Some Enhancements of Decision Tree Bagging

Pierre Geurts

University of Liege, Department of Electrical and Computer Engineering
Institut Montefiore, Sart-Tilman B28, B4000 Liege, Belgium
geurts@montefiore.ulg.ac.be

Abstract. This paper investigates enhancements of decision tree bag-
ging which mainly aim at improving computation times, but also accu-
racy. The three questions which are reconsidered are: discretization of
continuous attributes, tree pruning, and sampling schemes. A very sim-
ple discretization procedure is proposed, resulting in a dramatic speedup
without significant decrease in accuracy. Then a new method is pro-
posed to prune an ensemble of trees in a combined fashion, which is
significantly more effective than individual pruning. Finally, different re-
sampling schemes are considered leading to different CPU time/accuracy
tradeoffs. Combining all these enhancements makes it possible to apply
tree bagging to very large datasets, with computational performances
similar to single tree induction. Simulations are carried out on two syn-
thetic databases and four real-life datasets.

1 Introduction

The bias/variance tradeoff is a well known problem in machine learning. Bias
relates to the systematic error component, whereas variance relates to the varia-
bility resulting from the randomness of the learning sample and both contribute
to prediction errors. Decision tree induction [5] is among the machine learning
methods which present the higher variance. This variance is mainly due to the
recursive partitioning of the input space, which is highly unstable with respect
to small perturbations of the learning set. Bagging [2] consists in aggregating
predictions produced by several classifiers generated from different bootstrap
samples drawn from the original learning set. By doing so, it reduces mainly
variance and indirectly bias, and hence leads to spectacular improvements in ac-
curacy when applied to decision tree learners. Unfortunately, it destroys also the
two main attractive features of decision trees, namely computational efficiency
and interpretability.

This paper approaches three topics on which improvements can be obtained
with tree bagging either in terms of computation time or in terms of accuracy:
discretization of continuous attributes, tree pruning, and sampling schemes. A
very simple discretization procedure is proposed, resulting in a dramatic spee-
dup without significant decrease in accuracy. Then a new method is proposed
to prune an ensemble of trees in a combined fashion, which is significantly more
effective than individual pruning. Finally, different resampling schemes are con-
sidered leading to different CPU time/accuracy tradeoffs.

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 136-[[47, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Some Enhancements of Decision Tree Bagging 137

The paper is organized as follows. Section 2 introduces bagging. Section 3
describes the proposed enhancements and Section 4 is devoted to their empiri-
cal study, reporting results in terms of accuracy, variance, tree complexity and
computation time.

2 Bootstrap Aggregating (Bagging)

Let us denote by X the random input variable (attribute vector) and Y the
(scalar) output variable, and by P(X,Y") the probability distribution from which
the data are sampled. We assume that the learning sample is a sequence (LS =
{(z1,91), -, (xn,yn)}) of independent and identically distributed observations
drawn from P(X,Y). Let us denote by fn(z) the (random) function which is
produced by a learning algorithm in response to such a sample and by fy(z) =
Eps{fn(x)} the averaged model over the set of all learning sets of size N. Bias
denotes the discrepancy between the best model (the one which minimizes a
given loss criteria, also called the bayes model) and the averaged model while
variance denotes the variability of the predictions with respect to the learning set
randomness. Both, bias and variance, lead to prediction errors and thus should
be minimized.

The averaged model fy(z), by definition, has no variance (as it does depend
on a particular learning set) and the same bias as the original model. So, if we
could compute it, it would certainly have smaller prediction errors than a single
model. In this context, bagging [2] has been suggested as a way to approximate
this averaged model. As we do not have access to an infinite source of learning
sets, the process of sampling from nature is approximated by bootstrap sampling
from the original learning set. More precisely, starting from a learning set (LS)
of size N, bagging consists in randomly drawing n subsamples of size N with
replacement from LS. Let us denote by lsy,...,ls, these subsamples. Then from
each [s;, a model is learned denoted by fis, (z). Finally, the bagged model fs(x)
is obtained by aggregating the f, (). When output Y is discrete (classification),
the final prediction is determined either by voting:

frs(@) = {Ck|k = arg mjaX(Z 8(fis:(x), C5))}, (1)

i=1

or by averaging class-conditional probability estimates if they are available:

us(a) = {Culk = axg max(Pus (G o) = argmax(- >~ Pro (Cila))}, (2

i=1

where Cj}, denotes one of the classes and sti (Cklx) the class-conditional proba-

bility estimates given by the ith

to give very similar results.

