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Abstract. Some of the fundamental and theoretical issues in Knowledge
Discovery in Database (KDD) rely on knowledge representation and the
use of prior and domain knowledge to extract useful information from
data. In many data exploration algorithms, dissimilarity functions do not
use domain knowledge for the cases comparison. The Ilterative Knowl-
edge Base System (IIKBS) has been designed to improve generalization
accuracy of exploration algorithms through the use of structural proper-
ties of domain models. A general mathematical framework for utilizing
structural properties of the domain model encompassing the definition of
a Dissimelarity Function for Structured Descriptions is proposed. Appli-
cations are conducted with the help of IKBS on a set of databases from
the UCI machine learning repository and on structured domain defini-
tion data.

Keywords. KDD, Domain Knowledge, Dissimilarity Functions, Gener-
alization Accuracy

1 Taking advantage of Domain Knowledge in KDD

Representation issues, search complexity, use of prior and Domain Knowledge,
and statistical inference are some of the core problems in KDD that are still open
and require attention [6]. In Data Mining, developing methods and applications
for representing knowledge about data is still a serious challenge.

In many fields of real world applications, we can capture a given aspect of
the domain knowledge by associating attributes of the problem structure with
objects linked by composition and/or specialization relationships. We can also
structure the domain definition of nominal attributes by a hierarchy of values.
These techniques enable the algorithms to take into account mutual dependen-
cies between attributes and to compare case properties with more accuracy. For
instance, in biosystematics, the scientific discipline that investigates biodiversity,
the descriptions of specimens are often highly structured (composite objects, tax-
onomic attributes), highly noisy (erroneous or unknown data), and highly poly-
morphous (variable or imprecise data). To take into account this complexity, we
need to define a domain knowledge that includes information about objects re-
lationships, attribute types and other semantics aspects: the scope of all values,
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and the meaning of special values (defaults, exceptions). A domain model is de-
fined by the association of a domain knowledge and reference data. It represents
a given context for the discovery process concerning the application domain. The
initial domain model is gradually enriched in the course of knowledge discovery
to perfect a domain theory (see [7] for definitions). Thus, the Iterative Knowledge
Base System (IKBS) [3] was developed to manage evolving and shared domain
models in an object oriented formalism. It enables users to interactively incor-
porate objects and relations into the domain knowledge (alse called deseriptive
model) to instantiate it with a case base and to conduct supervised and unsuper-
vised classification tasks. This paper will focus on the way to improve accuracy
of data exploration algorithms with the use of Domain Knowledge. Section 2
presents a general mathematical framework for utilizing structural properties of
the domain model encompassing the definition of a Dissimilarity Function for
Structured Descriptions. In section 3, applications are conducted with the help of
TKBS on a set of databases from the UCI machine learning repository [2] and on
structured domain definition data dealing with corals and marine sponges sys-
tematics. As example, We show how nearest neighbor classifiers can be improved
by the use of structural properties.

2 Dissimilarity Function for Structured Descriptions

There are many learning systems that depend upon a good distance function to
be successful. Dissimilarity functions are used in many fields besides machine
learning, including statistics, pattern recognition and in the symbolic data-
analysis area. A common problem with these methods is that they adopt a
syntactical and mathematical viewpoint of the dissimilarity measure that does
not take into account background knowledge, and relationships between objects.
In such traditional methods, attributes are independent of one another. The fol-
lowing sections propose a mathematical framework for defining new dissimilarity
functions which use order relations between domain entities.

2.1 Structured descriptions

We define a structured model as a nonempty n-element object partially ordered
set X where each object is characterized by a finite set of attributes (Fig. 1).
The set of attributes of # will be denoted by A,. A structured description (also
called a case) is an instance ¢ of a subset P of X, where for all object # € P,
each attribute @ in A, is assigned a value a(¢). The objects of P will be said
present on i whereas those of X \ P will be said absent on 1.

2.2 Global description

The global description of an individual is based on (1) the order structure of X
and (2) the presence/absence of objects on this individual.
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X1 (w=1, pred = {}, succ = {x, x3})
AXl = {alxl, ey ain, . anXl}

Xo (W=1/3) X3 (W=1/2, pred = {x1}, succ = {xs, x6})
Axg ={aqX3, ..., @jXg, ..., ApX3}

X4 X5 Xg (w=1/4, pred = {x3}, succ = {x7, xs} )
Axg ={a1Xg, - AjXgs s BXgh

X7 (w=1/8, pred = {xs, x2}, succ = {}) Xg
Axl = {a1x7, vy BT, ey anx7}

Fig. 1. Example of a structured model with filiation index w associated to each object
x € P. The list of predecessors and successors is associated to each element.

