
Adapting Components
with Mismatching Behaviours

Andrea Bracciali1, Antonio Brogi1, and Carlos Canal2

1 Dipartimento di Informatica, Università di Pisa, Italia
2 Depto. Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain

Abstract. Component adaptation is widely recognised to be one of the
crucial problems in Component-Based Software Engineering. We present
a formal methodology for adapting components with mismatching inter-
action behaviours. The three main ingredients of the methodology are:
(1) The inclusion of behaviour specifications in component interfaces,
(2) a simple, high-level notation for expressing adaptor specifications,
and (3) a fully automated procedure to derive a concrete adaptor from
a given specification.

1 Introduction

Component adaptation is widely recognised to be one of the crucial problems
in Component-Based Software Engineering (CBSE) [5,17,15]. The possibility for
application builders to easily adapt off-the-shelf software components to work
properly within their application is a must for the creation of a true component
marketplace and for component deployment in general [4].

Available component-oriented platforms (e.g., CORBA [27], COM [8], Java-
Beans [29], VisualStudio .NET [21]) address software interoperability by using
Interface Description Languages (IDLs). The provision of an IDL interface defin-
ing the signature of the methods offered (and possibly required) by a component
is an important step towards software integration. IDL interfaces highlight signa-
ture mismatches between components in the perspective of adapting or wrapping
them to overcome such differences.

However, even if all signature problems may be overcome, there is no guaran-
tee that the components will suitably interoperate. Indeed, mismatches may also
occur at the protocol level, because of the ordering of exchanged messages and of
blocking conditions [30], that is, because of differences in component behaviours.
While case-based testing can be performed to check the compatibility of the be-
haviour of components, more rigorous techniques are needed to lift component
integration from hand-crafting to an engineering activity.

The availability of a formal description of the interaction behaviour of soft-
ware components is necessary in order to rigorously verify properties of systems
consisting of large numbers of components that dynamically interact one another
[10]. For instance, an application builder would like to be able to determine be-
forehand whether the inclusion of a third-party component may introduce a
deadlock possibility into her application.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 185–199, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

186 Andrea Bracciali, Antonio Brogi, and Carlos Canal

In this paper, we focus on the problem of adapting components that exhibit
mismatching behaviour. As we already pointed out, available component plat-
forms do not provide suitable means for describing the interaction behaviour of a
component. Consequently, behaviour mismatches can be only manually adapted.

The problem of component adaptation has been the subject of intensive at-
tention in the last few years. A number of practice-oriented studies have been
devoted to analyse different issues to be faced when adapting a third-party com-
ponent for a (possibly radically) different use (e.g., see [14,12,18]). A formal
foundation for component adaptation was set by Yellin and Strom in their semi-
nal paper [31]. They used finite state machines (FSM) for specifying component
behaviour, and introduced the notion of adaptor as a software entity capable of
letting two components with mismatching behaviours interoperate.

The objective of this paper is to present a formal methodology for adapting
components with possibly mismatching interaction behaviours. The three main
aspects of the methodology are the following:

1. Component interfaces. We extend traditional IDL with a description of com-
ponent behaviours. A component interface therefore consists of two parts:
A signature definition (describing the functionalities offered and required by
the component), and a behaviour specification (describing the interaction
protocol followed by the component). Syntactically, signatures are expressed
in the style of traditional IDLs, while behaviours are expressed by using a
subset of π-calculus [23] — a process algebra which has proved to be partic-
ularly well suited for the specification of dynamic and evolving systems.

2. Adaptor specification. We present a simple notation for expressing a specifica-
tion of an adaptor intended to feature the interoperation of two components
with mismatching behaviours. The adaptor specification is given by simply
stating a set of correspondences between actions and parameters of the two
components. The distinguishing aspect the notation is to allow a high-level,
partial specification of the adaptor.

3. Adaptor derivation. A concrete adaptor component is then automatically
generated, given its partial specification and the interfaces of two compo-
nents. This fully automated process exhaustively tries to build an adaptor
that will allow the components to interoperate while satisfying the given
specification. The advantage of separating adaptor specification and deriva-
tion is to automate the error-prone, time-consuming task of generating a
detailed implementation of a correct adaptor, while simplifying the task of
the (human) software developer.

In the rest of this paper, extended component interfaces are introduced in Sect. 2,
the notation for adaptor specifications is described in Sect. 3, while Sect. 4 illus-
trates the automatic generation of adaptors from specifications. The applicability
of the whole methodology is exemplified in Sect. 5, where a realistic case of adap-
tation between two components employing different file transmission protocols
is analysed. Finally, Sect.6 is devoted to discuss related work and to draw some
concluding remarks.

