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Abstract. Customization often corresponds to a simple functional cus-
tomization, restricting the functionalities of a component to some con-
figuration values, without performing any code optimization. However,
when resources are limited, as in embedded systems, customization needs
to be pushed to code customization. This form of customization usually
requires one to program low-level and intricate transformations.

This paper proposes a declarative approach to expressing customiza-
tion properties of components. The declarations enable the developer to
focus on what to customize in a component, as opposed to how to cus-
tomize it. Customization transformations are automatically determined
by compiling both the declarations and the component code; this process
produces a customizable component. Such a component is then ready to
be custom-fitted to any application.

Besides the declaration compiler, we have developed a graphical envi-
ronment both to assist the component developer in the creation of a
customizable component, and to enable a component user to tailor a
component to a given application.

1 Introduction

Re-usability of software components is a key concern of most software architec-
tures. An important dimension in re-usability is the ability to customize a com-
ponent for a given context. In fact, some software architectures offer a mechanism
to deal specifically with customization.

JavaBeans [15] provide such a mechanism. When developing a software com-
ponent (i.e., a bean), a programmer can explicitly declare some variables as being
the parameters (sometimes named properties) of the component customization.
The component’s customization parameters represent a precise interface that
enables it to be tailored to a target application. Unfortunately, JavaBeans is
limited to functional customization, i.e., it restricts the behavior of a compo-
nent but does not perform any code customization. Code customization aims to
exploit the customization values to produce a smaller and faster program by
reducing its generality. Such a process is particularly needed in an area such as
embedded systems.

Traditionally, the scope of code customization is limited to program frag-
ments, not software components. Code customization is commonly programmed
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by low-level directives, such as #ifdef in the C language [6]. Programs, sprin-
kled with directives, are transformed by a preprocessor prior to compilation. The
eCos configurable OS is a recent, large scale illustration of this approach [5]. An-
other well-known approach to code customization is the template mechanism of
the C++ language. C++ templates were originally designed to support generic
programming. But it was realized that this mechanism could also express com-
plex computations to be performed at compile time. This capability has been
used intensively to design efficient scientific libraries [T418].

Relying on the programmer to code how to customize a program, as pro-
posed by current approaches, poses a number of negative consequences for a
software system: (i) The development process is more error prone because code
customization requires the programmer to intertwine two levels of computation
— normal computation and code generation; (ii) Testing and debugging are more
difficult because tools rarely deal properly with programs that generate pro-
grams; (ili) Programs are less readable and more difficult to maintain because
they are cluttered with directives.

Also, customizability is limited by the extent to which the programmer is
willing to explicitly encode the necessary transformations. For example, in the
C++ template approach, not only does the programmer have to implement the
generic program but she also has to introduce all the needed versions that can be
partially computed at compile time. This situation is illustrated the appendix.

In this paper, we describe the development and deployment of customizable
components. Our approach is based on a declarative language to specify what can
be customized in a component as opposed to how to customize it. This approach
consists of three main steps shown in Figure[I]. In step 1, the programmer groups
customization declarations in a module, on the side, as the component code is
being developed. The declarations define the customization parameters of a com-
ponent. In step 2, once the components and their associated declaration modules
are developed, they are compiled to create a customizable component. This com-
pilation process carries out several analyses to determine how to customize the
component and to verify that the customization process will be performed as
declared. In step 3, a transformation engine takes as input both the customiz-
able component and the user-provided customization values and automatically
generates the customized component. Ultimately, the customized component is
integrated in a complete application.

We have designed a declaration language in the context of the C language and
implemented the corresponding compiler. We have also developed a graphical
environment both to assist the component programmer in the process of making
components customizable and to enable the component user to create customized
components.

