Combining Multiple Models
with Meta Decision Trees

Ljupco Todorovski and Saso Dzeroski

Department of Intelligent Systems, Jozef Stefan Institute
Jamova 39, 1000 Ljubljana, Slovenia
Ljupco.Todorovski@ijs.si, Saso.Dzeroski@ijs.si

Abstract. The paper introduces meta decision trees (MDTs), a novel
method for combining multiple models. Instead of giving a prediction,
MDT leaves specify which model should be used to obtain a prediction.
We present an algorithm for learning MDT's based on the C4.5 algorithm
for learning ordinary decision trees (ODTs). An extensive experimental
evaluation of the new algorithm is performed on twenty-one data sets,
combining models generated by five learning algorithms: two algorithms
for learning decision trees, a rule learning algorithm, a nearest neighbor
algorithm and a naive Bayes algorithm. In terms of performance, MDT's
combine models better than voting and stacking with ODTs. In addition,
MDTs are much more concise than ODT's used for stacking and are thus
a step towards comprehensible combination of multiple models.

1 Introduction

The task of combining multiple models can be broken down into two subtasks.
The first is the generation of a diverse set of base-level models. Once the base-
level models have been generated, the issue of combination of their predictions
arises. This is the second subtask. The task of multiple model combination is
the focus of this paper.

Several approaches for generating base-level models have been developed.
One way is to generate multiple models with different learning algorithms for
heterogeneous model representations as in [I0]]. Another way is to use a single
learning algorithm with different initial settings. Multiple models can also be
generated by applying a single base-level learning algorithm to different versions
of learning data. Different methods for manipulating the set of learning examples
can be used, such as random sampling with replacement (also called bootstrap
aggregation) in bagging [2] or re-weighting misclassified training examples in
boosting [6].

The techniques for combining the predictions obtained from the base-level
models can be clustered in three combining paradigms: voting (used in bagging
and boosting), stacking [I5] and cascading [7]. In a voting scheme, each base-level
model gives a vote for its prediction. The prediction receiving the most votes is
the final prediction. In stacking, a learning algorithm is used to induce a meta-
level model for combining the predictions of the base-level models. Cascading is

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 54-54] 2000.
© Springer-Verlag Berlin Heidelberg 2000

Combining Multiple Models with Meta Decision Trees 55

an iterative process of combining classifiers: at each iteration, the learning data
set is extended with the predictions obtained in the previous iteration.

This paper introduces meta decision trees (MDTs), a novel method for com-
bining multiple models. The difference between meta and ordinary decision trees
(ODTs) is that MDT leaves specify which base-level model should be used, in-
stead of predicting the class value directly. The decisions are made based on the
class probability distributions for the given example predicted by the base-level
models. The method is general in the sense that it can be used to combine a
set of predictions of base-level models, independently of how they are generated.
We developed MLC4.5, a modification of C4.5 [12], for inducing meta decision
trees. The description of the method is given in Section [2

The performance of the proposed method is evaluated on a collection of
twenty-one data sets. We combine models generated by five learning algorithms:
two tree-learning algorithms C4.5 [I2] and LTree [§], the rule-learning algorithm
CN2 [4], the k-nearest neighbor (k-NN) algorithm [14] and a modification of
the naive Bayes algorithm [9]. In the experiments, we compare the performance
of stacking with MDTs to the performance of stacking with ODTs. We also
compare MDTs with two voting schemes. Section Blreports on the experimental
methodology and results. The presented work is put in the context of previous
work on combining multiple models in Section[d Section [B] presents conclusions
based on the empirical evaluation along with directions for further work.

2 Meta Decision Trees

2.1 What Are Meta Decision Trees

The structure of a meta decision tree is identical to the structure of an ordinary
decision tree. A decision (inner) node specifies a test to be carried out on a
single attribute value and each outcome of the test has its own branch leading
to the appropriate subtree. In a leaf node, a MDT predicts which model is to be
used for classification of an example, instead of predicting the class value of the
example directly like an ODT.