Adapting Components with Mismatching Behaviours 187

2 Component Interfaces

Components interfaces will be described in terms of roles. Typically, a role is an
abstract description of the interaction of a component with any other component
it is related to. Hence, a component interface will be represented by a set of roles,
each one devoted to a specific facet of the behaviour of the component.

The specification of a role is divided into two parts. The first one describes the
component at the signature level, and it is similar to traditional IDL descriptions.
Instead, the second part will describe the behavior related with the role signature
using a notation derived from process algebras:

role roleName = {
signature input and output actions
behaviour interaction pattern }

The signature interface of a component role declares a set of input and output
actions. These actions can be seen as the set of messages sent and received by
the role (representing the methods that the component offers and invokes, the
values or exceptions returned, etc.). Notice that typically IDLs represent only
the services that the component offers to its environment (that is, the set of its
output actions), while we explicitly represent also the services required by the
component, as a set of input actions.

Both input and output actions may have parameters, representing the data
interchanged in the communication. Parameters can be typed in order to allow
for type-checking. For our purposes it is enough to distinguish between just two
types: Link –representing channels through which messages can be sent and
received– and Data representing any other data value.

With respect to the behaviour interface, it is described by means of what we
call an interaction pattern [3]. Intuitively speaking, an interaction pattern de-
scribes the essential aspects of the finite interactive behaviour that a component
may (repeatedly) show to the external environment.

The language we use for describing these patterns is a variant of the syn-
chronous π-calculus. Since the calculus allows link names to be sent and re-
ceived as values, it has proved to be a very expressive notation for describing
applications with changing topologies, such as open systems. In particular, we
use a sugared subset the polyadic π-calculus [22], a generalized version the basic
π-calculus in which tuples, and not only single names, can be sent along links.
The set of behaviour expressions formally defined as follows:

E ::= 0 | a. E | (x)E | [x = y] E | E || E | E + E

a ::= tau | x?(d) | x!(d)

The special process 0 represents inaction, while internal actions are denoted by
tau. Input and output actions are respectively represented by x?(d) and x!(d),
where x is the link along which the actions are performed and d is a tuple of
names (either links or data), sent or received along x. Restrictions, like (x)E,
represent the creation of a new link name x in an expression E.

There is also a matching operator, used for specifying conditional behavior.
Thus, the pattern [x=y] E behaves as E if x=y, otherwise as 0. Finally, also non-

188 Andrea Bracciali, Antonio Brogi, and Carlos Canal

deterministic choice (+) and parallel (||) operators are defined. The summation
E + E’ may proceed either to E or to E’. On the other hand, communication will
only be allowed between expressions belonging to different components. Hence,
E || E’ consists of expressions E and E’ acting in parallel but not synchronizing.

Notice that interaction patterns do not contain recursion. The reason is that
they are intended to specify finite fragments of interaction as an abstract way
of representing component behaviour. In order to show the implications of this
choice, consider for instance a component Reader sequentially reading a file. File
items are received with an action read?(x) — the end-of-file condition being
represented by a special value EOF. Suppose that the component may decide
to break the transmission at any time by sending an action break!(). This
behaviour would be expressed in full (recursive) π-calculus as follows:

Reader = read?(x). ([x!=EOF] Reader + [x=EOF] 0) + tau. break!(). 0

indicating the fact that the component will repeatedly present a read? action
until either an EOF is received or it decides (by performing a tau action) to break
the transmission. However, the (non recursive) interaction pattern representing
this particular component will simply read:

read?(x). 0 + tau. break!(). 0 // R1

in which some aspects of the behaviour —like recursion and the alternatives
after the read? operation— have been abstracted by projecting them over time,
and collapsing repeated actions into a single one.

Indeed, trying to describe all the aspects of the behaviour of a distributed
system in one shot unavoidably leads to complex formulations of low practical
usability. Instead, we focus on descriptions of the finite concurrent behaviours,
making the verification of properties more tractable. In some sense, the choice of
considering simple non-recursive interaction patterns resembles the use of types
in conventional programming languages. While type checking cannot in general
guarantee the correctness of a program, it does eliminate the vast majority of
programming errors [3]. Similarly, pattern compatibility guarantees local cor-
rectness, that informally reads as “a component, together with its environment,
is granted to succeed in its current step”. For instance, the interaction between
an HTML client and a web-server via an HTML FORMmay be verified by check-
ing the compatibility of the finite protocols they follow, expressed as patterns.
This, obviously is not sufficient to guarantee the global success of the possibly
non-terminating client component running together with its open environment.