We illustrate our approach with the development of a customizable data
encoder for Forward Error Correction (FEC) [8]. FEC prevents losses and er-
rors by transmitting redundant information during digital communications (e.g.,
modems and wireless communications). Because transmission errors are inevit-
able during data transfer, FEC is a critical operation: it enables maximal data
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Fig. 1. Developing and deploying customizable components

transfer, using minimum bandwidth, while maintaining an acceptable quality of
transmission. A FEC encoder can be customized according to four properties:
the encoding method (e.g., parity-bit, cyclic redundancy check), the size of the
data block to be encoded, the required size of the resulting encoded data and
the generator to produce the redundant data (e.g., a vector, a matrix).

The rest of this paper is as follows. Section[2 details our approach and shows
how our declaration language enables a developer to express the customization
parameters of a component. Section Bl describes how customizable components
are created. Section Hlexplains the process of generating customized components.
Section [Blcompares the performance of customized encoders with both handwrit-
ten and generic encoders. Finally, Section [f] concludes and presents future work.

2 Developing Customizable Components

Typically, to make a component customizable, the programmer introduces pa-
rameters and some dispatching code to select appropriate behaviors and features.
This parameterization also results in the definition of data structures or/and
global variables.

Just as the component developer has to reason about the types of the data
processed by the code, she should also reason about the customization properties
of these data. That is, once the customization parameters have been determined,
she should take particular care in how these parameters are used throughout the
code.

The developer usually has in mind some customization scenario which could
apply to a particular component. Indeed, when customizing a component, gener-
icity can often be eliminated when the usage context of the component (i.e.,
the set of the customization values) is given. To exploit this scenario, current
strategies amount to programming how the component should be customized.
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In contrast, we provide the developer with a high-level declarative language to
specify what to customize.

2.1 Declaration Module

Following our approach, the programmer specifies customization scenarios in a
module as a component is being developed. Because these declarations are later
compiled and checked to ensure the desired customization, the programmer can
write generic code without sacrificing efficiency. The customization scenario of
a component defines the context in which the customization of this component
is guaranteed. Since the customization aspects of a component are defined in a
separate file, they do not clutter the code and can be easily modified. Further-
more, a declaration module allows an application developer to have a readable
record of the customization capabilities of a component.

2.2 Intra-module Declarations

Declarations are associated with a given source program and describe the cus-
tomization scenarios of specific program entities (global variables, parameterized
procedures, data structures). These entities represent genericity in the compo-
nent. Declarations are grouped into a module; they refer to program fragments
that form a customizable software component. A program entity that is a cus-
tomization parameter is said to static, otherwise it is dynamic.

Let us illustrate our approach with a component of our FEC software system.
We consider the multmat component which multiplies a vector by a matrix.
Intuitively, the vector corresponds to the data to encode, and the matrix to the
generator of the redundant data. This matrix (both size and values) is a natural
customization parameter because it can be noted that the matrix is fixed for
a given encoder. The result of the multiplication should be stored in another
vector. Pushing further the analysis, one may observe that more flexibility can
be obtain by introducing an index to define where the calculated data are to
be inserted in the result vector. Although, this index is not a parameter of the
FEC component, it is a good candidate to be a customization parameter of the
multmat component. The value of this parameter can be set by the callers of this
component. Given these observations, the multmat component is implemented
as follows.

void
multMat (int *v_in, int k, int n, int **matrix, int *v_out, int v_out_ind)
{
int tmp, i, j;
for(i = 0; i < n; i++)
{
tmp = 0;
for(j = 0; j < k; j++)
tmp "= v_in[j] & matrix[j][i];
v_out[v_out_ind + i] = tmp;
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Based on our analysis, a customization scenario thus declares the following
parameters as static: the size of both the vector and the matrix, the matrix
elements and the index in the output vector. Customizing multMat for some
arbitrarily chosen values produces the following procedure.

void

multMat (int *v_in, int *v_out)

{
v_out[0] = 0 ~ (v_in[0] & 1) ~ (v_in[1] & 0);
v_out[1] = 0 = (v_in[0] & 0) ~ (v_in[1] & 1);
v_out[2] = 0 ~ (v_in[0] & 0) ~ (v_in[1] & 1);

}

To achieve this kind of customization, the component developer writes the
following module.

