
M. Reed Little and L. Nigay (Eds.): EHCI 2001, LNCS 2254, pp. 157–172, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Pervasive Application Development
and the WYSIWYG Pitfall

Lawrence D. Bergman1, Tatiana Kichkaylo2, Guruduth Banavar1,
and Jeremy Sussman1

1 IBM T.J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532
2 Department of Computer Science, New York University

{bergmanl, banavar, jsussman}@us.ibm.com, kichkay@cs.nyu.edu

Abstract. Development of application front-ends that are designed for
deployment on multiple devices requires facilities for specifying device-
independent semantics. This paper focuses on the user-interface requirements
for specifying device-independent layout constraints. We describe a device
independent application model, and detail a set of high-level constraints that
support automated layout on a wide variety of target platforms. We then focus
on the problems that are inherent in any single-view direct-manipulation
WYSIWYG interface for specifying such constraints. We propose a two-view
interface designed to address those problems, and discuss how this interface
effectively meets the requirements of abstract specification for pervasive
applications.

1 Introduction

The challenge of writing applications has broadened in recent years because of a
proliferation of portable devices, like personal digital assistants (PDA's) and
programmable phones. These devices have varying physical resources, including
differing display sizes and special I/O mechanisms. As a consequence, application
front-ends, which include the user interface and some control logic such as event
handlers, often must be written from scratch for each type of device on which that
application is to run. This imposes an immense development and maintenance
burden, particularly since the developer may not be aware of all the devices on which
the application is to be deployed. Indeed, an application may be run on hardware
platforms that were not even in existence when the application was written!

Figure 1 shows an example. The three parts of the figure show a portion of the
same application (browsing of information at a job fair) on a PC running java, on a
web-browser, and on a mobile phone. Notice the differences in the amount of
information contained on a screen, as well as in the layout. The ideal is to have a
single specification that produces all of these rendered applications.

There are two common approaches to solving the problem of specifying
application front-ends that are intended to run on multiple devices. The first is to use
a device- neutral specification language and library, with run-times for that language

158 Lawrence D. Bergman et al.

 (a) Browser (HTML) (b) Mobile phone (WML)

(c) Java

Fig. 1. Platform independent application (job fair) deployed on three platforms

Pervasive Application Development and the WYSIWYG Pitfall 159

deployed on all target devices. This is the approach taken by Java [10]. The problem
here is that device characteristics can be radically different, so attempts to run a single
user-interface design on multiple platforms is bound to give poor results. Indeed, on
some devices, such as cellular phones, the UI assumptions underlying AWT do not
hold at all.

The other approach is “style sheet” customization. This allows the designer to
craft a device-specific set of layout rules for each individual device, using a style
sheet transformation language such as XSLT [18]. The problem with this approach is
that a style sheet is not application-specific; the same style sheet is typically applied
to all applications to be run on a particular device. The style sheet overrides any
application-specific characteristics.

An additional possibility, of course, is to develop a different style sheet for each
application-device pair. This leads to the problem of both developing and managing a
large number of style sheets – exactly the problem addressed by device-independent
application development.

We are developing a framework that attempts to address the problem of creating
application front-ends that can be developed once, and that will run reasonably on a
wide variety of hardware platforms. Our goal is “write once, right anywhere,”
application development. Our approach is to provide an application model that allows
the designer to create a device-independent specification of the front-end. Part of the
specification is a set of device-independent layout semantics, which are specified as a
set of constraints. Although the layout produced by the specification should be
reasonable on all devices, the designer may wish to produce interfaces tailored for
certain platforms. By providing layout constraints and overrides, the designer can
customize the interface to particular sets of devices (e.g., all mobile phones with
display screens). We call this process specialization. Specializations can be specified
broadly, for example, all GUI devices, or narrowly, for example, a single device.
When specializing for a single device, we allow the designer to use the convenience
of a WYSIWYG-style interface. We call this style of specialization tweaking. The
discussion in this paper will focus on specification of device-independent semantics
for specialization, rather than on device-specific specialization or tweaking.

The main contributions of this work are:
− A constraint model for specifying layout semantics that is to be applied to

generating user-interfaces for multiple target devices.
− A discussion of problems with single-view direct-manipulation “what you see is

what you get” (WYSIWYG) interfaces for specifying device-independent layout
constraints.

− A proposed two-view interface design and implementation that addresses these
issues.

2 Related Work

The work described here builds on previous work in the areas of model-based user
interface systems, constraint-based interface specification, and multi-view systems. We
do not claim to advance any of these areas in this paper. Instead, we focus on the
unique problems that arise when model-based systems with constraints are applied to

160 Lawrence D. Bergman et al.

the area of multi-device application development, and how a multi-view system can
potentially solve these problems.

Model-based user interface systems [15], [16] allow interfaces to be specified by
constructing a declarative model of how the interface should look and behave. A run-
time engine executes the model and constructs the application’s displays and
interprets input according to the information in the model. Of particular relevance in
this area are the various task models of user interaction [4], [11]. Our application
development model described in the following section is an example of a model-
based user-interface specification. In contrast to previous work, however, the design
of our application model was driven specifically by the requirements of multi-device
application development.

Model-based systems pose a class of problems having to do with developers’
difficulty in maintaining a mental model that connects an abstract interface
specification with multiple concrete realizations of it. One problem in this class,
called the “mapping problem”, was identified by Puerta and Eisenstein [13]. The
mapping problem is the difficulty of mapping an abstract interface element to
multiple concrete elements, thus reducing the usability of model-based systems. To
solve this problem, the authors propose a new model component, called the design
model, to support the inspection and setting of mappings via the use of intelligent
tools. The problem that this paper focuses on – the difficulty of simultaneously
viewing device-independent specifications and device-specific layouts derived from
those specifications – is another instance in the class of problems mentioned above.