In fact, the framework we propose aims at defining a suitable model for open
systems, allowing for practical, possibly on-the-fly, verification. In this sense, the
finiteness of the approach aims both at dealing with the incompleteness inherent
in open systems, by limiting the analysis to what it is currently observable in
the system, and at providing computational tools that are not subject to an
unbound explosion of computational complexity.

A component may be represented by more than one role or pattern. Consider
now that our reader component copies to disk the received file, using actions
fwrite! and fclose!. Again, its behaviour in recursive π-calculus is:

Reader’ = read?(x). ([x!=EOF] fwrite!(x). Reader’ + [x=EOF] fclose!(). 0)

Adapting Components with Mismatching Behaviours 189

+ tau. break!(). fclose!(). 0

Now, instead of writing a single (but in fact, more complex) pattern for rep-
resenting the component, we will partition its behaviour into two independent
roles: one for describing how it reads the file (which is the pattern R1 previously
defined), and the other describing its interaction with the file system, represented
by the pattern:

tau. fwrite!(data). 0 + tau. fclose!(). 0 // R2

Thus, we allow for a modular representation and analysis of behaviour. Each
role represents the reader from the point of view of the component to which the
role is connected. Hence, while the decision of sending either a fwrite! or a
fclose! action is motivated in the reader by the reception of data or end-of-file,
the role R2 succeeds to express the point of view of the file system, for which the
reader component seems to decide freely to send either action.

The special characteristics of mobility which are present in the π-calculus
allow the creation and transmission of link names which can be later used for
communication. This determines that the signature interface of a π-calculus in-
teraction pattern is not fixed (like in other process algebras or in object-oriented
environments), but instead they can be extended by link-passing.

As an example of these extensible interfaces, consider the pattern below,
which specifies the behaviour of a component accepting queries in which a specific
channel for returning the requested fact is indicated. The component is also able
to raise an exception due to internal reasons (here represented by a tau action):

query?(return). return!(fact). 0 + tau. exception!(). 0

The pattern indicates that initially the component presents a signature interface
consisting only of the actions query?(Link return) and exception!(). How-
ever, after performing the first of these actions, the interface is enlarged, and
also return!(Data fact) must be considered part of it.

The notation we use for this purpose is the operator ‘>’ (read as “before”)
which explicitly represents dependencies between link names in the interface.
For instance, the interface of the component described above will be written as:

role QueryServer = {
signature

query?(Link return) > return!(Data fact);
exception!();

behaviour
query?(return). return!(fact). 0 +
tau. exception!(). 0 }

which indicates that the action return! will be performed through the link
received in the previous query? action.

3 Adaptor Specification

Adaptation, in its generality, is a hard problem which involves a large amount
of domain knowledge and may require complex reasoning. Hence, our approach

190 Andrea Bracciali, Antonio Brogi, and Carlos Canal

aims at providing a methodology for specifying the required adaptation between
two components in a general and abstract way. Moreover, the description of the
necessary adaptation will be used to automatically construct a third component,
that we call adaptor, which is in charge of mediating, when possible, the inter-
action of the two components so that they can successfully interoperate. In this
section we will illustrate a simple and abstract language which permits us to
describe the intended mapping among the functionalities of the two components
to be adapted.

We first observe that adaptation does not simply amount to substituting
link names. Consider for instance a component P that requests a file by means
of an url, and a repository Q that first receives the url and then returns the
corresponding file. Their behaviour interfaces are, respectively:

request!(url). reply?(page). 0 // P
query?(address). return!(file). 0 // Q

The connection between request! and query?, and between reply? and return!
could be defined by the substitution:

σ = {t1/request, t1/query, t2/reply, t2/return}
that allows their interoperation. Notice that, after applying the substitution, the
communication between Pσ and Qσ would be direct and unfiltered, since they
will share link names. However this contrasts with encapsulation principles as, in
general, one would like neither to modify the components nor to allow the sharing
of names (methods or links) between different components. Moreover, it appears
clear that this kind of adaptation can solve only renaming-based mismatchings of
very similar behaviours. In general, one is interested in adapting more different
situations where, for instance, reordering and remembering of messages may be
necessary.

