I nductive L ogic Programming in Clementine
Sam Brewer! and Tom K habaza®

Advanced Data Mining Group, SPSS (UK) Ltd
1st Floor, St. Andrew’s House, West Street
Woking, Surrey GU21 1EB, UK
' sbrewer @pss. com' >t onk@pss. com

Abstract. This paper describes the integration of ILP with Clementine.
Background on ILP and Clementine is provided, with a description of
Clementine's target users. The benefits of ILP to data mining are outlined, and
ILP is compared with pre-existing data mining algorithms. Issues of integration
between ILP and Clementine are discussed. The implementation is then
described, showing how the key issues are addressed, and describing in brief
the Clementine mechanisms used to integrate ILP.

1. Introduction

The Clementine data mining system offers a range of components for the
requirements of atypical data mining project. These components can be combined in
various ways, ranging from the integration of models with visualisation tools, through
various combinations of modelling methods, to metamodelling, the technique of
generating models to describe and analyse other models.

Clementine aso has a facility caled the CEMI (Clementine Externa Module
Interface) which allows executable programs, external to Clementine, to be integrated
into the software. This allows the Clementine user to create a customised the system
and incorporate techniques not otherwise available.

ILP (Inductive Logic Programming) is a modelling technique which has many
valuable features for data mining. ILP generates rules from multiple tables and from
tables with multi-row examples, and can directly incorporate background knowledge
into the modelling process; this makes it idea for applications involving complex
data, such as that used to describe molecules or electronic circuits.

Theincorporation of ILP into Clementine increases the range of tools available and
the range of data mining projects accessible to Clementine users.

2. Background
211LP

ILP is a form of modelling algorithm based on logic programming. Logic
programs are rule-based programs written in first-order logic; inductive logic
programming (ILP) integrates rule induction with logic programming.

A typical rule from alogic program might be:

wi || _buy(CustlID, insurance) :-
has_bought (Cust 1 D, Prod2), price(Prod2, Price),
Price > 5000.

ILP would allow the induction of such arule from data were terms such
has_bought (Cust I D, Prod) ,wi | | _buy(Cust I D, Prod), and
price(Prod, Price) represent tables of data.

There are many varieties of ILP engine, for example:

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 337-344, 2000.
O Springer-Verlag Berlin Heidelberg 2000

338 S. Brewer and T. Khabaza

« Tilde builds decision trees to predict the value of atarget attribute;
o Warmr produces association rules;
e Progol produces aform of predictive rule not commonly encountered in

data mining, but sometimes referred to as “compression rules”.

2.2 Clementine

Clementine is a powerful and popular data mining system. Its range of techniques,
from data preparation and visualisation tools through to modelling and reporting,
lends itself to a wide variety of data mining applications. Many industrial sectors
benefit from the use of Clementine, including finance, retail, telecoms,
manufacturing, engineering and science. Clementine appeals to users from across the
spectrum of data mining expertise, ranging from non-technical business analysts to
data mining and machine learning experts.

Clementine's “click-and-go” user interface provides a framework within which
these two extremes of the user community can be accommodated. Each tool is
configured with the most widely applicable default values in order to minimise
knowledge required to operate them, whilst also offering options to alter these settings
according to knowledge and expertise.

For example, consider a simple modelling stream (see figure 1) containing a source
node, a type node and a neural net training node. The most basic set of operations
involves setting a file to be read in through the source node, using the type node to
select which field is to be modeled and executing the stream. (Note that the neural net
training node is used in its default state; no modelling knowledge is required.) A
more expert user has the option of editing the neural net training node and changing
some aspects of its configuration.

DRUGTR type Drug

Figure 1. A Simple Clementine Modelling Stream Diagram

3. ILP Benefitsto Data Mining

The strengths of Inductive Logic Programming make it suitable for applications
outside the scope of current algorithms. Previous modelling techniques handle data
from a single table, where one row represents one example. ILP can build models
from tables containing multi-row examples and from multiple tables. Current
algorithms may implicitly use extra information derived through exploration and
transformation of the data; ILP can enrich the modelling process by explicitly
incorporating background knowledge. This section shows that ILP has a broad
potential within data mining, facilitating the data mining process for many
applications not easily covered by current modelling methods.

3.11LP Can Extract Information From Multiple Tables

Prior to ILP, most modelling techniques handle data from a single table. If the data
is stored over multiple tables, or a table consists of multi-row examples, there is a pre-
processing overhead in converting the data into a single-table, single-row-example

Inductive Logic Programming in Clementine339

format. Apart from the processing overhead and user time involved, re-shaping the
table structure may lose potentially valuable information. ILP is able to handle both
multi-row examples and multiple tables; re-structuring for these purposes is not
required so the potential loss of information through pre-processing is reduced.