For a fixed individual model complexity, this way of doing indeed reduces
significantly variance while having little effect on the bias term. So bagging is
mostly effective in conjunction with unstable predictors like decision trees which
present high variance.

model. The two approaches have been shown



138 P. Geurts

3 Proposed Enhancements of Decision Tree Bagging

While very effective, bagging in conjunction of decision trees learners destroys
also the two main attractive features of decision trees, namely computational
efficiency and interpretability. In this section we propose three enhancements of
the tree bagging algorithm which try to improve its performance in terms of
computation time or prediction accuracy only, not taking into account interpre-
tability.

3.1 Median Discretization

In another paper [§], we have investigated different ways to reduce the variance
due to the discretization of continuous attributes in the context of top down
induction of decision trees. It turns out from this paper that a very simple di-
scretization algorithm which always chooses the median to split a local learning
subset gives at least comparable results to the classical discretization algorithm.
At the same time, the use of the median allows to reduce significantly variance
of the probability estimates of the trees and computation times. However, we
point out that the median comes with a loss of interpretability as the threshold
is not even related to the class in the learning subset. While this loss of inter-
pretability is a drawback in the context of single decision tree induction, it has
no importance in the context of bagging.

Usually node splitting is carried out in two stages: the first stage selects for
each input attribute an optimal test and the second stage selects the optimal
attribute. In the case of numerical attributes, the first stage consists in selecting
a discretization threshold for each attribute. Denoting by a an attribute and by
a(o) its value for a given sample o, this amounts to selecting a threshold value
agn in order to split the node according to the test T'(0) = [a(0) < aswm]. To
determine ay, normally a search procedure is used so as to maximize a score
measure evaluated using the subset s = {01, 09, ..., 0, } of learning samples which
reach the node to split. Supposing that the [s is already sorted by increasing
values of a, most discretization techniques exhaustively enumerate all thresholds
%(z = 1...n—1). Denoting the observed classes by C(0;), (i = 1,...,n),
the score measures how well the test T'(0o) correlates with the class C(0) on the
sample [s. In the literature, many different score measures have been proposed.
In our experiments we use the following normalization of Shannon information
(see [13] for a discussion):

e 3

¢ Hc+Hr' @

where Heo denotes class entropy, Hr test entropy (also called split information
by Quinlan), and T, g their mutual information.

Our modification of this classical discretization algorithm simply consists
in evaluating for each numerical attribute only one threshold value, the one
which splits the learning set into two sets of the same size. According to the

a(on/2)+a(on/2+l)
2

previous notation, we can compute this threshold as if n is even



Some Enhancements of Decision Tree Bagging 139

or a(o““’l>/2)J2ra(o("+3)/2) if n is odd. We then split the node according to the pair

attribute-threshold which gives the test receiving the best score.

The median discretization is of course faster than the classical one. First, we
only have to compute the score for one threshold value when we need to do this
computation n times in the classical algorithm. Second, we do not have to sort
the local learning set for each numerical attribute. Indeed, there exist algorithms
linear in the number of samples which is obviously better than the N log(NN)
order needed for sorting. Actually this second argument is not always relevant
as it is necessary to sort the learning set only once for each attribute before any
splits are made. However this pre-sorting has the disadvantage of needing a lot of
memory space to store the sorted learning sets (pointers) and thus is not always
possible to implement in the case of very large databases. In our implementation,
we use pre-sorting to compute the median and so the difference between the two
discretization algorithms is essentially due to the number of score computations.
To give a first idea of the time which can be saved, we discretized 50 random
samples of size 1000 from the Waveform database. Classical discretization took
about 5000 ms while the median discretization only took 300 ms.