We represent an adaptor specification by a mapping that establishes a num-
ber of rules relating actions and data of two components. For instance, the
mapping expressing the intended adaptation for the previous example is written
as:

M = { request!(url) <> query?(url);
reply?(file) <> return!(file); }

The intended meaning of the first rule of M is that every time P will perform a
request! output action, Q must perform a corresponding query? input action.
The use of parameters url and file in the mapping explicitly states the corre-
spondence among data. Parameters have a global scope in the mapping, so that
all the occurrences of the same name, even if in different rules, refer to the same
parameter.

Intuitively speaking, a mapping provides a minimal specification of an adap-
tor that will play the role of a “component-in-the-middle” between two com-
ponents P and Q. Such adaptor will be in charge of mediating the interaction
between P and Q according to the mapping specification. It is important to ob-
serve that the adaptor specification defined by a mapping abstracts away from
many details of the components behaviours. The burden of dealing with these

Adapting Components with Mismatching Behaviours 191

details is put on the (automatic) adaptor construction process, that will be de-
scribed in the next section. For instance, the behaviour interface of an adaptor
satisfying the specification given by mapping M is:

request?(url). query!(url). return?(file). reply!(file). 0

Such adaptor will maintain the name spaces of P and Q separated and prevent
the two from interacting each other without its mediation. Observe that the
introduction of such an adaptor to connect P and Q has the effect of changing
their communication from synchronous in asynchronous. Indeed, the task of
the adaptor is precisely to adapt P and Q together, not to act as a transparent
communication medium between them.

We conclude this section by sketching the syntax and usage of mappings for
specifying different types of adaptation. (A full example of adaptation will be
described in Sect.5.)

– Multiple action correspondence. While the previous example dealt with one-
to-one correspondences between actions, adaptation may in general require
relating groups of actions of different components. For instance, consider two
components P and Q involved in an authentication procedure. Suppose that
P authenticates itself by sending first its user name and then a password.
Q instead is ready to accept both data in a single shot. Their behaviour
interfaces and the mapping M specifying the required adaptation are:

user!(me). passwd!(pwd). 0 // P
login?(usr, word). 0 // Q

M = {user!(me), passwd!(pwd) <> login?(me,pwd);}

The mapping associates both output actions performed by P to the single
input action performed by Q, indicating also the reordering of parameters to
be performed by the adaptor.

– Actions without a correspondent. Adaptation must also deal with situations
in which an action of a component does not have a correspondent in the
other component. For instance, consider a component P that authenticates
itself (actions usr! and passwd!), asks for the list of files which are present
in a repository (dir! and getdir?), and then deletes a file (delete!). The
repository server Q does not require a login phase, but it rather expects a
password to be sent together with the invocation of each service it provides
(ls? for listing files, and rm? for deleting a file):

user!(me). passwd!(pwd). dir!(). getdir?(list). delete!(file). 0 // P
ls?(password). return!(files). rm?(name, password). 0 // Q

From the viewpoint of Q, authentication concerns are spread over the whole
interaction. Moreover, notice that the parameter me is not requested while
pwd/passwd is used more times by Q.
In order to explicitly represent this conceptual asymmetry among the two
components, and hence to facilitate the task of devising and reasoning about
the high-level specification of a mapping, we have introduced the keyword
none. The actions of a component which do not have a clear correspondent

192 Andrea Bracciali, Antonio Brogi, and Carlos Canal

in the other component may be associated with none. Hence, the following
mapping states that the login phase of P has not correspondence in Q and
also that the parameter pwd must be recorded for subsequent uses.

M = { user!(me),passwd!(pwd) <> none;
dir!() <> ls?(pwd);
getdir?(files) <> return!(files);
delete!(file) <> rm?(file, pwd); }

– Nondeterministic associations between actions. A difficult case for adapta-
tion arises when the execution of a component action may correspond to
different actions to be executed by the other component. Indeed, in general
each component may perform local choices to decide what action to exe-
cute next. In such cases, adaptation should take care of dealing with many
possible combinations of actions independently performed by the two com-
ponents.
In order to feature a high-level style of the specification of the desired adap-
tation, we allow nondeterminism in the adaptor specification. For instance,
suppose a component receiving a file by means of a single action read? while
its counterpart may decide to send an action data!(x) or an end-of-file eof!().
The mapping will be specified by means of two separate rules:

read?(x) <> data?(x);
read?(EOF) <> eof!();

The adaptor derivation process will be then in charge of building an actual
adaptor capable of dealing with all the possible specified situations. Once
more, our goal is to allow the adaptor specification to abstract away from
implementation details, and to leave the burden of dealing with these details
to the (automatic) adaptor construction process. The use of nondeterministic
associations will be illustrated further in the example of Sect.5.