To take into account the order structure of X, we will consider the following
filiation index function w associated to X, w : X — IR defined by

1 if x 1s maximal

w(z) =

min % else
y€Pred(z) Y

To take into account the presence/absence of objects, we also consider situ-
ations in which no information is available about the presence/absence of some
objets on some individuals. Such objects will be said unknown on the corre-
sponding individuals. If an object z is unknown on an individual ¢, p;(x) will
denote the probability for # to be present on . If the objects of X are listed in a
fixed linear ordering, the global description of an individual ¢ may be identified
with the n-vector (w(x) Xi(x))xex where x; is defined on X by

1 if x is present on ¢
xi(z) =X 0 if # is absent on ¢

pi(x) if z is unknown on ¢

2.3 Dissimilarity measure

The dissimilarity measure we propose in this paper is the Minkowski transform of
a 2-vector. The components of this vector are the normalized global dissimilarity
D¢ and the normalized local dissimilarity Dp (1).
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p and v are normalization coefficients. Following applications are conducted
with » = 1. On unstructured databases, the component D¢ is always null. In
that case, the expression (1) is reduced to the local component (¢ = 0 and v =
1).

The local dissimilarity can be for instance the Euclidean metric, or one of
those proposed by [8],i.e.:

— Heterogeneous Value Difference Metric (HVDM),

— Discretized Value Difference Metric (DVDM),

— Windowed Value Difference Metric (WVDM),

— Local dissimilarity on Heterogeneous Value (DGR) [1]

Any metric can be used in this general equation. Following application will
show how the use of global dissimilarity factor can improve generalization ac-
curacy of data exploration algorithms. The proposed global dissimilarities (1)
consists of the Minkowski transforms on the n-dimensional vector space of global
descriptions:

1

Pating) = (et hute) =@l ) ez 1 )

reX

Possible extensions of various indices on presence/absence signs can be de-
rived from this expression, which takes into account the order structure of X as
well as the possible unknown objects.

3 Applications with IKBS

The [lterative Knowledge Base System [3] is a software that manages evolving
and shared knowledge bases. Domain models and data are represented in an
object oriented formalism and can be built and transformed through graphical
representations. These representations are generalization or composition graphs
or trees where nodes are objects of the domain and links are relationships be-
tween objects (Fig. 2 shows an example).

With IKBS, end-users can define structured domain models with different
kinds of relationships between objects: composition or specialization dependen-
cies. Another way to acquire a domain model consists of importing external
databases or data tables. We thus obtain an unstructured domain model that
is automatically generated complete with attributes domain definition and a
case base linked to it. IKBS provides tools to interactively define structured
descriptive models, hierarchical attributes, and special features such as default
or exception values. Unstructured data definition can be transformed to add
composition and/or specialization relationships as shown in Fig. 3.
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Fig. 2. Part of a structured representation pertaining to Pocilloporidae family (corals)

in IKBS

corallites on verrucael
® shape[corallites on verrucae]
® distribution[zepta]

sub-gircular
serial & irreqular

& disposition[corallites on verrucae] | cerioid
w nurnber [septal [12 14]
= distribution[corallites on verrucae] | one-cycle

® prominent[wall] yes

® thickness[wall] 7 ieptal

w zhape[septothecal teeth] radlally ® numnber [z14]

® tip[septothecal teeth] spinescent & distribution | one-cycle
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® size[septothecal teeth] short I — ® prominent | yes ® shape radially

® frequency [columella] M- & chape sub-zircular ® thickness | ¢ ® tip spinescent
® development[columella] M- & distribution | serial & irregular & density sparse

® shape[columella] M- ® disposition | cerioid ) ® orientation | curved

® ornementation[columella] M-d ﬂy_ﬂjlﬂ ®zize shart

Fig. 3. The corallites on verrucae object transformed into a structured representation

