hohl, K. Rothermel, and M. Strafler. Mole — Concepts of
a Mobile Agent System. World Wide Web, 1(3):123-137, January 1998.

[BSPT95] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, Safety and Per-
formance in the spin Operating System. In 15th ACM Symposium on
Operating System Principles, December 1995.

[GKCR98] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Security in a
multiple-language, mobile-agent system. In Giovanni Vigna, editor, Mobile
Agents and Security, volume 1419 of Lecture Notes in Computer Science,
pages 154-187. Springer-Verlag, 1998.



[GMO5]

[JH94)

[JLvR*02]

[IMSt99)

[JVRS95]

[Lic95]

[MvRSS96]

[SJ00]

[J01]

[WLAGY3]

Software Deployment Using Mobile Agents 107

J. Gosling and H. McGilton. The java language environment: A white
paper. Technical report, Sun Microsystems, Inc, May 1995.

D. Johansen and G. Hartvigsen. Architectural issues in the StormCast
system. In Prococeeding of the Dagstuhl Seminar on Distributed Systems,
number 938 in Lecture Notes in Computer Science, pages 1-16, Dagstuhl,
Germany, 1994. Springer Verlag.

D. Johansen, K. J. Lauvset, R. van Renesse, F. B. Schneider, N. P. Sud-
mann, and K. Jacobsen. A TACOMA Retrospective. Software Practice &
Ezperience, Wiley, 2002. To be published.

D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and D. Zagorod-
nov. NAP: Practical fault-tolerance for itinerant computations. In Pro-
ceedings of the 19th IEEE International Conference on Distributed Com-
puting Systems (ICDCS’99), pages 180-189, Austin, TX, June 1999. IEEE
Computer Society.

D. Johansen, R. van Renesse, and F. B. Schneider. Operating System
Support for Mobile Agents. In Proceedings of the 5th Workshop on Hot
Topics in Operating Systems (HOTOS-V), pages 42—45, Orcas Island, WA,
May 1995. IEEE Computer Society.

J. Liedtke. On p-Kernel. In 15th ACM Symposium on Operating System
Principles, December 1995.

Y. Minsky, R. van Renesse, F. B. Schneider, and S. Stoller. Cryptographic
Support for Fault-Tolerant Distributed Computing. Unpublished techni-
cal report., February 1996.

N. P. Sudmann and D. Johansen. Adding Mobility to Non-mobile Web
Robots. In Proceedings of the 20th International Conference on Distributed
Computing Systems (ICDCS’00) Workshops, pages F73-F79, 445 Hoes
Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, April 2000. IEEE Com-
puter Society.

N. P. Sudmann and D. Johansen. Supporting Mobile Agent Applications
Using Wrappers. In Proceedings of the 12th International Workshop on
Database and Ezpert Systems Applications (DEXA’01), pages 689-695,
Munich, Germany, September 2001. IEEE Computer Society.

R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient Software-
Based Fault Isolation. In Proceedings of the 14th ACM Symposium on
Operating System Principles, December 1993.



	1 Introduction
	2 Concepts in TACOMA
	3 The Software Deployment Application
	3.1 Step 1: The State.Coll Agent
	3.2 Step 2: The Pack.Install Agent
	3.3 Dependencies
	3.4 Privileges
	3.5 A Note on Performance

	4 Design Options for Software Deployment
	4.1 Software Updates as Mobile Agents
	4.2 Single Itinerary Agent or Parallel Agents
	4.3 Global and Local Repositories
	4.4 Client State
	4.5 Mandatory and Optional Software
	4.6 The Insecurity of Mobile Code

	5 Conclusion
	References