4 Adaptor derivation

In this section we sketch how a concrete adaptor can be automatically generated,
starting from two roles P and Q, and a mapping M. The adaptor derivation is im-
plemented by (an extended version of) the algorithm we developed for checking
the correctness of an open context of components [3]. The goal of the algorithm
is to build a process A such that:

1. P|A|Q is successful (i.e. all traces lead to a successful state, where both P, Q
and A have reduced to 0), and

2. A satisfies the given mapping M, that is, all the action correspondences and
data dependencies specified by M are respected in any trace of P|A|Q.

The algorithm incrementally builds the adaptor A by trying to eliminate pro-
gressively all the possible deadlocks that may occur in the evolution of P|A|Q.
Informally, while the derivation tree of P|A|Q contains a deadlock, the algorithm
extends A with an action α that will trigger one of the deadlock states:

Adapting Components with Mismatching Behaviours 193

– Such action α is chosen so as to match a dual action α on which P or Q are
blocked. Notice that the adaptor is able to match only some of those actions.
For instance, it cannot match an input action α if it has not yet collected
enough information to build a corresponding action α that satisfies the data
dependencies specified in M.

– Since there may be more than one “triggerable” action α, at each step the
algorithm non-deterministically chooses one of them to match, and spawns
an instance of itself for each possible choice. If there is no triggerable action,
then the algorithm (instance) fails.

– Each instance maintains a set D of data acquired by matching output ac-
tions, a set F of actions to be eventually matched so as to respect the
correspondences stated by the rules of the mapping M, and a set L of link
correspondences in order to guarantee the separation of name spaces between
the two roles.

– Each algorithm instance terminates when the derivation tree of P|A|Q does
not contains deadlocks. If the set F of actions to be matched is empty, then
the algorithm instance successfully terminates and it returns the completed
adaptor. It fails otherwise.

The overall algorithm fails if all its instances fail. Failure implies that the
patterns P and Q can not be adapted according to the mapping M. If at least one
of the instances returns an adaptor, the algorithm non-deterministically returns
one of the adaptors found. This non-determinism is due to the non-determinism
naturally present in concurrent systems. The definition of a representative of the
class of the returned adaptors is currently under study: the general case presents
some difficulties since the adaptors for the same patterns may be structurally
much different. For the aims of this paper, it is important to remind that every
returned adaptor makes P|A|Q successful.

For instance, considering again the third example of Sect.3 regarding the file
repository server, the algorithm constructs the following adaptor A:

A = user?(me). passwd?(pwd). dir?(). ls!(pwd).
return?(files). getdir!(files). delete?(file). rm!(file,pwd). 0

It is easy to verify that the composition P|A|Q is deadlock free, and that A satis-
fies the mapping, both in terms of action correspondence and data dependencies
(e.g., A forwards pwd and file to Q only after receiving them from P.)

Moreover, in case of successful adaptor generation, the automatic construc-
tion phase also returns some information on the constructed adaptor. For in-
stance, for the example above, the algorithm notifies that some data (viz., the
value me) will be lost during the mediation, and that the adaptor will repeatedly
send to Q the user password pwd though it is sent only once by P.

5 An Example of Adaptation

Consider a typical FTP transmission in which a file is sent by a server to a
client. The example is simplified to show only the relevant details, while hopefully
keeping its realistic flavour.

194 Andrea Bracciali, Antonio Brogi, and Carlos Canal

In order to make a modular specification of the problem, we will consider
two different interactions between the client and the server, using two roles for
describing their behavior. First, we will describe the behaviour of the client and
the server regarding how to create and close an FTP session, and also how to
request the typical put and get services for transmitting a file. Second, we will
describe the details of file transmission using a separate pair of roles.

Hence, we will have two role-to-role connections, each one specified by a
different mapping, from which the corresponding adaptors will be produced. Let
us consider the first pair of roles. The roles IServer and IClient below describe
the interface of the server and the client regarding the use of FTP commands.

role IServer = {
interface open?(Link ctrl);

user?(Data name, Data password, Link ctrl);
put?(Data filename, Link ctrl);
get?(Data filename, Link ctrl);
close?(Link ctrl);

behaviour open?(ctrl).
user?(name,password,ctrl).