3.21LP MakesExplicit Use of Background K nowledge

It is commonplace in data mining for the data miner to derive new attributes
describing significant relationships within the data; this takes place during the
exploration and pre-processing phases of the data mining project. The new attributes
are included as inputs to modelling, and their inclusion provides a form of
“background knowledge” to the modelling process. However, these derived attributes
are treated in the same way as the original attributes in the dataset; the data has been
manipulated to have an influence on the modelling process.

By comparison, ILP makes use of “explicit” background knowledge; this
information is incorporated directly into the modelling process. It takes the form of
tables of data, and of rule-based knowledge expressed as logic programs, describing
links and relationships amongst the tables,.

This means that “background” information, which might previously have been
discarded because of the difficulty of incorporating it into the modelling process, can
be included directly under ILP.

The capability of using explicit rule-based background knowledge also means that
rules discovered by ILP can be used as background knowledge later in the data
mining process.

3.3 1LP Allows Rapid Prototyping of Custom Algorithms

The use of logic programs for background knowledge also enables "rapid
prototyping” of novel modelling algorithms, because the type of modelling provided
by ILP is partly determined by the background knowledge. This will be a very
valuable feature in situations where the patterns in the data are beyond the scope of
available algorithms and modelling paradigms, because it allows the data miner to try
“custom algorithms” on an ad-hoc basis for quick assessment of their suitability for a
problem. The bespoke algorithm would be a combination of the ILP induction
algorithm and the logic program expressed in the background knowledge; this method
is made possible because the ILP engines are programmable learning systems.

4. 1LP Integration with Clementine

The integration of Inductive Logic Programming with Clementine takes place
through the Clementine mechanism “CEMI” mechanism (Clementine External
Module Interface). This tool provides an protocol to enable external programs to be
“plugged in” to Clementine. A text-based specification file is used to update
Clementine with the information necessary for communicating with the external
executable. The ILP engines are integrated into Clementine using this device.

340 S. Brewer and T. Khabaza

4.1 Guidelinesfor Integration

It is important that the integration of any new technique fit smoothly into the
Clementine framework.

4.1.1 Integration with the Clementine stream
Clementine is a “visual” data mining tool and any integration must be consistent
with the visual programming ethos. An ILP engine will be integrated as a modelling
node, and used as other modelling nodes within Clementine streams. The overall
design of any modelling node in a stream is to be used as follows:
1. Connect data to a modelling node;
2. Select the target field to be modelled;
3. Insert any other necessary information;
4. Press execute;
5. A model is generated.
This is the initial framework for an ILP node. It will reside in the Models palette
with other algorithms, and will be placed in a stream with a simple “click-and-drop”.
There are some subtle problems for ILP. Algorithms in a stream read data from
one node further upstream; the ILP node must also follow this pattern, which is in
conflict with its ability to handle data from multiple sources. This problem is
resolved by allowing only one explicit connection to the ILP node; further data
sources are added in the settings of the node.

4.1.2ThelLP Node

The second consideration is how the user interacts within the node itself. Part of
the Clementine philosophy is that any tool should be usable by a sizeable subset of the
Clementine user base; at one end of the spectrum, this involves users with neither
machine learning nor database experience. This means that the default use of a node
must involve as few settings as possible, so that a minimal amount of technical
knowledge is needed. However, below this simple level must be options for
customised settings.

As with other modelling nodes in Clementine, it is necessary for the target field to
be specified. This is a familiar thing for the Clementine user to have to do, so
including this as a compulsory setting within the node is within our guidelines.

As only one table will be explicitly sent to the ILP node, all other tables must be
listed in the settings of the node. Since there is a facility for specifying data files,
logic program files may also be included. Background knowledge is included in the
node as user-defined files; there is also a library containing both general-purpose and
domain specific files of background knowledge.

Other settings are available within the node, but it is not compulsory for the user to
alter these. There may, for example, be expert settings to tune the behaviour of the
ILP engine. Any settings required by the expert user but not available in the interface
can be included in a file as background knowledge.

4.2 Implementation of Integration

The physical integration of the ILP node is achieved through the Clementine
External Module Interface. Information such as node type (process, terminal, model)
is defined here, as is the edit dialogue. All of the information contained in the ILP
node is passed through the CEMI as command line arguments to the executable,

Inductive Logic Programming in Clementine341

which isrun externally to Clementine. Output resulting from the execution of the ILP
engine will be sent to a file; the location of this file is specified within the CEMI,
allowing Clementine to locate and display the results via a model browser. For
example, included in the command line arguments are the name of the target
predicate, the pathname of the main Clementine table, all other file pathnames and
any other settings.