3.2 Combined Pruning

Decision tree pruning. Like bagging, pruning is a way to handle the bias-
variance tradeoff in decision tree induction. Pruning aims at cuting useless part
of decision trees. By doing so, it reduces complexity significantly and variance to
some extent, but it also increases bias. Thus, it generally improves only slightly
interpretability and accuracy.

There are two ways to prune a tree : stop-splitting and post-pruning. The for-
mer approach consists in evaluating best test significance on the current learning
set and decide whether to split or not the node according to this measure. One
problem of this approach is that it often relies on a parameter, the significance
threshold, and the optimum value of this parameter could be application depen-
dant and difficult to appreciate. The latter approach consists first in building
a full tree and then use cross-validation to prune useless parts of the tree in a
bottom-up fashion. This approach is not parametric anymore but it is necessary
to save some samples to form the validation set.

In our implementation of DT induction, stop-splitting is based on a hypo-
thesis test. Indeed, assuming the independence of the test with respect to the
classification in the learning sample, Kvalseth ([9]) has shown that the following
quantity:

G2 £ 9N.In2.0%,

follows a y-square distribution with (m —1)(p — 1) degrees of freedom, where m
is the number of classes and p is the number of test issues. Thus we choose not
to split a node if the probability of G2 being greater than the observed value
is larger than an a priori fixed value . To o = 1.0 correspond fully developed
trees and to a = 0.0 correspond only trivial trees.



140 P. Geurts

Post-pruning usually relies on a quality measure of trees where a parameter
0 weights complexity versus reliability of a tree. The quality measure we used
is:

Qs(T.LS) & NIL(LS) - 5.6(T),

where N is the number of learning states in the learning set LS, fg(LS) the
information provided by the tree 7 about the classification in the learning set,
8(T) the tree complexity which is defined as the number of terminal nodes of
the tree minus one. Then for increasing values of g from 0 to oo, we compute
the optimally pruned tree 73 which maximizes Q3(7g, LS). From the additive
nature of the quality criterion, it follows that the §-optimal pruned trees form
a nested sequence for increasing 5 (and thus there are at most k of them, if & is
the number of test nodes) and that the sequence of trees can be computed by a
simple recursive bottom up algorithm (see [I3] for a complete discussion). This
yields the sequence S = {(81,71), (B2, 72),-- -, (Bk, Tx)} where p; < Biy1, Th is
the full tree, Tj the trivial tree and 7; (1 < i < k) is the best pruned tree for
Bi—1 < B < B;. Among this sequence of trees, we extract the one which gives the
best result on the pruning cross-validation sample.

Pruning with bagging. In the context of DT ensembles, we could imagine two
ways of decreasing the model complexity: first by removing some trees from the
ensemble, second by pruning the constituting trees. The first approach has been
successfully applied to boosted ensembles in [10] but we believe it is not likely to
give good results with bagging as models are i.i.d. and generalization errors have
been shown to be monotone functions of the number of aggregated models. To
decrease constituting trees complexity, we could first apply the above pruning
techniques individually to each tree of the ensemble, i.e. not taking into account
their future averaging. However, because bagging reduces variance, the optimal
complexity of averaged trees should be higher than the optimal complexity of
a single tree induced from the same learning set. So individual pruning should
yield trees which are not complex enough given the new bias/variance tradeoff
resulting from averaging. So we propose here a new method to post-prune the
trees from a bagged ensemble in a combined way.

