
D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 476-482, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Mining with Cover and Extension Operators

Marzena Kryszkiewicz

Institute of Computer Science, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

mkr@ii.pw.edu.pl

Abstract. Mining around association rules discovered in a large database is an
important problem. In the paper, we consider the case, when a user wants to
mine around the given set of association rules, but does not have access to the
original database. We show how to reason with a set of rules by means of the
cover and extension operators. Since the number of association rules can be
huge, we introduce the concept of maximal covering rules. The algorithms for
mining with the cover and extension operators are offered.

1 Introduction

The problem of discovery of association rules was introduced in [1] for sales
transaction database. The association rules identify sets of items that are purchased
together with other sets of items. Users are often interested in mining around the
discovered set of rules. This is especially important, when the user is not allowed to
access the database (e.g. for security reasons) and can deal only with a fraction of the
rules that were provided by some trusted person. However, the user may be willing to
induce as much knowledge as possible from the provided set of rules.

In this paper we show how to reason with a set of rules by means of the cover
operator. We show how to find common knowledge and how to derive new rules as
well as assess they support and confidence without accessing the database.
Additionally, we introduce the notion of an extension operator that altogether with the
cover operator can augment the original knowledge considerably. Since the number of
association rules can be huge, we introduce the concept of maximal covering rules.
The algorithms for mining with the cover and extension operators are offered as well.

2 Association Rules and Cover Operator

Let I = {i1, i2, ..., im} be a set of distinct literals, called items. Any set of items will be
called an itemset. Let D be a set of transactions, where each transaction T is a subset
of I. An association rule is an expression X ⇒ Y, where ∅ ≠ X,Y ⊂ I and X ∩ Y = ∅.
Support of an itemset X is denoted by sup(X) and defined as the percentage (or the
number) of transactions in D that contain X. Support of the association rule X ⇒ Y is
denoted by sup(X ⇒ Y) and defined as sup(X ∪ Y). Confidence of X ⇒ Y is denoted
by conf(X ⇒ Y) and defined as sup(X ∪ Y) / sup(X). The problem of mining
association rules is to generate all rules that have sufficient support and confidence. In
the sequel, the set of all association rules whose support is greater than s and

Mining with Cover and Extension Operators 477

confidence is not less than c will be denoted by AR(s,c). If s and c are understood,
then AR(s,c) will be denoted by AR.

A notion of a cover operator was introduced in [3] for deriving a set of association
rules from a given association rule without accessing a database. The cover C of the
rule X ⇒ Y, Y ≠ ∅, was defined as follows:

C(X ⇒ Y) = {X∪Z ⇒ V| Z,V ⊆ Y and Z∩V = ∅ and V ≠ ∅}.

Each rule in C(X ⇒ Y) consists of a subset of items occurring in the rule X ⇒ Y.
The antecedent of any rule r covered by X ⇒ Y contains X and perhaps some items
from Y, whereas r’s consequent is a non-empty subset of the remaining items in Y.

Property 1 [3]. Let r: (X ⇒ Y) and r’: (X ⇒ Y) be association rules.

r’ ∈ C(r) iff X’∪Y’ ⊆ X∪Y and X’ ⊇ X iff X’ ⊆ X∪Y and X’ ⊇ X and Y’ ⊆ Y.

Property 2 [3]. Let r and r’ be association rules.

If r’∈C(r) then sup(r’) ≥ sup(r) and conf(r’) ≥ conf(r).

Clearly, if r’∈C(r) then C(r’)⊆C(r). The number of different rules in the cover of
the association rule X ⇒ Y is equal to 3m - 2m, where m = |Y| (see [3]).

3 Set-Theoretical Intersection of Covers

Investigation of the relationships among rules is a typical operation of mining around
rules. In particular, having discovered rules r and r’ one may wonder which
association rules can be induced both from r and r’, i.e. belong to C(r)∩C(r’). In this
section we examine the properties of set-theoretical intersection of covers of rules.

Property 3. Let r: X ⇒ Y, r’: X’ ⇒ Y’.

C(r)∩C(r’) =

∅
∅≠∩∧∪∩∪⊆∪

∩⇒∪

.otherwise
;’)’’()(’if

’’:ruletheiswhere),(

YYYXYXXX

YYXXssC

Proof: Let r: X ⇒ Y, r’: X’ ⇒ Y’, and r”: X” ⇒ Y”. By Property 1, r” ∈C(r) iff
X” ⊆ X∪Y ∧ X” ⊇ X ∧ Y” ⊆ Y and r” ∈C(r’) iff X” ⊆ X’∪Y’ ∧ X” ⊇ X’ ∧ Y” ⊆ Y’.
Hence, r” ∈C(r)∩C(r’) iff (X∪Y)∩(X’∪Y’) ⊇ X” ⊇ X∪X’ ∧ Y” ⊆ Y∩Y’. In addition,
we note Y∩Y’ must be different from ∅, otherwise r” would have an empty
consequent Y”. Thus, only rules r”: X” ⇒ Y”, where X” ⊇ X∪X’ and Y” ⊆ Y∩Y’,
belong to C(r)∩C(r’) provided X∪X’ ⊆ (X∪Y)∩(X’∪Y’) and Y∩Y’≠∅. The set of
such rules constitutes the cover of the rule X∪X’ ⇒ Y∩Y’.