(put?(filename,ctrl). close?(ctrl). 0
+ get?(filename,ctrl). close?(ctrl). 0
+ close?(ctrl) .0) }

The role IServer above indicates how, for opening a session, a socket (rep-
resented by the link ctrl) must be provided. This socket will be used both for
identifying the source of next commands (allowing thus multiple simultaneous
sessions), and also for control communication between the client and the server.
Once the connection is opened, the client must identify itself with a name and
password. Then, put and get commands for file uploading and downloading can
be issued to the server. Finally, the connection is ended with close.

role IClient = {
interface login!(Data usr);

pass!(Data pwd);
getfile!(Data file);
logout!();

behaviour login!(usr).
pass!(pwd).
getfile!(file).
logout!(). 0 }

On the other hand, suppose that the role IClient specifies that the client
will connect with a login message by which it sends its identity, followed by
a its password in a separate message (however no control socket is provided).
Then, the client will ask for a certain file, and finally logs out.

It is worth observing that, in spite of the different behaviours of the two
components, their adaptation can be simply specified by the mapping:

M = { login!(usr), pass!(pwd) <> open?(new ctrl), user?(usr,pwd,ctrl);
getfile!(file) <> get?(file,ctrl);
logout!() <> close?(ctrl); }

Adapting Components with Mismatching Behaviours 195

The first rule of M establishes the intended correspondence between two pairs of
actions of the components. The mapping also exploits the use of action parame-
ters to specify data dependencies among different actions of the components. In
particular the ctrl parameter is employed in all the three rules to specify the
needed adaptation due to the fact that the client does not specify the control
socket in its protocol. The special keyword new in the first rule is used to specify
the need for the adaptor to create a new name to match the server open? input
action. As shown in Section 4, this mapping will produce the suitable adaptor:

A = login?(usr). pass?(pwd). (ctrl) open!(ctrl). user!(usr,pwd,ctrl).
getfile?(file). get!(file,ctrl). logout?(). close!(crtl). 0

which allow both components to interact successfully. Let us consider now how
a file is transmitted once a get command is issued by the client. Typically,
the server will create a separate thread (daemon) for the transmission of the
file. Accordingly, we will use another pair of roles, namely IGetDaemon and
IGettingFile, for representing this facet of the interaction between client and
server, respectively:

role IGettingFile = {
interface read?(Data x);

break!();

behaviour read?(x). 0 + tau. break!(). 0 }

role IGetDaemon = {
interface ctrl!(Link data, Link eof) >

data!(Data x),
eof!();

behaviour (data,eof) ctrl!(data,eof).
(tau. data!(x). 0 + tau. eof!(). 0) }

The differences between the two roles are the following:

– Server action ctrl! does not have a correspondent in the client, reflecting
the fact that while the server creates specific links for each file transmission,
the client uses fixed, predefined links for the same purpose. Hence, a suitable
mapping rule for this situation is:

none <> ctrl!(data,eof);

– The action for reading each piece of the file is called read? in the client,
while the corresponding action in the server is data!. This mismatch can be
easily solved with the mapping rule:

read?(x) <> data!(x);

– The server may indicate at any moment the end of the file being transmitted
by sending an eof!(), but the client does not have a corresponding message.
This situation can be dealt with by using a special value in message read?,
thus allowing the client protocol to end:

read?(EOF) <> eof!();

196 Andrea Bracciali, Antonio Brogi, and Carlos Canal

– The client can autonomously decide (because of its local choice) to break the
transmission at any moment by sending a break!() message. This case is
more difficult to adapt, since the server and the adaptor might have already
engaged themselves in a pair of complementary data actions. This would
violate the one-to-one correspondence between actions read? and data! ex-
pressed by the second rule of the mapping (and no adaptor could be pro-
duced). We can solve this problem by stating also rules for mapping a client
break!() to the actions read! and eof! of the server. Hence, the whole
mapping would be:

M = { none <> ctrl!(data,eof);
read?(x) <> data!(x);
read?(EOF) <> eof!();
break!() <> data!(y);
break!() <> eof!(); }

Notice that the above mapping specifies action correspondences in a nonde-
terministic way. For instance, the last two rules state that the execution of the
break! action may correspond to either a data! action or to a eof! action on
the server side. Similarly, the second and fourth rule specify that the execution
of a data! output operation by the server may match either a read? or a break!
operation autonomously performed by the client.