The algorithm proceeds as follows. First, we compute for each tree 7; of the
ensemble the sequence S; = {(8;,1,7T;1), (Bj2, Tj2),- - (Bjr;» Tk, )} according
to the previously defined single tree post-pruning algorithm. We then let increase
B from 0 to co and get from each individual pruning sequence S; the tree T; ;
such that 3;;,_1 < 8 < B3;;. This yields a sequence of pruned trees ensembles.
Among this sequence, we select the ensemble which yields the best error rates
on the validation set. Of course, only critical values of 3 (i.e. corresponding to a
B;.i) need to be considered and if there are n trees with maximum k test nodes
each, the length of the sequence will be less than kn.

In our experiments, we will compare stop-splitting and individual postpru-
ning in the context of bagging to combined pruning. We expect that pruning the
ensemble in a combined way would give better results than individual pruning
and also, because of the non zero variance, will be better than no pruning at all.



Some Enhancements of Decision Tree Bagging 141

Table 1. Datasets

Dataset |# Variables|#Classes|#Samples| #LS |#PS|#TS domain
Omib 6 2 20000 |16000{2000({2000|  Power system [13]
Waveform 21 3 5000 | 3000 |1000/1000 artificial [5]
Satellite 36 6 6435 3000 [1435]2000 [soil type recognition [IT]
Pendigits 16 10 10992 | 5000 2494|3498 digit recognition
Dig44 16 10 18000 | 6000 [3000(9000| digit recognition [IT]
Vst 136 2 4041 | 2430|815 | 796 | voltage stability [13]

3.3 Resampling Method

In average, bootstrap samples leave out about 37% of the examples. So, a que-
stion which could be raised is what happens if we replace this “with replacement,
full size” sampling with a “without replacement, smaller size” sampling. Theore-
tical studies of bagging (in [12] for bagging of linear models and more recently in
[6] for non-linear models) have shown that without replacement sampling could
give similar or better results than bootstrap sampling. In the mean time, the
computation times could be reduced significantly as we build trees from smaller
learning sets. In our experiments, we propose to study in an empirical way the
effect of various resampling scheme on real problems in terms of accuracy and
computation times improvements.

4 Empirical Studies

In this section, we evaluate the proposed enhancements. We first consider two
artificial problems where thorough experiments are pursued and then look at
four real-life datasets. A description of the databases is given in Table [ All
input variables are numerical and the datasets were selected to provide large
enough samples.

4.1 Artificial Problems (Omib and Waveform)

Experimentation protocol. To evaluate variants of decision tree induction
and tree bagging and be able to assess their variance, we carried out experiments
in the following way. First, the database is split into three disjoint parts: a set
used to pick random samples for tree growing (LS), a set used for cross-validation
during tree pruning (PS) and a set used for testing (7'S) (the divisions for
each database are shown in table [[J). Then 50 random subsets of size 1000 are
drawn without replacement from the pool LS, yielding LS1,LSs,...,LSsq. For
each method:

— A model M; (either a single tree or a set of trees) is grown from each LS;
according to the studied variant. -

— Average test set error rate P, and complexity C' of the 50 models are com-
puted.



142 P. Geurts

Table 2. Effect of median discretization

Omib Waveform
P.%] C [ var [CPU[|P.%| C [ var [CPU
Single trees (post-pruned)
classic ||11.20| 67.6 |0.0572| 6 |[27.30| 45.96 [0.0434| 16
median || 10.39|103.92|0.0383| 4 |/27.30| 66.04 |0.0382| 7
Bagging, 10 trees (unpruned)
classic || 7.71 | 967.0 |0.0158 | 21 |/20.39|1618.4]0.0172| 87
median || 7.55 |2026.0(0.0134| 8 ]/20.61|3032.9/0.0160| 27

method

— As proposed in [7], we estimate classification model variance by computing
the variance of the class-probability estimates given by the model. To this
end, we determine the conditional class-probability estimates ]ADMi (C|o) for
each case o belonging to the test sample and the following quantity is com-
puted:

50 50
Var(Pa (1) = 25 3= (55 2 (Pra(Clo))* = (55 3 P (Clo) .
oeTS =1 =1

We also give the average CPU timdY in seconds needed to build one model of
each type. The complexity of a single tree is the total number of nodes and the
complexity of a bagged ensemble is the sum of the complexities of the component
trees. The conditional class-probability estimates for bagging are computed by
averaging the conditional class-probability estimates of each tree:

. 1 <
PMz(C‘O) = E ZPTi,j (0‘0)7
j=1

where T} ;,j = 1,...,n are the trees constituting the model M;. The predictions
on test samples are done according to these estimates (attributing the maximum
probability class to each case).