In the process of inducing meta decision trees two types of attributes are
used. Ordinary attributes are used in the decision (inner) nodes of the MDT.
The role of these attributes is identical to the role of the attributes used for
inducing ordinary decision trees. Class attributes are used in the leaf nodes only.
Each base-level model has its class attribute: the values of the class attribute
are equal to the predictions obtained by the base-level model. Thus, the class
attribute assigned to the leaf node of the MDT decides which base-level model
should be used for prediction.

Attributes in MDT's are properties of the class probability distributions pre-
dicted for a given example by the base-level models. Namely, the most general
form of a prediction returned by a classification model for a given example is a
probability distribution over the possible classes. Let the base-level classifier C
generated with learning algorithm £ return the probability distribution p,(e),

56 L. Todorovski and S. Dzeroski

when applied to example e: pe(e) = ((Ll)(e),p(g)(e), . ,p(Lm)(e))7 where m is
the number of classes. The k-th element in this vector denotes the probability
that the example e belongs to class ¢ as estimated by the model C,. The class
¢, with the highest class probability pg) is predicted by base-level classifier C,.

The following three properties of class probability distributions are used as
attributes in MDTs. First, £ maxprob is the highest class probability (i.e. the
probability of the predicted class):

L_maxprob = rﬁ%{ p(Lk) (e).

Next, L£_entropy is the entropy of the class probability distribution:

m
L_entropy = — Zp(ﬁk)(e) -log, p(gk)(e)~
k=1

Finally, the Lyeignt is the fraction of the training examples used to estimate
the class distribution for example e. For decision trees, it is the weight of the
examples in the leaf node used to classify the example. For rules, it is the weight
of the examples covered by the rule(s) which was used to classify the example.
This property does not apply to the nearest neighbor and naive Bayes classifiers.

Table 1. A meta decision tree learned in the balance domain.

ltree_entropy <= 0.37699:

| knn_maxprob <= 0.75079: LTREE (%)

| knn maxprob > 0.75079: KNN

ltree_entropy > 0.37699:

knn_entropy > 1.49841: KNN

knn_entropy <= 1.49841:

| c45_weight <= 0.11388: LTREE

| c45_weight > 0.11388:

| | c45_maxprob <= 0.95: LTREE
|

I
I
I
I
I
| | c45_maxprob > 0.95: C45

Both the entropy and the maximum probability of a probability distribution
can be interpreted as estimates of the confidence of the model in its prediction.
If the probability distribution returned is highly spread, the maximum probabi-
lity will be low and the entropy will be high, indicating the model is not very
confident in its prediction. On the other hand, if the probability distribution
returned is highly focussed, the maximum probability is high and the entropy
low, thus indicating the model is confident in its prediction. Finally, the weight
quantifies how reliable the model’s estimate of its own confidence is: the higher
the weight, the more reliable the estimate.

An example MDT is given in Table [[I The leaf denoted by (*) specifies
that the LTree model is to be used to classify an example, if the entropy of the

Combining Multiple Models with Meta Decision Trees 57

probability distribution returned by it is smaller than 0.38 and the maximum
probability in the probability distribution returned by the k-NN model is smaller
than 0.75. In sum, if the LTree model is confident in its prediction and the k-
NN model is not so confident in its prediction, the leaf recommends using the
LTree prediction, which is consistent with common sense in the domain of model
combination. The other branch of the tree is based on a much smaller number
of examples and is thus much less reliable. It also doesn’t make much sense.

2.2 MLCA4.5 — A Modification of C4.5 for Learning MDTs

C4.5 is a greedy divide and conquer algorithm for building classification trees
[12]. On each step, the best split according to the gain (or gain ratio) criterion
is chosen from the set of all possible splits for all attributes. The gain criterion
is based on the entropy of the class probability distribution of the examples in
the current subset S of training examples:

m

info(S) = — Zp(ci,s) -log, p(ci, S)

i=1

where p(c;, S) denotes the relative frequency of examples in S that belong to
class ¢;. The gain criterion selects the split that maximizes the decrement of the
info measure.