3.1 generalization accuracy of dissimilarity functions

We present results of generalization accuracy of some dissimilarity functions
on 17 databases from the UCI Machine Learning Repository and 3 knowledge
bases from IKBS projects in marine biology (Fig. 4). 2 database models have
only pure numeric data (Image segmentation and Vehicle) or pure symbolic data
(Audiology, Monks). Others are defined by mixed features. 4 databases provide
additional information on attributes: Bridges, Pocilloporidae and Siderastreidae
coral families, and Hyalonema marine sponges. Some attributes are structured
by order relationships (ordinal attributes) and organized by objects. These four
structured databases were destructurized (transformed into data tables) in order
to highlight the augmentation of Generalization Accuracy between unstructured
and structured versions. We compare the dissimilarity functions previously men-
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tioned. The 4 dissimilarity measures and a nearest neighbor classifier [5] (with k
= 1) were programmed into IKBS. Each function was tested on 20 (4 4 struc-
tured) datasets using 10-fold cross validation. The average generalization accu-
racy over all 10 trials is reported for each test in (Fig. 4). The highest accuracy
achieved for each dataset is shown in bold. This application shows that DGR
dissimilarity on average yields improved generalization accuracy on a collection
of 24 databases. More important, it shows that using background knowledge and
in particular, structures of the domain knowledge, can improve generalization
accuracy with regard to any local dissimilarity.

4 Conclusion and future work

It has been shown that no learning algorithm can generalize more accurately
than another when called upon to deal with all possible problems [4], unless
information about the problem other than the training data is available. It fol-
lows then, that no dissimilarity function can be an improvement over another
because 1t possesses a higher probability of accurate generalization. Its accuracy
is a factor of its match with the kinds of problems that are likely to occur. Our
global dissimilarity function was designed for complex data structures and is par-
ticularly well suited for data pertaining to the biological domains. Moreover, in
some cases when considering tree-structures, we can obtain better performances
in time of execution because attributes pertaining to absent objects are not con-
sidered. For the time being, an original version of an inductive algorithm that
utilizes background knowledge has been programmed into IKBS [3] and we plan
to adapt other algorithms drawn from the area of Case-Based Reasoning.
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|patabascs Dissimilarity functions

Euclid HVDM WVDM DGR
|[Unstructured databases
Anncaling 94.99% 94.61% 95.87% 98.87%
Audiology 60.50% 77.50% 77.50% 76.00%
Audiology test 41.67% 78.33% 78.33% 88.46%
|Bridges 58.64% 59.64% 56.64% 60.19%
* Corals (Pocilloporidae) 51.12% 59.6% 59.6% 61.06%
* Corals (Siderastreidae) 72.80% 85.16% 85.40% 86.80%
|Echocardiogram 94.82% 94.82% 100.00% 82.58%
IFIag 48.95% 55.82% 58.74% 46.39%
|Hepatitis 77.50% 76.67% 79.88% 78.71%
Ilmagcs scgmcentation 92.86% 92.86% 938.33% 98.10%
|LED+1 7 noise 42.90% 60.70% 60.70% 60.70%
IMonks—1 77.58% 68.09% 68.09% 79.83%
|Monk2-2 59.04% 97.50% 97.50% 96.50%
IMonk2—3 87.26% 100.00% | 100.00% 100.00%
|Mushroom 100.00% | 100.00% | 100.00% | 100.00%
Soybean (large) 87.26% 90.88% 92.18% 89.58%
Soybean (small) 100.00% | 100.00% | 100.00% | 100.00%
* Sponges (Hyalonema) 49.21% 55.12% 55.12% 56.8%
\/ehicle 70.93% 70.93% 65.37% 79.02%
Zoo 97.78% 98.89% 98.89% 98.11%
Structured databases
|Bridges 60.20% 56.24% 58.88% 62.74%
* Corals (Pocilloporidae) 53.48% 60.86% 60.86% 63.50%
* Corals (Siderastreidae) 77.30% 88.20% 88.20% 90.00%
* Sponges (Hyalonema) 51.20% 58.00% 58.00% 56.80%
Average 71.64% 79.31% 79.57% 80.43%

Fig.4. % Generalization Accuracy with different dissimilarity functions, on unstruc-
tured and structured databases from UCI Machine Learning Repository and KBS
projects (*). Structured databases are utilized in unstructured and structured versions
to show the interest to use global dissimilarity to improve generalization accuracy.
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