Module multmat {
Defines {
From multmat.c {
BtmultMat :: intern multMat (D(int[]) v_in, S(int) k, S(int) n,
S(int[]1[]) matrix, D(int[]) v_out,
S(int) v_out_ind);
}
}
Exports {BtmultMat;}
}

This declaration module, named multmat, is associated with the source file
multmat.c. It defines a customization scenario, BtmultMat, which states that the
procedure multMat can be customized if all its arguments but v_in and v_out
are static (i.e., noted S). This declaration includes the keyword intern which
indicates that the source code of the procedure is available for transformation.
Alternatively, a procedure can be extern if it is to be handled as a primitive,
that is, it can be invoked when all its arguments are static, otherwise the call
needs to be reconstructed.

2.3 Inter-module Declarations

Like any module system, our language for declaration modules provides import
and export mechanisms. When writing a module, scenarios from another module
may be imported. Similarly, exporting scenarios make them accessible to other
modules.

Let us illustrate these mechanisms with the description of a component im-
plementing a linear block coding (LBC) encoder with a systematic matrix. This
component provides a procedure systLBC that takes two inputs, a vector and
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a matrix, and computes the encoded vector. This computation simply consists
of both copying its input vector in the result vector and adding at the end of
the vector the redundant data obtained through the multiplication of the input
vector and the matrix. Intuitively, the customization scenario for the procedure
systLBC is very similar to the one declared for the procedure multMat, that is,
the matrix is a customization parameter. Furthermore, one can notice that if the
procedure multMat is called to compute the redundant data, this context satisfies
the BtmultMat scenario. Thus, the implementation of the procedure systLBC is

#include "multmat.h"
void
systLBC(int *v_in, int k, int n, int **matrix, int *v_out)
{

int i;

for(i = 0; i < k; i++)

v_out[i] = v_int[i];
multMat(v_int, k, n - k, matrix, v_out, k);

}

and the declaration module for LBC encoding with a systematic matrix is
defined as follows.

Module lin_b_code_sys {
Imports {
From multmat.mdl {BtmultMat;l}}
Defines {
From lin_b_code_sys.c {
BtsystLBC :: intern systLBC(D(int[]) v_in, S(int) k, S(int) n,
S(int[]1[]) matrix, D(int[]) v_out)
{needs{BtmultMat;}};
}
}
Exports {BtsystLBC;}
}

The keyword needs indicates that the invocation of multMat in systLBC sat-
isfies the imported scenario BtmultMat declared in the module multmat.mdl. In
fact, a scenario plays the role of a customization contract which refers to a pre-
cisely defined customization behavior. The customization context requirements
specified by this contract are enforced by our analysis phase.

Once all the subcomponents of the encoder component and their associated
declaration modules have been developed, they must be compiled to create a
customizable component.

3 Making Customizable Components

Like any compiler, the module compiler processes the declarations to detect syn-
tactic or semantic errors. It then verifies that the declarations are coherent with
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the C source code of the component. For example, it checks that customiza-
tion scenarios match the type signatures of the associated C entities. The next
step is the actual analysis of the component source code. Our analysis phase is
automatically configured using information extracted during the module compi-
lation, allowing the appropriate analyses to be carried out. The different analyses
determine how to customize the component. Meanwhile, verifications are made
to guarantee that this customization process will be coherent with the declared
customization scenarios. A customization mismatch can either be intra-module
or inter-module. In either case, it is caused by a program entity that is used in
the wrong context. For example, a global variable that is declared static might
incorrectly be assigned a dynamic value. In fact, solving a customization mis-
match is similar to handling type problems. Our analysis phase provides the
programmer with various aids to track these errors.