Results

Discretization: median vs classical score. Table Blpresents results obtained with
classical discretization and median discretization, on one hand with single de-
cision tree induction and pruning, and, on the other hand with bagging of full
trees. The median does not decrease or increase the error rates significantly but
it decreases the variance especially with single trees. On the other hand, the
complexity of the resulting trees are multiplied by a factor 2 (when we do not
use pruning). Note here also the positive effect of tree bagging which decreases
dramatically the variance and significatively the error rates. In terms of compu-
tation times, we observe that given our (non optimal) implementation, median

! The system is implemented in Common Lisp and runs on a SUN Ultrasparc 2 -
300M H z microprocessor.



Some Enhancements of Decision Tree Bagging 143

Table 3. Effect of pruning

Omib Waveform
method P.%| C | var |[CPU(P.%| C | var |CPU
a=1.0 7.711 967.0 10.0158| 21 /20.39]1618.4]0.0172| 87
a = 0.05 7.77 | 873.4 [0.0156| 21 |[20.21|1523.9|0.0167| 86
a=0.01 7.96 | 660.9 10.0149| 21 /20.15]1208.4[0.0156| 79

a = 0.005 8.21 | 589.0 [0.0145| 18 |/20.05|1057.9]0.0153| 76
a = 0.001 8.37 | 469.0 |0.0137| 17 {/20.11| 780.4 {0.0137| 70
a = 0.0005 8.54 | 429.3 [0.0139| 17 |/ 20.15| 688.4 |0.0127| 66
a = 0.0001 8.87 | 3563.6 [0.0134| 16 |/ 20.35| 535.6 |0.0115| 59
individual pruning || 7.90 | 659.9 |0.0143| 30 |/20.03| 668.4 |0.0122| 91
combined (classic) || 7.67 | 831.2 |0.0153| 32 |/20.02| 777.4 {0.0134| 93
combined (median) || 7.51 |1557.5(0.0123| 17 |[19.79|1296.4|0.0113| 32

Table 4. Effect of resampling method (with median and combined pruning)

Omib Waveform
P.%| C var |CPU|( P.% | C var |CPU
replacement || 7.51 |1557.5(0.0123| 17 |/ 19.79[1296.4|0.0113| 32
p=0.1 10.27| 344.9 |0.0112| 8 20.96 | 205.4 [0.0103| 8
p=0.3 8.19 | 807.1 [0.0108| 12 |[20.17| 568.3 |0.0102| 18
p=05 7.91 [1138.5/0.0120| 15 |/20.11| 817.3 |0.0099| 29
p=0.7 7.65 [1506.80.0140 | 18 |/20.30(1284.2|0.0122| 35

method

makes bagging about three times faster than classical discretization although
the resulting models are two times bigger.

Stop-splitting vs individual pruning vs combined pruning. To assess the effect and
usefulness of pruning in the context of bagging, we made experiments using stop-
splitting with different values of «, with individual tree pruning, and two versions
of combined tree pruning (classical discretization and median discretization).
These results are summarized in Table [3

Results are different from one dataset to the other. On the Omib dataset,
it appears that the more complex the trees are, the better are the error rates.
On the Waveform database, we observe an optimal value of o smaller than 1.0
which justifies pruning in this case. However, the interest of combined pruning
with respect to individual pruning does not yet appear from these experiments,
as it gives more complex trees without really improving error rates. Nevertheless,
together with median discretization it allows to decrease error rates and variance.