It is important to observe that allowing nondeterministic correspondences in
the mapping features a high-level style of the specification of the desired adapta-
tion. While the mapping simply lists a number of possible action correspondences
that may arise at run-time, the adaptor derivation process will be in charge of
devising the actual adaptor able to suitably deal with all the possible specified
situations. The adaptor produced from the above mapping is:

A = ctrl?(data,eof). (data?(x). (read!(x). 0 + break?(). 0)
+ eof?(). (read!(EOF). 0 + break?(). 0)
+ break?(). (data?(x). 0 + eof?(). 0))

6 Concluding Remarks

Several authors have proposed to extend current IDLs in order to deal with
behavioural aspects of component interfaces. The use of FSMs to describe the
behaviour of software components is proposed for instance in [9,20,26,31]. The
main advantage of FSMs is that their simplicity supports a simple and efficient
verification of protocol compatibility. On the other hand, such a simplicity is a
severe expressiveness bound for modelling complex open distributed systems.

Process algebras feature more expressive descriptions of protocols, enable
more sophisticated analysis of concurrent systems [1,24,25], and support system
simulation and formal derivation of safety and liveness properties. In particular,
the π-calculus, differently from FSMs and other algebras like CCS, can model
some relevant features for component-based open systems, like dynamic creation
of new processes, dynamic reorganization of network topology (mobility), and
local and global choices. The usefulness of π-calculus has been illustrated for

Adapting Components with Mismatching Behaviours 197

describing component models like COM [13] and CORBA [16], and architecture
description languages like Darwin [19] and LEDA [6].

However, the main drawback of using process algebras for software specifica-
tion is related to the inherent complexity of the analysis. In order to manage this
complexity, the previous work of the authors has described the use of modular
and partial specifications, by projecting behaviour both over space (roles) [7] and
over time (finite interaction patterns) [3]. The calculus presented in this paper
preserves most of the above mentioned features.

A general discussion of the issues of component interconnection, mismatch
and adaptation is reported in [2,12,14], while formal approaches to detecting in-
teraction mismatches are presented for instance in [1,7,11]. The problem of soft-
ware adaptation was specifically addressed by the work of Yellin and Strom [31],
which constitutes the starting point for our work. They use finite state grammars
to specify interaction protocols between components, to define a relation of com-
patibility, and to address the task of (semi)automatic adaptor generation. Some
significant limitations of their approach are related with the expressiveness of the
notation used. For instance, there is no possibility of representing local choices,
parallel composition of behaviours, or the creation of new processes. Further-
more, the architecture of the systems being described is static, and they do not
deal with issues such as reorganizing the communication topology of systems, a
possibility which immediately becomes available when using the π-calculus. In
addition, the asymmetric meaning they give to input and output actions makes
it necessary the use of ex machina arbitrators for controlling system evolution.

Another closely related work is that of Reussner [28], who proposes the ex-
tension of interfaces with FSMs in order to check correct composition and also
to adapt non-compatible components. Protocols are divided into two views: the
services the component offers, and those it requires from its environment. One
limitation of the work is that these two views must be orthogonal, i.e. each time
a service is invoked in a component it results the same sequence of external
invocations, while this usually depends on the internal state of the component.
It should be also noticed that in Reussner’s protocols there is no indication of
action signs, and only method invocation is represented, while our approach
involves a more general setting in which any dialogue or protocol between com-
ponents can be specified. Finally, adaptation is considered in this work only as
restriction of behaviour; if the environment does not offer all the resources re-
quired, the component is restricted to offer a subset of its services, but no other
forms of adaptation (like name translation, or treatment of protocol mismatch)
is considered.

The main aim of this paper is to contribute to the definition of a method-
ology for the automatic development of adaptors capable of solving behavioural
mismatches between heterogeneous interacting components.

Our work falls in the research stream that advocates the application of formal
methods, in particular of process algebras, to describe the interactive behaviour
of software systems. As shown for instance in [3,7], the adoption of π-calculus
to extend component interfaces paves the way for the automatic verification

198 Andrea Bracciali, Antonio Brogi, and Carlos Canal

of properties of interacting systems, such as the compatibility of the protocols
followed by the components of the system.

While the proposed methodology lays a foundation for the automatic de-
velopment of adaptors, we foresee several interesting further developments. The
first we intend to address is the formal verification of properties of the generated
adaptor, such as security properties, as suggested in [20,31]. In practice, such a
verification would allow an application to check that its security policy will not
be spoiled by the inclusion of a new (adapted) component.

References

1. R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans.
on Software Engineering and Methodology, 6(3):213–49, 1997.

2. J. Bosch. Adapting object-oriented components. In 2nd. International Workshop
on Component-Oriented Programming (WCOP’97), pages 13–22. Turku Centre for
Computer Science, September 1997.