To assist the component programmer further, we have built a graphical en-
vironment, shown in Figure[2. It consists of a customizable component browser
(bottom right corner), a component dependency visualizer (bottom left corner),
and a customization scenario browser (top). The developer may use the com-
ponent browser to access existing modules. When a module is selected, its cus-

EEE]
Btencode encode { [ v_in et i enc, TR0 v_out ) encode
Data
code struct code { [l «; [ n; EHSENEN tvp-; IEENEENEN moati- EREEEN ort 3 m

Code lin_b_code_sys.
- BT v (S <, SN =2 )
- Biencode_crc encode_cre -wnrd, - k, - n, - poly, - result )
oy BILBC LBC ( [WENEH vector, [ ¢, WG n, NEENENER matr<, IR resutt ) parity_hit
Data

gt Code

\Bifnlithdat muithiat ( NI vector, N v, S n.
| BApEtBR| parity_bit ¢ [ ), SR vector, R resu
2| systLBC { -vectur -k - n,

lin_b_code

Directory: fimp/encoder

Madules Scenarios

\BifUIRAEL muithat ( [TEE vector, [ «. I n.
- RS <o cov N o O | T

— parity_hit

—lin_b_code

7\\hsmng Make Customizable

—encode_crc
—code_cony

parity_bit:
Btparity_bit

tModule Editor
Customization Sheet Editor

Close | Guit |

Fig. 2. Component developer interface



8 Anne-Frangoise Le Meur, Charles Consel, and Benoit Escrig

tomization scenarios are listed. For a given scenario, the corresponding hierarchy
of components is displayed by the component dependency visualizer. This tool
allows the developer to rapidly verify whether the component dependencies are
as expected. Finer grain information are provided by the customization scenario
browser: it shows the tree of sub-scenarios corresponding to a given scenario. The
dependencies of a scenario consist of two parts: data and code. The data part
groups the scenarios associated with data structures and global variables. The
code part lists the required scenarios that are associated with procedures. Start-
ing from the selected component scenario, the developer can recursively visit
all the scenarios that are involved. Color-coded information help the developer
to see how the customization parameters flow through all the scenarios. Once
the developer is satisfied with the declarations, she can make the component
customizable for the selected scenario. This action triggers the analysis phase.
Finally to package the customizable component, the programmer uses a cus-
tomization sheet editor (see Figure ) through which she gives a high-level de-
scription of the customization properties and defines how the user should enter
the customization values: they might be typed in, or obtained through a proce-
dure call when dealing with large values. Once the component has been made
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customizable, it can be distributed to component users to be custom-fitted for
a particular application.

4 Generating Customized Components

Generating a customized component is performed by a transformation engine
that takes two inputs: the customizable component and the customization val-
ues. As shown in Figure [4, the user may enter these values by filling in the
customization sheet generated by the component developer. The customization
process may be repeated as many times as there are customization values, creat-
ing each time a specific customized component. Once customized, the component
is ready to be integrated in an application.

The transformation engine we use is a program specializer named Tempo [2/3].
Program specialization is an automatic technique that propagates information
about a program’s inputs throughout the program and performs the computa-
tions which rely on the available inputs. In our context, the propagated infor-
mation is the component’s customization parameters. Program specializers have
been implemented for languages such as C [II3] and Java [I3], and have been
successfully used for a large variety of realistic applications in domains such as
operating systems [I0JI2], scientific algorithms [7], graphics programs [I1] and
software engineering [IJI6ITT].

However using a specializer is very complicated if one is not an expert in the
domain. Furthermore, specialization was until now only applied to manually-
isolated code fragments and offered no support for component specialization.
Our approach enables component programmers to benefit from the power of a
specializer engine without having to deal with its intricacies.
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5 Experimental Study

We have developed a customizable FEC component that covers several encod-
ing algorithms: parity-bit (PB), cyclic redundancy check (CRC), convolutional
coding (CONV), and linear block coding (LBC) for both systematic and non-
systematic matrices. To assess the performance of the customized encoders, we
have compared their execution time with both the execution time of manually
written encoders (e.g., hand-customized for a dedicated encoder configuration)
and the execution time of the generic encoder.