With replacement vs without replacement. Table Hl summarizes several expe-
riments with different resampling schemes. The one called replacement is the
classical bootstrapping method. The other ones are sampling without replace-
ment and with learning sets of size p times the original learning set size. All
experiments use median discretization and combined pruning.

Results are very interesting. First we note a decrease of variance as we reduce
the fraction p. Of course, this decrease of variance comes with an increase of



144 P. Geurts

Table 5. Results on real-life datasets

Satellite Pendigits Dig44 Vst
P.%| C [cPU[P.%| C [CPU[[P.%]| C [CPU[P.%| C [CPU
Single trees (post-pruned)

classic 13.95| 163 | 27 || 7.52| 363 | 19 || 16.12| 455 | 127 ||11.81] 21 | 178

median 15.5| 269 | 19 ||11.29] 893 | 17 ||18.378| 601 | 45 ||14.32{331| 59
Bagging, 25 trees, classical dis.

a=1.0 11.24] 9465 | 465 || 5.36 | 7413 | 305 || 9.71 |21746|2010(| 8.48 |4868|2332

ind. prun. [[12.54] 3074 | 492 || 5.47 | 6593 | 358 || 10.41 [11398|2081|| 8.67 1325|2362

comb. prun. [|11.44] 6689 | 501 || 5.38 | 7042 | 343 || 9.71 [19030|2109|| 8.12 |3022/2386
Bagging, 25 trees, median dis.

comb. prun. [[11.13[11392] 318 ][ 6.14 [15465] 271 [[ 10.47 [39862] 767 [| 9.27 [5476] 916
Without replacement, combined pruning, classical dis.
p=0.1,n = 10[|15.04| 624 | 42 ||9.56 | 877 | 46 || 14.6 | 1581 | 135 |[12.59|282 | 125
p =0.1,n = 25[|13.54| 1631 | 106 || 8.89 [ 2247 | 111 || 12.75 | 4360 | 330 |{10.84| 721 | 293
p =0.3,n = 25[[12.10| 3579 | 261 || 6.38 | 4275 | 216 || 10.52 [10057| 956 || 8.89 [1915| 972
p = 0.5,n = 25|[11.73| 5741 | 397 || 5.82 | 6054 | 296 || 10.06 |15219|1588|| 8.40 [2513|1730

method

bias as the trees are much smaller. We thus observe a bias/variance tradeoff
regulated this time by p. From this tradeoff results an optimal value of p of
0.5 on the Waveform database while on the Omib database the optimal value
seems to be the greatest. These experiments show that it is possible to tune this
parameter, on one hand to get better results and on the other hand to decrease
the computation times. One other interesting fact is that, whatever the dataset,
using 10 times smaller learning sets to build 10 decision trees is better (slightly
for Omib, significantly for Waveform) than building a big one using the whole
learning set. While CPU times are similar, building a big tree should be more
demanding in terms of resources.

4.2 Real-Life Datasets

We also have pursued experiments on four real-life datasets (the last four datasets
of Table[l]). Each database was split into three disjoint parts: a learning set (L.S),
a pruning set (P.S) and a test set (T°5). Results are summarized in Table [l (from
top to bottom):

— A single decision tree was built from LS, then post-pruned using PS with
classical and median discretization.

— Using the same 25 bootstrap samples, we built 25 fully developed trees
(o = 1.0) with classical discretization, we pruned them individually, then
in a combined way and tested the three bagged sets of trees using class-
probability estimates averaging. We also report the result of the same expe-
riment with median discretization in the context of combined pruning only.

— We made as well experiments with sampling without replacement using p =
1.0 and 10 samples and p = 0.1,0.3,0.5 and 25 samples, each time with
combined pruning and classical discretization.