When adapting C4.5 for learning meta decision trees, we are interested in
the accuracies of each of the individual models C, on the examples in S, i.e.,
the proportion of the examples in S that have a class equal to the corresponding
class attribute. The newly introduced measure, used in MLC4.5, is defined as
A = maX e LearningAlgorithms accuracy(Cr, S), where accuracy(Cr, S) denotes
the relative frequency of examples in S that are correctly classified by base-level
classifier C,. The vector of accuracies does not have probability distribution
properties (its elements do not sum to 1), so the entropy can not be calculated.
That is the reason for replacing the entropy based measure with an accuracy
based one:

1+A4 1+4 1-A 1-—

9 log, 5 9 -log, 5

infopc(S) = —

At present, we do not post-prune meta decision trees. The rest of the MLC4.5
algorithm is equivalent to the original C4.5 algorithm for building ordinary clas-
sification trees. In order to compare MDTs with ODTs in a principled fashion,
we also developed a intermediate version of C4.5 (called AC4.5) that induces
ODTs using the accuracy based info 4, measure, where A = max}", p(¢c;, S), and
info 4 calculated from A using the same formula as for info ..

58 L. Todorovski and S. Dzeroski

3 Experiments

3.1 Experimental Methodology

In order to evaluate the performance of meta decision trees, we performed ex-
periments on a collection of twenty-one data sets from the UCI Repository of
Machine Learning Databases and Domain Theories [11]. These data sets have
been widely used in other comparative studies.

Five learning algorithms were used in the base-level experiments: two tree-
learning algorithms C4.5 [12] and LTree [8], the rule-learning algorithm CN2 [4],
the k-nearest neighbor (k-NN) algorithm [14] and a modification of the naive
Bayes algorithm [9]. All algorithms were used with their default settings.

We used five different algorithms for combining classifiers. Two of them are
voting schemes, and three are based on stacking:

P-VOTE is a simple plurality vote algorithm. According to this voting scheme,
the example is classified in the class that is most frequently predicted by the
base-level classifiers.

CD-VOTE is a refinement of the plurality vote algorithm for the case where
class probability distributions are given by the base-level classifiers [5]. The
probability distribution vectors returned by the base-level classifiers can be
summed to obtain the class probability distribution of the meta-level voting
classifier. The class predicted is the class with the highest class probability
in the summed class distribution.

S-MLC4.5 is a stacking algorithm with meta-level classification trees built
using MLC4.5.

S-AC4.5 is a stacking algorithm with ordinary classification trees built using
ACA4.5, a version of C4.5 with the accuracy measure presented in Section

S-C4.5 is a stacking algorithm with ordinary classification trees built with C4.5.

The same set of attributes was used for all three stacking methods. Class
attributes are treated as ordinary ones when inducing ordinary decision trees.

The stacking algorithm we use is similar to the standard stacking technique
described in [15]. For time complexity reasons, we use stratified 10-fold cross
validation for base-level classification instead of the leave-one-out method. By
performing 10-fold cross validation, the class attributes in the meta-level trai-
ning set are obtained by classifying testing examples that were not used for
building the base-level classifiers. Another difference from the standard stacking
technique is the use of class probability distributions obtained by the base-level
classifiers. The output of each base-level classifier for each example in the test
set consist of at least two components: the predicted class and the class proba-
bility distribution. All the base level algorithms used in this study calculate the
class probability distribution for classified examples, but two of them (k-NN and
naive Bayes) do not calculate the weight of the examples used for classification
(see Section). The code of the other three of them (C4.5, CN2 and LTree) was
adapted to output the class probability distribution as well as the weight of the
examples used for classification.

Combining Multiple Models with Meta Decision Trees 59

Classification errors were measured using 10-fold stratified cross validation.
Cross validation is repeated 10 times using a different random reordering of
the examples in the data set. The same set of re-orderings were used for all
experiments. The average and standard deviation (over the ten cross validations)
of the classification error on the test examples are reported.