4.2.1 Integration of Clementine Data with the ILP Engines

In order for the ILP engine to process the data tables, they must be converted into
Prolog. In logic terms, a table is simply a list of facts describing a predicate’s
extension. Files containing Prolog background knowledge are left unchanged.

4.2.2 Configuring ILP

An ILP engine requires configuration for each learning task: this specifies what
data and background knowledge is available and how it should be used. This is
information of a highly technical nature, so Clementine’s ILP node generates this
automatically.

The generated configuration information contains “mode declarations” and type
descriptions (all expressed in Prolog). Mode declarations are used by ILP engines to
guide the modelling (rule-induction) process. A “head” mode declaration states the
target to be modeled, and “body” mode declarations describe other attributes and
relationships in the data, and the way these will be used in the rules to be constructed.

Mode declarations can be used in a variety of ways which have a direct effect on
the outcome of the modelling process, and only a subset of these are supported by
Clementine’s ILP node. It is therefore important for the expert user to be able to
override this automatic generation and apply alternative mode declarations as part of
the background knowledge. Clementine also provides an intermediate level of
automation, where the user can choose whether to generate mode declarations which
describe whole records or individual fields.

Type definitions are also generated automatically, using the heuristic that fields of
the same name are assumed to be of the same type. This (theoretically baseless)
assumption greatly simplifies the user interface to ILP.

The configuration contains type descriptions, mode declarations and attribute
predicates (depending upon user options).

5. Overview of ClementineILP Nodes

Three ILP engines will be incorporated into Clementine: Tilde, Warmr and Progol.
These engines are very different and demonstrate that ILP is not an algorithm, but a
family of algorithms.

Tilde (Top-down Induction of Logical DEcision Trees) is based on the C4.5
algorithm; it uses the decision tree method to generate clauses which describe the set
of examples given. The rules produced are similar in structure and are therefore quite
familiar to the Clementine user.

Warmr is based on the Apriori association algorithm, and builds such rules from
multiple tables. In comparison to Tilde which performs “predictive” learning, the
output from Warmr is more “descriptive”.

Progol is not based on any immediately recognisable algorithms; it produces
“compression rules” by generalising from Prolog examples, which are effectively

342 S. Brewer and T. Khabaza

records from a table of data, which have been trandated into Prolog facts. Even
simple runs of the Progol node have shown that it finds rules which C5.0 needs
additional (exploratory-derived) attributesto find.

5.1 The Progol Node

The Progol node edit dialogue is typical of the nodes for integrated ILP engines;
thisisshownin figure 2.

1“: progolnode [%]

Hode Options
Mame: fProgol Node

Expert:
ILP Mode: # Generate Model +7 Show Datamodel
Include Trace: T
Main Table Mame: [patient]
Sex =
BP

Target Field : |chaolesteral
-
T

Files: * Library < 1&2 ¢ 3& " 586

Background Knowledge Library

Files To Include:

0k | Execute | Apply | Refresh | Cancel |

5.2 Options

Name
Expert

ILP Mode

Figure 2: Progol Node Edit Dialogue

This isthe name given to the generated model.

This is switched off by default; it reveals an extra dialogue
containing some expert settings.

This gives the option of generating a Progol model (the default) or
generating a datamodel; this is the automatically generated file
containing mode declarations and types. It may be useful for the
user to view this before executing an ILP model.

Main Table Name

Target Field

This is procedure name given to the prolog facts within the table
containing the target attribute.

This is where the user specifies the target attribute. A list of fields
in the main table will appear when the node is connected; the user
only hasto highlight one of them.

Inductive Logic Programming in Clementine343

The last pane defaults to the background library list. This can be changed to show
another pane which provides a “set file” button; here the other data files and
background knowledge files can be listed.

5.3 A Simple Modelling Stream Using the I ntegrated Progol Node

I Clementine Data Mining System Version 5.2.1 - (c] SP5S Inc. 2000 - ilp_diug]. st

File Edit Tools Optiens Suparitode Displays Help

Generated Models

X

Progol Madel

drugl.dat Progol Modelling

i ¥
I EXECUTE
Editing diagram

0.03M USED, 2047.31M FREE

Field Qps

Record Ops Modelling

Seluct

Marge Filter Derive Plot Histogram

A A

Distribution Wb
al |

Filler
|

Sompl e Balance

Figure 3: Clementine User Interface and ILP Node

M odel Execution

After the stream has been executed, the rules generated from the ILP node form a
model, which appears as a hew “gem” icon on the “Generated Models” palette. When
this new node is included in stream execution, data passing through the node is
analysed according to the rules and a new field is created, containing predicted values.
If the generated model contains rules with different predicted values which match the
same record, current versions use a “first hit” approach to conflict resolution.