Example 1. Let us consider the intersection C(ab⇒cde) and C(ac⇒bde). By
Property 3, it is equal to C(abc⇒de)={abc⇒de,abc⇒d,abc⇒e,abcd⇒e,abce⇒d}.

Now, we generalize Property 3 for the case of n rules, where n ≥ 2.

478 M. Kryszkiewicz

Property 4. Let r1: X1 ⇒ Y1, ..., rn: Xn ⇒ Yn.

C(r1)∩... ∩C(rn) =

∅
∅≠∩∩

∧∪∩∩∪⊆∪∪
∩∩⇒∪∪

.otherwise
;...

)(...)(...if

......:ruletheiswhere),(

1

111

11

n

nnn

nn

YY

YXYXXX

YYXXssC

Property 4 tells us that the intersection of the covers of any number of rules is
either the cover of one rule or is an empty set.

4 Inducing Knowledge by Means of Cover Operator

Let R⊆AR. We define cover of the set of rules R (denoted by C(R)) as follows:

C(R) = ∪r∈R C(r).

The number of rules induced by the cover operator from R can be greater than the
number of rules in R. In general, C(R) ⊇ R. By Property 2, each rule belonging to the
cover of another rule has confidence and support not worse than the covering rule. So,
for each new rule r in C(R) \ R, we can assess its support and confidence by choosing
maximum confidence and support of the rules covering r. The assessment of support
and confidence of r can be even more precise if we take into account itemsets of all
known rules (the supports of which are known) and their antecedents (the supports of
which can be computed from rules supports and confidences) as follows:

Let r∈C(R) \ R and F(R) be the family of itemsets of rules R and their antecedents,
i.e. F(R) = {X∪Y| X⇒Y∈R}∪{X| X⇒Y∈R}. Then,

• assessed support aSup(r: X⇒Y,R) = max{sup(f)| f∈F(R) ∧ X∪Y ⊆ f}.

• assessed confidence aConf(r: X⇒Y,R)=aSup(r,R) / min{sup(f)| f∈F(R) ∧ X⊇f}.

The real support of the rule r will not be less than aSup(r,R) and the confidence
will not be less than aConf(r,R). Below we show an example of inducing new
knowledge without accessing the database.
Example 2. Let us consider two rules discovered from some hospital database:
r1:{X} ⇒ {U,M} (supp.=15%, conf.=60%), r2:{X,U} ⇒ {O} (supp.=5%, conf.=20%),
where X stands for (medical treatment = X), U for (result = Unsuccessful), M for
(marital status = Married) and O for (age = Old). Applying the cover operator to r1

one will obtain e.g. the following rule: r3:{X} ⇒ {U}. Knowing supports and
confidences of the rules r1 and r2 we can derive supports of the following itemsets:
sup({X,U,M})=15%, sup({X})=15% / 60%=25%, sup({X,U,O})=5%, sup({X,U})=
5% / 20%=25%. Hence,

• aSup(r3) = max(sup({X,U,M}), sup({X,U,O}), sup({X,U})) = 25%,

• aConf(r3) = aSup(r3) / min{sup({X})} = 25% / 25% = 100%.

Thus r3 has support not less than 25% and confidence not less than 100%.
The above example shows how it can be insecure to provide a user with the

knowledge which seems to be unimportant. It may turn out that the cover operator

Mining with Cover and Extension Operators 479

produces the results which the rules provider would not like to reveal. This is
common fear when sharing the knowledge with competing companies. The competing
company may find out too much from originally minor knowledge.

Straightforward computation of the knowledge C(R) augmented by the cover
operator consists in taking union of the covers of all rules in R. Obviously, such an
approach is not efficient. In particular, some rules in C(R) will be generated many
times, e.g. if r,r’∈R and r’∈C(r), then all rules induced by the cover operator from r’
will be also induced from r. In the next section we introduce the notion of maximal
covering rules and show how to use them for efficient derivation of new rules from R.

5 Maximal Covering Rules

Let R⊆AR. We define maximal covering rules (MCR) for R as follows:

MCR(R) = {r∈R| ¬∃r’∈R, r’≠r and r∈C(r’)}.