Table 2. Classification errors (in %) of different meta-level classifiers
Data set P-VOTE |CD-VOTE|S-MLC4.5| S-AC4.5 S-C4.5
australian | 13.96 £0.71| 13.81 £0.57| 14.14 £0.83| 15.45 £1.19| 14.90 £0.68
balance 14.54 £1.17| 12.35 £0.79| 6.74 £0.52| 8.14 £0.58| 7.91 £1.17
breast-w 3.86 £0.19| 3.49 £0.15| 2.97 £0.14| 3.30 £0.32| 2.94 +0.28
bridges-td | 13.66 £0.65| 14.35 £0.80| 14.09 £1.16| 17.30 £2.55| 17.06 £2.27
car 6.02 +£0.22| 6.13 £0.27| 3.95 £0.39| 3.80 £0.33| 3.17 £0.40
chess 0.97 £0.06| 0.68 £0.08| 0.57 £0.10| 0.60 +0.09| 0.46 +0.07
diabetes 23.13 £0.65| 23.41 £0.59| 24.04 +£0.92| 25.08 £1.25| 25.53 £0.91
echo 30.59 £1.66| 30.97 £1.83| 32.60 £2.61| 36.65 £3.93| 35.63 +2.84
german 25.43 £0.55| 25.21 £0.59| 25.68 +0.45| 26.79 £1.16| 27.50 £0.89
glass 27.92 £0.77| 26.65 £1.51| 29.35 £1.65| 36.17 £2.84| 35.10 £2.43
heart 16.19 £1.17| 17.74 £1.25| 17.80 £1.18| 19.43 £1.96| 18.13 £1.20
hepatitis 17.55 £1.14] 17.99 +1.47| 16.30 £1.69| 18.11 +1.96| 19.98 £3.47
hypothyroid| 1.01 £0.05| 0.97 £0.04| 0.82 £0.06| 0.95 £0.08| 0.75 £0.06
image 2.49 £0.18| 2.16 +£0.21| 2.51 £0.17| 2.81 £0.22| 2.80 £0.12
ionosphere | 8.20 £0.79| 7.98 £0.66| 9.18 £0.96| 9.81 £1.32| 9.66 +1.44
iris 3.67 £0.57| 4.20 £0.45| 3.14 £0.83| 4.08 £1.19| 3.15 £0.55
soya 6.96 +£0.31| 6.74 £0.35| 6.11 £0.60| 7.11 £0.84| 6.94 +0.49
tic-tac-toe | 10.21 £0.87| 7.95 £0.84| 0.51 £0.21| 0.35 £0.20| 0.11 +0.16
vote 3.93 £0.35| 3.86 £0.37| 4.12 £0.50| 4.47 £0.80| 4.24 +0.54
waveform 14.38 £0.26| 14.73 £0.32| 14.30 +0.15| 15.60 £0.34| 16.11 £0.45
wine 1.36 £0.60[1.58 £0.64| 2.64 £0.64| 1.64 +0.49| 1.64 £0.49
Average |11.72 +0.62|11.57 £0.66/11.03 +0.75(12.27 +1.13|12.08 +1.00

3.2 Experimental Results

Table Pl presents the classification errors of the five meta-level classifiers. The lo-
west average error is achieved using stacking with meta decision trees. A compa-
rative analysis of the performance of S-MLC4.5 versus the other four meta-level
classifiers and the best base-level classifier (LTree) is given in Table B

The figures in Table Bl represent the relative error reduction achieved by
using the S-MLCA4.5 algorithm as compared to each of the other algorithms,
calculated as 1 — s_mlc4.5_error/other_method_error. Positive/negative figu-
res denote better/worse performance of S-MLC4.5. The statistical significance
of the differences is tested using paired t-tests with significance level of 95%:
+/— to the right of a figure in the table means that S-MLC4.5 is signi-

60 L. Todorovski and S. Dzeroski

ficantly better/worse. The average here is calculated as 1 — GeometricMean
(s_mlc4 .5 _error/other_method_error).

Table 3. Classification error reduction (in %) achieved with stacking using meta deci-
sion trees as compared to other meta-level classifiers and the base-level classifier with
smallest average error. The + and - signs indicate the significance of the difference.