Some Enhancements of Decision Tree Bagging 145

Table 6. Random splitting

Satellite Pendigits Dig44 Vst
P.%| C [CPU[P.%]| C [CPU||P.%] C [CPU|[P.%] C [CPU
Single trees (post-pruned)
classic ||19.85| 374 6 ||14.17| 987 6 ||24.14| 1187 | 36 ||/15.61| 146 | 30
median |[17.51| 593 5 1/15.89| 2232 | 8 {(29.66| 2995 | 18 (|16.57| 176 | 10
Bagging, 25 trees, combined pruning
classic ||10.68|12552| 101 || 4.71 |17122] 130 || 7.33 |35409| 384 || 9.18 [4014| 335
median |[11.59(23489| 102 || 4.95 |43810| 178 || 8.82 [80787| 368 ||10.68|5498| 132

method

Results on each dataset are summarized in terms of error rates, complexity and
CPU times in seconds (which include building and pruning). When bagging was
used, displayed values are the average of ten experiments with different sets of
bootstrap samples. We comment here these results separately in terms of the
three enhancements.

Median discretization. On all datasets, median discretization gives significantly
worse error rates than classical discretization while building single trees. On the
other hand, in conjunction with bagging, median still allows to obtain competi-
tive results with respect to the classical discretization. Anyway the main interest
of median discretization is the saving of time which is already significant on the
Satellite and Pendigits datasets but becomes very impressive on the other two
datasets (we gain a factor three). The smaller gain in computation time with
the first two examples can be explained by the fact that on these datasets nu-
merical attributes are integer valued between 0 and 256 and so the number of
discretization thresholds to evaluate is much smaller than (and not related to)
the number of samples in the learning set.

Since the naive median discretization works well with bagging, we pursued
some more experiments with an even more naive splitting procedure in order to
see how far we can go. To select a test, we first draw randomly an attribute, then
compute the threshold. To ensure not to choose attribute too much unrelated
to the classification, this procedure is repeated until we find an attribute which
yields a score greater than an a priori fixed threshold (here 0.1). Table [Bl shows
results obtained with this random splitting on the four datasets, first with single
trees, then with bagging of 25 trees (10 experiments). While random splitting
deteriorates significantly error rates in the case of single trees, we obtain better
results with bagging on the first three domains with a strong reduction of com-
putation times but an increase of complexity. Our feeling at this point is that,
in the context of bagging, the optimality of node splitting can be very much
relaxed, thus allowing to decrease very strongly computation times.

Combined pruning. From Table [ it is clear that individual pruning tends to
produce trees which are not complex enough given the reduction of variance due
to bagging. On the other hand, combined pruning always decreases complexity
(by 20% on average) without notable change in accuracy with respect to full
trees. However, individual pruning still could be preferred as it decreases much



146 P. Geurts

more complexity (50% on average) without very important decreases in error
rates.

Resampling. without replacement bagging with p = 0.5 gives similar results
than with replacement bagging but is better in terms of CPU times because
learning sets and thus trees are a bit smaller. On the other hand, the sampling
fraction p allows to make a tradeoff between ensembles accuracy (and ensembles
complexity) and computation times. As on the two artificial problems, averaging
ten small trees sometimes is better than building a single big one (as on Dig44)
but we see here that it can also significantly reduces accuracy (as on Pendigits).
On the other hand, even if building ten small trees is done in the same amount
of time as building a big one, the latter is more demanding in terms of memory
space and real computation times should be higher in this case.

5 Discussion

In this paper we have investigated three enhancements of decision tree bagging
on which we give the following conclusions and future work directions:

Discretization. While the “median” discretization method does not work gene-
rally as good as the classical one when building single decision trees, the loss it
introduces vanishes when we use it in conjunction with bagging. Our feeling is
that bagging has the effect of counterbalancing the sub-optimality of the node-
splitting procedure used to build the individual trees. Thus, there is definitely an
opportunity here to reduce computing times of tree bagging, without sacrificing
accuracy, especially when dealing with large datasets. Although we did mainly
focus in this paper on the discretization part of node splitting, our results with
random-splitting suggest that further simplification of the node-splitting algo-
rithm can be obtained without notable degradations of accuracy. This opens
a new field of investigations to design ad hoc tree growing procedures in the
context of bagging.