A maximal covering rule for the rule set R does not belong to the cover of any
other rule in R.

Property 5. Let R⊆AR. Then, C(R) = C(MCR(R)).

The computation of the knowledge C(R) induced by the cover operator from R can
consist of two steps: 1) compute R’ = MCR(R); 2) compute C(R’). The redundancy of
computation of association rules will be now restricted to computation of the
overlapping covers of some maximal covering rules. The algorithm
FindMaxCoveringRules is an example implementation of Step 1.

Further on, we assume that rules R are kept in such a way that for an itemset Z:
1) it is easy to find all rules created from itemsets being subsets of Z; 2) it is easy to
find all rules with the antecedents being subsets of Z. This can be obtained e.g. by
applying two hashing trees structures [2], one for the access of type 1 and the second
one for the access of type 2. We also assume that rules(f,R) is the function returning
all rules in R that were created from f (i.e. rules(f,R) = {(r: X ⇒ Y) ∈ R| X ∪ Y = f}).

Algorithm. FindMaxCoveringRules
input: set of rules R;
output: set of maximal covering rules R’;

F = { itemset(r)| r∈R};
R’ = ∅;
while F ≠ ∅ do begin
f = a maximal itemset in F;
V = all subsets of f in F;
for each itemset v in V \ { f} do begin

for each rule r’ in rules(v, R) do
if there is r in rules(f, R) such that r’. antecedent ⊇ r.antecedent then

remove r’ from R;
for each rule r’ in rules(f, R) do
if there is r≠r’ in rules(f, R) such that r’. antecedent ⊇ r.antecedent then

remove r’ from R;
endfor;
move rules(f, R) from R to R’;
F = F \ { f};

endwhile;
return R’;

The FindMaxCoveringRules algorithm uses Property 1 to find maximal covering
rules R’ for the given rule set R.

480 M. Kryszkiewicz

6 Inducing Knowledge by Means of Extension Operator

The cover operator allow us to induce shorter rules from longer ones. However, under
some conditions it is also possible to induce longer rules from shorter ones. Let us
assume r: X ⇒ Y and there is an itemset Z being a superset of X∪Y the support of
which is the same as the support of r. Then, the rule r’: X ⇒ Z\X will have the same
support and confidence as r. The operator that allows us to induce such rules for r
from the information on the set of rules R will be called an extension operator and
will be denoted by E(r,R). It is defined as follows:

E(r: X ⇒ Y, R) = {X ⇒ (X’∪Y’) \ X | ∃r’: X’ ⇒ Y’, X∪Y⊆X’∪Y’ ∧ sup(r) = sup(r’)}.

Property 6. Let r’∈E(r,R). Then:

sup(r’) = sup(r), conf(r’) = conf(r), r∈C(r’), E(r’,R) ⊆ E(r,R).

E(R) will denote the extension of the set of rules R and will be defined as follows:

E(R) = ∪r∈R E(r,R).

Example 3. Let R = {r1: ab⇒cde (s1,c1), r2: abc⇒d (s2,c2), r3: def⇒abc (s3,c3),
r4: dh⇒abc (s4,c4)}, where (si,ci) are values of support and confidence of each i-th rule.
Additionally, we assume that s1=s3, s2=s4 and s1≠s2. We observe that,
itemset(r1) ⊆ itemset(r3) and itemset(r2) ⊆ itemset(r4). Hence, r5: ab⇒cdef (s1,c1)∈
E(r1,R) and r6: abc⇒dh (s2,c2) ∈ E(r2,R). Let us note that r2 ∈ C(r1), so
itemset(r2) ⊆ itemset(r1). Nevertheless, we could not rediscover r1 from r2 by the
extension operator since s1≠s2. Actually, E(R) = {r1, r2, r3, r4, r5, r6}.

7 Inducing Knowledge by Means of Both Operators

Let us start with the property that shows how the rule sets augments when applying
the extension and cover operators several times.

Property 7. Let R⊆AR.
• E(E(R)) = E(R),
• C(C(R)) = C(R),
• MCR(MCR(R)) = MCR(R),
• C(E(R)) ⊇ E(R),
• E(C(R)) ⊇ C(R),
• E(R) ⊇ E(MCR(R)).