In practice, FEC encoders are used on data of widely varying sizes, depend-
ing on the application. Thus, we have tested our encoders on very different
sizes of data blocks, corresponding to real situations. For each encoder, we have
measured the time spent to encode one thousand data segments. Our measure-
ments, presented in Figure B] were obtained using a Sun UltraSPARC 1 with
128 megabytes of main memory and 16 kilobytes of instruction and data cache,
running SunOS version 5.7.

The numbers show that the encoders generated through customization are at
least as efficient as the encoders manually written. The customized LBC encoder
is even 4 times faster than the manually written LBC encoder (see graph [BHd).
This speedup is mainly due to code optimization, like loop unrolling and constant
folding, performed by our customization process but that are tedious to perform
by hand. As expected, the hand-written encoders are more efficient than the
generic one. However, the difference is negligible in the CRC case shown in the
graph BH. This is due to the fact that the inefficiencies in the generic encoder
are canceled by the cost of the other calculations that are performed.

We mentioned above that loop unrolling operations were performed. How-
ever, it may happen that such transformation is not desired when the number of
loop iterations is high. To address such a situation, our declaration language pro-
vides a means to easily express constraints on the property value to propagate,
and thus to avoid loop unrolling if needed.

6 Conclusion and Future Work

We have presented an approach that provides developers with a language and an
environment to create customizable components. They can then be customized
for specific applications. Our approach relies on a declaration language that en-
ables the component programmer to specify the customization properties of a
software component. The declarations consist of a collection of customization
scenarios that are associated with the program entities. The scenarios of a com-
ponent do not clutter the code; they are defined aside in a module.
Customizable components are created from the declarations and the com-
ponent code through a compilation process. This phase mainly corresponds
to carrying out several analyses to automatically determine how to customize
the component accordingly to the declared customization values. Once gener-
ated, customizable components can be distributed to be tailored by application
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builders. The component customization values are set through a customization
sheet. Besides the language compiler, we have developed a set of tools to assist
the developer at each step of the process.

We have applied our approach to create a customizable forward error correc-
tion encoder. The customized components generated for various usage contexts
have exhibited performance comparable to, or better than manually customized
code.

We are now working on a larger scale experiment where our technology is
applied to build audio applications from customizable components such as filters,
buffers, etc. In the near future, we also plan to extend our approach to provide
dynamic re-customization capabilities.
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Appendix

Let us consider the function power which raises base to the power of expon. The
usual C code of this function looks like:

int power(int base, int expon)
{
int accum = 1;
while (expon > 0) {
accum *= base;
expon--;
}
return(accum) ;

}

Now let us suppose that the value of expon is known at compilation time. If
the value of expon is not too large, it is thus interesting to optimize the code by
unrolling the loop that depends on it.

Using our approach, the programmer writes the following customization sce-
nario:

Btpower :: power(D(int) base, D(int) expon)
{ constraint{ expon : expon < 10; } };
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which enables the loop to be unrolled if the value of expon is less than 10.
Thus, once customized, say for a value of expon equals to 3, the code of the
power function is:

int power(int base)
{

return basexbasexbase;

}

In C++, if the programmer decides that it is worth to unroll the loop in
some cases, she must write, besides the generic code (which looks very much like
the C version), yet another implementation of the power function. This other
implementation explicitly tells the compiler to perform the desired transforma-
tions. In this situation, the “trick” is to use the compiler to recursively inline
the function power. Here is how to do it:

template<int expon>
inline int power(const int& base)
{ return power<expon-1>(base) * base; }

template<>
inline int power<1>(((const int& base)
{ return base; }

template<>
inline int power<0>(const int& base)
{ return 1;}

This way, the call power<3>(base) is successively transformed by the com-
piler as follows: power<3>(base), power<2>(base) * base, power<i>(base) *
base * base, and finally base * base * base.

There exist numerous examples of such situations where the programmer
has to write the code to enable the compiler to perform the needed transforma-
tions [4].

In our approach, the programmer has just to declare what to optimize and
does not have to worry about how to implement the optimization.
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