ILP Made Easy!

The following is a list of “click-steps” which the user has undergone in figure 3 to
generate an ILP model; this demonstrates that we have achieved the design goals of
incorporating ILP as a modelling algorithm in a Clementine stream (section 4.1.1.)
Connect data to a Progol node;

Select the target field to be modelled;
List any other files to be included;
Press execute;

A model is generated.

agrobNE

344 S. Brewer and T. Khabaza

6. Summary

We have seen that ILP has capabilities beyond pre-exising algorithms, and that it is
beneficial to have it integrated into a data mining system. ILP will enable Clementine
to deal with complex data without incurring large pre-processing overheads.

ILP's ability to model data from multiple tables and with multi-record examples
means that during the modelling phase, complex data can retain its structure, which
may provide information. Background knowledge can also be incorporated into the
modelling process, without the need for information to be added to the data itself
through transformation.

This facility could be used in a more “foreground” context; the purpose of
background knowledge could to alter the algorithm. This would lend ILP to rapid
prototyping of bespoke algorithms.

The integration of ILP into Clementine presents some complex implementation
issues, its representation in the user interface being the most obvious, as the stream
construction used for Clementine nodes does not provide a perfect match with ILP.
There are also complex low-level issues involved in integration. To cater for the non-
technical user, the ILP node must be simplified so that various ILP components such
as the mode declarations and type definitions are generated automatically. This
approach provides a subset of ILP for the non-technical user. However, Clementine's
integration of ILP also caters for the knowledgeable user, by providing advanced
options. The range of possible applications is increased with these facilities.

The benefits of combining Clementine with ILP are twofold; firstly it will provide
a set of techniques which considerably extend the capability of the software. The pre-
processing of complex data and the risk of losing potentially valuable data involved,
will be removed. This will facilitate data mining for such applications. Secondly, it
will bring ILP to a wider and more commercial audience.

7 Acknowledgements

This work was supported by ESPRIT project number 28623 "ALADIN", which is a collaboration
between Perot Systems Netherlands, British Telecom, the University of York, the Katholieke Universiteit
Leuven and SPSS/ Integral Solutions Ltd.

8 References

[1] H. Blockeel & L. De Reedt, Tilde and Warmr User Manual, Version 2.0, Katholieke Universiteit
Leuven, April 1999.

[2] S. Brewer & T. Khabaza. Guidelines for ILP in Data Mining, Version 1.5, ALADIN Project Interna
Report, November 1999.

[3] L.Dehaspe, WARMR The Frequent Query Discovery Engine User's Guide 2.1, October 1998.

[4] T. Khabaza, Note on the Integration of Inductive Logic Programming with the Clementine Data
Mining System, ALADIN Project Internal Report, June 1998.

[5] S.Muggleton & J. Firth, CProgol4.4: Theory and Use, University of York, June 1998.

[6] Integral Solutions Ltd, “Introduction to the External Module Interface”, Clementine Reference
Manual, version 5, September 1998.

[7] S. Muggleton, “Inverse Entailment and Progol”, New Generation Computing, 13:245-286, 1995.

[8] H. Blockeel and L. DeRaedt, “Top-down Induction of first order Logical Decision Trees”, Atrtificial
Intelligence 101 (1-2), 1998.

[9] L. Dehaspe and H. Toivonen, Frequent query discovery: a unifying ILP approach to association rule
mining. Technical Report CW-258, Department of Computer Science, Katholieke Universiteit
Leuven, March 1998. http://www.cs.kuleuven.ac.be/publicaties/-rapporten/CW1998.html

	Inductive Logic Programming in Clementine
	Introduction
	Background
	ILP
	Clementine

	ILP Benefits to Data Mining
	ILP Can Extract Information From Multiple Tables
	ILP Makes Explicit Use of Background Knowledge
	ILP Allows Rapid Prototyping of Custom Algorithms

	ILP Integration with Clementine
	Guidelines for Integration
	Integration with the Clementine stream
	The ILP Node

	Implementation of Integration
	Integration of Clementine Data with the ILP Engines
	Configuring ILP

	Overview of Clementine ILP Nodes
	The Progol Node
	Options
	A Simple Modelling Stream Using the Integrated Progol Node

	Summary
	Acknowledgements
	References