3. A. Bracciali, A. Brogi, and F. Turini. Coordinating interaction patterns. In ACM
Symposium on Applied Computing (SAC’2001). ACM Press, 2001.

4. A.W. Brown and H.C. Wallnau. The current state of CBSE. IEEE Software, 1998.
5. G. H. Campbell. Adaptable components. In ICSE 1999, pages 685 – 686. IEEE
Press, 1999.

6. C. Canal, E. Pimentel, and J. M. Troya. Specification and refinement of dynamic
software architectures. In Software Architecture, pages 107–126. Kluwer, 1999.

7. C. Canal, E. Pimentel, and J. M. Troya. Compatibility and inheritance in software
architectures. Science of Computer Programming, 41:105–138, 2001.

8. D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.
9. I. Cho, J. McGregor, and L. Krause. A protocol-based approach to specifying
interoperability between objects. In Proceedings of TOOLS’26, pages 84–96. IEEE
Press, 1998.

10. E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In A Decade of concurrency–Reflections and Perspectives, Lecture Notes
in Computer Science, 803. Springer, 1994.

11. D. Compare, P. Inverardi, and A. L. Wolf. Uncovering architectural mismatch in
component behavior. Science of Computer Programming, 33(2):101–131, 1999.

12. S. Ducasse and T. Richner. Executable connectors: Towards reusable design el-
ements. In ACM Foundations of Software Engineering (ESEC/FSE’97), number
1301 in LNCS. Springer, 1997.

13. L.M.G. Feijs. Modelling Microsof COM using π-calculus. In Formal Methods’99,
number 1709 in LNCS, pages 1343–1363. Springer, 1999.

14. D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so
hard. IEEE Software, 12(6):17–26, 1995.

15. D. Garlan and B. Schmerl. Component-based software engineering in pervasive
computing environments. In 4th ICSE Workshop on Component-Based Software
Engineering, 2001.

16. M. Gaspari and G. Zavattaro. A process algebraic specification of the new asyn-
chronous CORBA messaging service. In Proceedings of ECOOP’99, number 1628
in LNCS, pages 495–518. Springer, 1999.

17. George T. Heineman. An evaluation of component adaptation techniques. In 2nd
ICSE Workshop on Component-Based Software Engineering, 1999.

Adapting Components with Mismatching Behaviours 199

18. S. Hissam K. Wallnau and R. Seacord. Building Systems from Commercial Com-
ponents. The SEI Series in Software Engineering, 2001.

19. J. Magee, S. Eisenbach, and J. Kramer. Modeling darwin in the π-calculus. In
Theory and Practice in Distributed Systems, number 938 in LNCS, pages 133–152.
Springer, 1995.

20. J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software ar-
chitectures. In Software Architecture, pages 35–49. Kluwer, 1999.

21. Microsoft Corporation. .NET Programming the Web.
http://msdn.microsoft.com.

22. R. Milner. The polyadic π-calculus: a tutorial. Technical report, University of Ed-
inburgh, Octubre 1991.

23. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Journal of
Information and Computation, 100:1–77, 1992.

24. A. P. Moore, J. E. Klinker, and D. M. Mihelcic. How to construct formal argu-
ments that persuade certifiers. In Industrial-Strength Formal Methods in Practice.
Springer, 1999.

25. E. Najm, A. Nimour, and JB. Stefani. Infinite types for distributed objects in-
terfaces. In Proceedings of the third IFIP conference on Formal Methods for Open
Object-based Distributed Systems - FMOODS’99. Kluwer, 1999.

26. O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis,
editors, Object-Oriented Software Composition. Prentice Hall, 1995.

27. OMG. The Common Object Request Broker: Architecture and Specification. Object
Management Group. http://www.omg.org.

28. R. H. Reussner. Enhanced component interfaces to support dynamic adaption and
extension. In 34th Hawaiin International Conference on System Sciences. IEEE
Press, 2001.

29. Sun Microsystems. JavaBeans API specification. http://java.sun.com.
30. A. Vallecillo, J. Hernández, and J. M. Troya. New issues in object interoperability.

In Object-Oriented Technology: ECOOP 2000 Workshop Reader, number 1964 in
LNCS, pages 256–269. Springer, 2000.

31. D. M. Yellin and R. E. Strom. Protocol specifications and components adaptors.
ACM Trans. on Programming Languages and Systems, 19(2):292–333, 1997.

	1 Introduction
	2 Component Interfaces
	3 Adaptor Specification
	4 Adaptor derivation
	5 An Example of Adaptation
	6 Concluding Remarks
	References