Data set |[P-VOTE|CD-VOTE|S-AC4.5| S-C4.5 | LTree
australian -1.29 -2.39 8.48 + 5.10 +| -2.24
balance 53.65 +| 45.43 +|17.20 +| 14.79 +| 0.15
breast-w 23.06 +| 14.90 +110.00 +| -1.02 50.00 +
bridges-td | -3.15 1.81 18.55 +| 17.41 +| 3.76
car 34.39 +| 35.56 +| -3.95 -24.61 -| 64.67 +
chess 41.24 +| 16.18 +| 5.00 -23.91 -| 26.92 +
diabetes -3.93 -] -2.69 4.15 5.84 +| 4.38 +
echo -6.57 -| -5.26 11.05 +| 8.50 +| 8.09 +
german -0.98 -1.86 -| 414 +| 6.62+| 4.75 +
glass -5.12 -]-10.13 -1 18.86 +| 16.38 +| 7.30 +
heart -9.94 -| -0.34 839 +| 1.82 -1.19
hepatitis 7.12 9.39 9.99 +| 18.42 +| 12.55 +
hypothyroid| 18.81 +| 15.46 +]13.68 +| -9.33 -| 16.33 +
image -0.80 -16.20 -1 10.68 +| 10.36 +| 23.01 +
ionosphere |-11.95 -|-15.04 - 6.42 4.97 20.79 +
iris 14.44 25.24 +| 23.04 0.32 -0.32
soya 12.21 4| 9.35 +| 14.06 +| 11.96 4| 75.03 +
tic-tac-toe | 95.00 +| 93.58 +1]-45.71 -363.64 -| 97.16 +
vote -4.83 -6.74 7.83 2.83 2.14
waveform 0.56 2.92 +| 833 4| 11.24 +| 2.32 +
wine -94.12 -|-67.09 -[-60.98 -| -60.98 -| 9.59
Average [18.99 16.33 5.82 -5.29 (32.34

When compared to the best base-level classifier (last column in Table B,
we can clearly see the improvement obtained with meta decision trees used for
stacking. Significant improvement is achieved in 14 out of 21 data sets, the overall
improvement being 32%.

Stacking with meta decision trees is significantly better than plurality vote
in 7 domains and significantly worse in 6. However, the significant improvements
are much higher than the significant drops of accuracy, giving overall accuracy
improvement of 19%. Since CD-VOTE performs slightly better than plurality
vote, smaller overall improvement of 16% is achieved. S-MLCA4.5 is significantly
better in 9 data sets and significantly worse in 5.

To compare stacking with MDTs and ODTs, we first look at the relative
performance of S-MLC4.5 and S-C4.5. S-MLC4.5 performs significantly bet-
ter in 11 and worse in 5 data sets. There is a 5% overall decrease of accuracy
(this is a geometric mean), but this is entirely due to result in the tic-tac-toe do-

Combining Multiple Models with Meta Decision Trees 61
main, where all stacking methods perform very well. If we exclude the tic-tac-toe
domain, a 3% overall increase is observed. We can thus say that S-MLC4.5 per-
forms slightly better in terms of accuracy. However, the MDTs are much smaller
(the size reduction factor being 4, see Table M), despite the fact that ODTs
induced with C4.5 are post-pruned and MDTs are neither pre- nor post-pruned.

Table 4. Sizes (in number of nodes) of meta decision trees and ordinary decision trees
used for stacking

Data set |S-MLC4.5| S-AC4.5 S-C4.5

australian | 17.16 £2.67| 88.48 +3.98| 35.00 =+3.04
balance 6.48 £1.19| 121.95 43.79| 32.89 =+1.78
breast-w 5.82 £1.30| 30.76 +£3.00, 6.64 +£2.39
bridges-td 4.72 £1.06| 21.04 £1.83| 7.52 +1.19
car 27.04 £3.71| 181.20 +3.93| 43.90 +2.71
chess 11.79 +£2.00| 34.66 +£3.67| 9.50 +£1.32
diabetes 18.92 £3.71| 123.00 +4.73| 79.20 =+5.36
echo 6.54 £0.90| 59.04 =£3.79| 22.54 =+3.20
german 20.76 £3.88| 132.68 =£3.60|101.58 =+5.20
glass 7.44 £0.74| 226.12 +£6.63| 49.98 =+4.56
heart 7.54 £1.73| 59.56 £3.77| 18.78 +£3.17
hepatitis 7.08 £0.73| 42.22 £2.26| 14.76 £1.47
hypothyroid| 7.68 +£1.72| 40.46 +4.14| 4.50 =£0.92
image 19.44 +2.37| 320.14 £10.59| 63.97 +£3.27
ionosphere | 12.48 £2.07| 51.30 +2.84| 19.48 +2.34
iris 3.62 £0.63| 23.11 £2.19| 5.45 =+0.49
soya 8.38 £1.06| 436.57 £15.08| 81.43 £11.29
tic-tac-toe 6.04 £1.13| 16.74 =+1.46] 7.54 =+0.30
vote 9.62 £0.93| 38.98 £2.17| 8.90 +1.44
waveform 37.84 £5.66| 479.55 +8.26|353.31 £21.65
wine 3.98 £0.61| 13.22 £1.97 4.60 =+0.35
Average (11.92 £1.90(120.99 +4.46/46.26 =+3.69