In the sequel of this section, we consider how to compute C(E(R)) efficiently.
Since C(E(R)) = C(MCR(E(R))) (by Property 5), we will concentrate on the problem
of computing MCR(E(R)). To this end one can call the FindMaxCoveringRules
algorithm with E(R) as an argument.
Example 4. Let R be the set of rules {r1, r2, r3, r4} from Example 3 and E(R) =
{ r1, r2, r3, r4, r5, r6} as computed in Example 3. According to Property 3 the following
pairs of rules (r1,r2), (r1,r5), (r1,r6), (r2,r5), (r2,r6), (r3,r5) and (r5,r6) have non-empty
intersection of their covers, namely: C(r1)∩C(r2)=C(r1)∩C(r6)=C(r2)∩C(r5)=
C(r2)∩C(r6)=C(r5)∩C(r6)=C(abc⇒d); C(r1)∩C(r5) = C(ab⇒cde); C(r3)∩C(r5) =

Mining with Cover and Extension Operators 481

C(abdef⇒c). Thus, |C(E(R))| = |C(r1)| + |C(r2)| - |C(r1)∩C(r2)| + |C(r3)| + |C(r4)| +
|C(r5)| - |C(r1)∩C(r5)| - |C(r3)∩C(r5)| + |C(r6)| - |C(r5)∩C(r6)| = 106 rules.

On the other hand, MCR(E(R)) generated by FindMaxCoveringRules(E(R)) would
be equal to {r3, r4, r5, r6}. Hence, |C(MCR(E(R)))| = |C(r3)| + |C(r4)| + |C(r5)| + |C(r6)| -
|C(r3)∩C(r5)| - |C(r5)∩C(r6)| = 106 rules (as expected).

Let us also observe that without applying the extension operator we would derive
much less rules, namely: |C(R)| = |C(MCR(R))| = |C({r1, r3, r4})| = |C(r1)| + |C(r3)| +
|C(r4)| = 57 rules.

Applying the FindMaxCoveringRules algorithm to E(R) in order to compute
MCR(E(R)) is not the best solution. Let us remind that every extended rule covers the
rule from which it was generated. This means that MCR(E(R)) cannot contain r∈R
unless E(r,R) = {r}. Actually, all rules in E(r,R) will not belong to MCR(E(R)) unless
they are built from maximal itemsets in {itemset(r)| r∈E(r,R)}. This observation was
applied in the FindCovering_of_ExtendedRules algorithm. For the algorithm, we
assume that rules(V,R), where V is a family of itemsets and R is a set of rules, returns
all rules in R built from itemsets in V (i.e. rules(V,R) = {r: X⇒Y∈R| X∪Y = f, f∈V}).

Algorithm. FindCovering_of_ExtendedRules
input: set of rules R;
output: MCR(R’) = MCR(E(R));

F = { itemset(r)| r∈R};
R’ = ∅;
while F ≠ ∅ do begin
f = a maximal itemset in F;
V = all subsets of f in F with the same support as f;
for each group of rules in rules(V, R) with the same antecedent, say a, do

R’ = R’ ∪ { a⇒f \ a};
F = F \ V;

endwhile;
return FindMaxCoveringRules(R’);

8 Related Work

The notion of the cover operator was used as a basis for the construction of
representative rules [3] that constitute a least set of rules that covers all association
rules. A set of representative association rules wrt. support s and confidence c
(RR(s,c)) was defined as follows: RR(s,c) = {r∈AR(s,c)| ¬∃r’∈AR(s,c), r’≠r and
r∈C(r’)}. Clearly, C(RR(s,c)) = AR(s,c). One can easily observe that MCR(AR(s,c)) =
RR(s,c). In addition, C(AR(s,c)) = E(AR(s,c)) = AR(s,c), i.e. no new knowledge will be
added by applying the extension and/or cover operators to AR(s,c).

9 Conclusions

Both the cover and extension operator can augment the original rule base
considerably. The new rules may be even more interesting than the original ones. The
number of association rules can be huge, so we proposed their condensed
representation called maximal covering rules. It plays the same role for the given rule
set as representative rules for all association rules. In addition, it was shown that the
intersection of covers of rules constitutes a cover of a rule or is an empty set.

482 M. Kryszkiewicz

References
1. Agrawal, R., Imielinski, T., Swami, A.: Mining Associations Rules between Sets of Items

in Large Databases. In: Proc. of the ACM SIGMOD Conference on Management of Data.
Washington, D.C. (1993) 207-216

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of
Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.
(eds.): Advances in Knowledge Discovery and Data Mining. AAAI, Menlo Park,
California (1996) 307-328

3. Kryszkiewicz, M.: Representative Association Rules. In: Proc. of PAKDD ’98.
Melbourne, Australia. LNAI 1394. Springer-Verlag (1998) 198-209

	Mining with Cover and Extension Operators
	1 Introduction
	2 Association Rules and Cover Operator
	3 Set-Theoretical Intersection of Covers
	4 Inducing Knowledge by Means of Cover Operator
	5 Maximal Covering Rules
	6 Inducing Knowledge by Means of Extension Operator
	7 Inducing Knowledge by Means of Both Operators
	8 Related Work
	9 Conclusions
	References