Pruning. Breiman [4] and others [I] have come to the conclusion that unpruned
trees were better than individually pruned trees in the context of bagging, since
bagging reduces variance only. However, our experiments have shown that in
some problems (e.g. the Waveform database) pruning the trees in a combined
way taking into account the model aggregation step, may lead to more accurate
models than fully grown trees. We thus believe it is a good idea to use it in
conjunction with tree bagging since it never decreases significantly performances
in terms of error rates, and it is still very efficient in terms of computing time.

Resampling scheme. Our experiments with different resampling schemes agree
with the theoretical developments in [6]. Sampling without replacement can give
similar results than sampling with replacement but with decreased computation
times. From these experiments comes the idea of alternative uses of bagging
already proposed in [3], for example as a way to handle very large datasets or
to learn incrementally a model. In the first goal, we could randomly partition



Some Enhancements of Decision Tree Bagging 147

a large database into several small parts (say ten times smaller than the whole
set), build a tree from each part and then average the resulting models. Our
experiments and the one in [3] show that this procedure would work at least as
well as building only one tree. On the other hand, the appropriate use of the
scheme in an incremental and adaptive way to handle time-varying data has still
to be investigated, but seems to be a very promising direction of complementary
work.

Allover, the various improvements suggested in this paper can be combined
to make tree bagging a very attractive procedure in the context of data mining
of very large databases, more accurate than classical tree induction and of the
same or even higher computational efficiency and scalability.

References

1. E. Bauer and R. Kohavi. An empirical comparison of voting classification algo-
rithms : Bagging, boosting, and variants. Machine Learning, 36:105-139, 1999.

2. L. Breiman. Bagging predictors. Technical report, University of California, De-
partment of Statistics, September 1994.

3. L. Breiman. Pasting small votes for classification in large databases and on-line.
Machine Learning, 36:85-103, 1999.

4. L. Breiman. Using adaptive bagging to debias regressions. Technical report, Sta-
tistics Department, University of California, Berkeley, February 1999.

5. L. Breiman, J.H. Friedman, R.A. Olsen, and C.J. Stone. Classification and Re-
gression Trees. Wadsworth International (California), 1984.

6. J. H. Friedman and P. Hall. On bagging and nonlinear estimation. Technical
report, Statistics Department, Standford University, January 2000.

7. J.H. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data
Mining and Knowledge Discovery, 1:55-77, 1997.

8. P. Geurts and L. Wehenkel. Investigation and reduction of discretization variance
in decision tree induction. In Proc. of the 11th European Conference on Machine
Learning (ECML-2000), Barcelona, pages 162-170, May 2000.

9. T.O. Kvalseth. Entropy and correlation : Some comments. IEEE Trans. on Sy-
stems, Man and Cybernetics, SMC-17(3):517-519, 1987.

10. Dragos D. Margineantu and Thomas G. Dietterich. Pruning adaptive boosting.
In Morgan Kaufmann, editor, Proc. of Fourteenth International Conference on
Machine Learning (ICML-97), 1997.

11. D. Michie and D.J. Spiegelhalter, editors. Machine learning, neural and statistical
classification. Ellis Horwood, 1994.

12. Peter Sollich and Anders Krogh. Learning with ensembles : How over-fitting can
be useful. In D.S. Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8, pages 190-196. MIT Press,
1996.

13. L. Wehenkel. Automatic learning techniques in power systems. Kluwer Academic,
Boston, 1998.



	Some Enhancements of Decision Tree Bagging
	Introduction
	Bootstrap Aggregating (Bagging)
	Proposed Enhancements of Decision Tree Bagging
	Median Discretization
	Combined Pruning
	Resampling Method

	Empirical Studies
	Artificial Problems (Omib and Waveform)
	Real-Life Datasets

	Discussion
	References