To get a clearer picture of the performance differences due to the increased
representation power of MDTs as compared to ODTs, we compare S-MLC4.5
and S-AC4.5. Both ML.C4.5 and AC4.5 use the same learning algorithm. The
only difference between them is the types of trees they induce: MLC4.5 induces
meta decision trees and AC4.5 induces ordinary ones. The comparison clearly
shows that MDTs outperform ODTs for stacking. The overall accuracy improve-
ment is only 6%, but S-MLC4.5 is significantly better than S-AC4.5 in 13 out
of 21 data sets and is significantly worse in only one. Furthermore, the MDTs
are, on average, ten times smaller than the ODTs (see Table). The reduction of
the tree size improves the comprehensibility of meta decision trees. For example,
we were able to interpret and comment on the MDT in Tabled (Section £.1).

62 L. Todorovski and S. Dzeroski

4 Related Work

An overview of methods for constructing ensembles of classifiers can be found
in [A]. Two recent studies are closely related to our work: the SCANN method,
based on stacking using correspondence analysis of the classifications of the base-
level classifiers [10] and local cascade generalization [7]. The SCANN method
outperforms the plurality vote scheme, especially in the case when the base-level
classifiers are highly correlated. The SCANN method does not use any class
probability distribution properties of the predictions by the base-level classifiers.
Therefore, no comparison with the CD voting scheme is included in their study.
The set of base-level classifiers used is similar to ours: C4.5 and another algorithm
for trees, CN2 for rules, two nearest neighbor algorithms and a naive Bayesian
classifier.

In local cascading generalization, the base-level classifiers are used in every
node of the decision tree. New attributes, based on the class probability dis-
tribution of the example obtained by the base-level classifiers are generated at
each step of the divide and conquer algorithm for building decision trees. The
base-level classifiers used in this study are naive Bayes and Linear Discriminant.
The integration of base-level classifiers is much tighter than in stacking. The
similarity to our approach is that class probability distributions are used.

Ordinary decision trees have already been used for combining multiple models
in [3]. However, the emphasis of their study is more on partitioning techniques
for massive data sets and combining multiple models trained on different subsets
of massive data sets. Our study focuses on combining multiple models generated
on the same data set. Therefore, the obtained results are not directly comparable
to theirs.

The present study is also related to our previous work on the topic of meta-
level learning [13]. There we introduced an inductive logic programming (ILP)
framework for learning the relation between data set characteristics and the
performance of different (base-level) learning algorithms. MDT's use a represen-
tation language that is slightly more expressive than propositional decision trees,
but much less than ILP.

5 Conclusions and Further Work

We have presented a new technique for combining classifiers based on meta
decision trees (MDTs). MDTs increase the expressiveness of propositional de-
cision trees to make them more suitable for stacking. The empirical evaluation
of MDTs showed that they outperform ordinary decision trees in terms of ac-
curacy and are much more concise. MDTs are usually so small that they can
easily be inspected: we regard this as a step towards a comprehensible model of
combining multiple models. In contrast, most existing work uses non-symbolic
learning methods (e.g. neural networks) to stack classifiers [10].

There are several obvious directions for further work. For ordinary classi-
fication trees, it is already known that post-pruning gives better results than

Combining Multiple Models with Meta Decision Trees 63

pre-pruning. Preliminary experiments show that pre-pruning degrades the clas-
sification accuracy of MDTs. Thus, one of the priorities for further work is the
development of a post-pruning method for meta decision trees and its imple-
mentation in MLCA4.5.

An interesting aspect of our work is that we use class-distribution properties
for meta-level learning. Most of the work on combining classifiers only uses the
predicted classes and not the corresponding probability distributions (with the
notable exception of Gama). It would be interesting to use other learning al-
gorithms (neural networks, Bayesian classification) to combine models based on
the probability distributions returned by them. A comparison of stacking with
predictions of models only vs. with predictions and probability distribution pro-
perties would be also worthwhile.

The consistency of meta decision trees with common sense model combina-
tion knowledge, as briefly discussed in Section 2.1, opens another question for
further research. The process of inducing meta-level classifiers should be biased
to produce only meta-level classifiers consistent with existing knowledge. This
can be achieved using strong language bias within MLC4.5 or, probably more
easily, within a framework of meta decision rules, where rule templates could be
used.

Note that meta decision trees are, in principle, transferable across domains,
in the sense that a MDT built on one data set can be used on any other data
set (since it uses the same set of attributes). MDTs can be also built using
examples from data sets originating from different domains. Combining data
from different domains for learning MDTs is an interesting avenue for further
work that would bring together the present study with meta-level learning work
on selecting appropriate classifiers for a given domain [I]. In this case, attributes
describing individual data set properties can be added to the class distribution
properties in the meta-level learning data set.

Acknowledgements

The work reported was supported in part by the Slovenian Ministry of Science
and Technology and by the EU-funded project Data Mining and Decision Sup-
port for Business Competitiveness: A European Virtual Enterprise (IST-1999-
11495).

References

1. Brazdil, P. B. and Henery, R. J. (1994) Analysis of Results. In Michie, D., Spiegel-
halter, D. J., and Taylor, C. C., editors: Machine learning, neural and statistical
classification. Ellis Horwood.

2. Breiman, L. (1996) Bagging Predictors. Machine Learning 24(2): 123-140.

3. Chan, P. K. and Stolfo, S. J. (1997) On the Accuracy of Meta-learning for Scalable
Data Mining. Journal of Intelligent Information Systems 8(1): 5-28.

64

10.

11.

12.
13.

14.

15.

L. Todorovski and S. Dzeroski

Clark, P. and Boswell, R. (1991) Rule induction with CN2: Some recent improve-
ments. In Proceedings of the Fifth European Working Session on Learning: 151-163.
Springer-Werlag.

Dietterich, T. G. (1997) Machine-Learning Research: Four Current Directions. AT
Magazine 18(4): 97-136.

. Freund, Y. and Schapire, R. E. (1996) Experiments with a New Boosting Al-

gorithm. In Proceedings of the Thirteenth International Conference on Machine
Learning. Morgan Kaufmann.

Gama, J. (1998) Combining Classifiers by Constructive Induction. In Proceedings
of the Ninth Furopean Conference on Machine Learning.

Gama, J. (1999) Discriminant trees. In Proceedings of the Sizteenth International
Conference on Machine Learning: 134-142. Morgan Kaufmann.

Gama, J. (2000) A Linear-Bayes Classifier. Technical Report. Artificial Intelligence
and Computer Science Laboratory, University of Porto.

Merz, C. J. (1999) Using Correspondence Analysis to Combine Classifiers. Machine
Learning 36(1/2): 33-58. Kluwer Academic Publishers.

Murphy, P. M. and Aha, D. W. (1994) UCI repository of machine learning databa-
ses [http://www.ics.uci.edu/ “mlearn/MLRepository.html]. Irvine, CA: University
of California, Department of Information and Computer Science.

Quinlan, J. R. (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann.
Todorovski, L. and Dzeroski, S. (1999) Experiments in Meta-Level Learning with
ILP. In Proceedings of the Third European Conference on Principles of Data Mining
and Knowledge Discovery: 98-106. Springer-Werlag.

Wettschereck, D. (1994) A study of distance-based machine learning algorithms.
PhD Thesis, Department of Computer Science, Oregon State University, Corvallis.
Wolpert, D. (1992) Stacked Generalization. Neural Networks 5(2): 241-260.

	Combining Multiple Models with Meta Decision Trees
	Introduction
	Meta Decision Trees
	What Are Meta Decision Trees
	MLC4.5 -- A Modification of C4.5 for Learning MDTs

	Experiments
	Experimental Methodology
	Experimental Results

	Related Work
	Conclusions and Further Work
	Acknowledgements
	References