There has been some recent work in the area of “intent-based” markup languages
[1], which are textual languages for declaratively specifying multi-device interfaces.
However, this work is yet to address the issue of developing tools for creating
applications using such languages.

Another related area of research is the creation of user-interfaces via
demonstration. The Amulet project is one example of such work [12].

Much work has been done in the area of constraints for user interface development.
Constraint-based windowing systems include SCWM [2] and Smalltalk [6]. There
are several constraint-based drawing systems such as [14]. Constraints have been
applied to a variety of user-interface problems, including database user interfaces [7],
programming by demonstration [8], and data visualization [17]. Constraint solvers
for user-interface systems have been developed [5], [9]. However, we are not aware
of any work that has applied constraints to the problem of multi-device user interface
development.

3 The Application Development Model

In this section we will give a very brief, high-level view of our application
development model. Although the task model described is not particularly novel, we
present it in order to lay the groundwork for the central discussion of this paper –
mechanisms for specifying layout semantics.

An application developed using our framework consists of one or more tasks. A
task is a unit of work to be performed by the user. Examples of tasks include
registering for a subscription service, placing an online order, or browsing a catalog.

Pervasive Application Development and the WYSIWYG Pitfall 161

A task may be made up of subtasks, with the granularity of the lowest level tasks
completely at the discretion of the designer.

Lowest level tasks or leaf tasks contain interaction elements. Interaction elements
provide for user input and/or system output. Interaction elements provide abstract
descriptions of entities that may be rendered as widgets on GUI devices, or voice
elements in a speech-based interface. Examples of interaction elements include
SelectableList, which presents the user with a list of data items from which the user is
to choose (e.g., a pull-down menu), and Input which allows the user to enter
information (e.g., a type-in field).

In addition to tasks and interaction elements, the application designer specifies
variables and event handlers, navigation between tasks, and sets of layout constraints.
The constraints are used to create to page layouts for each particular device, and for
determining the number and contents of pages for the rendered application.

4 User-Interface Constraint Specification

In this section, we will describe the set of constraints that we wish to specify for our
models. It is important to keep in mind that we are not trying to address the problem
of laying out user interfaces targeted for particular devices; this ground has been well-
covered by previous investigators. We are addressing the problem of devising sets of
constraints to be used for generating interfaces for multiple target platforms. For this
reason, we focus primarily on semantic constraints.

In this discussion, we distinguish between two types of user-interface constraints
that can be specified for a device-independent application. Constraints can either be
generic, applicable to any type of input or output device, or they can be graphical,
applicable only to devices with traditional display screens.

4.1 Generic Constraints

Generic constraints are completely device-independent. We currently support two
types of generic constraints: ordering constraints and grouping constraints.

Ordering constraints specify the sequencing of interaction elements in the
interface. For example, if an address form has a name field, a street address field, and
a city/state field, we want to specify that they be presented in that order. First and
last constraints specify the relative positioning of individual interaction elements
within a leaf task. In addition, ordering between pairs of interaction elements can be
specified. This type of constraint, which we call after, operates on two interaction
elements, specifying that one element is to be positioned anywhere after the other1.

Grouping constraints specify that interaction elements are semantically related,
and should be kept together (in a GUI, on the same screen and adjacent) in the
rendering of the user-interface. An example is that all the elements in the address
form discussed above are related, and would constitute a group. The single grouping

1 For simplicity, we limited the interface to this small number of ordering constraints. It may

be that others such as immediately after are sufficiently valuable to warrant inclusion.

162 Lawrence D. Bergman et al.

constraint, group, can be applied to any number of interaction elements within a leaf
task.

For purposes of constraint specification, groups are treated just like interaction
elements. In other words, a group can be selected as an argument for any constraint
operator, including the grouping operator (i.e., groups can be nested).

Group is a high-level semantic construct that can be interpreted in different ways
by run-time implementations for different devices. We readily envision more device-
specific grouping constraints such as group by row, or group by column – these
particular examples only applying to GUI’s.

Note that both generic ordering and grouping constraints are semantic
specifications, applicable to any class of device, with device-specific presentation
differing from device to device. First, for example, on a large-screen visual display
would specify the interaction element is to be rendered as a widget positioned in the
upper-left corner of the display. On a small-screen display (a mobile phone, for
example), rendering of the interaction element might fill an entire screen, thus first
would indicate the first screen. On a voice interface, on the other hand, first would
indicate the first event in the voice interactions, either a voice-input or a voice-output
item. Similarly after clearly specifies temporal ordering for a speech interface, but is
subject to interpretation on a GUI – probably producing some sort of text-flow (e.g.,
down and/or to the left) ordering.

4.2 Graphical Constraints

Graphical constraints apply only to devices with visual displays. We currently
support two types – sizing constraints and anchoring constraints.

Sizing constraints are used to ensure that members of a set of interaction elements
are all rendered with the same width (using the same width constraint) or the same
height (using the same height constraint). This facilitates the design of interfaces that
conform to standard UI guidelines. Note that we specify sizing and grouping
separately. This allows us to specify that all buttons are to be rendered the same size
for a particular task, but without requiring that the buttons be adjacent.

Anchoring constraints are used to position interaction elements on a screen, giving
a designer some control over element placement. The four anchoring constraints, top,
bottom, left, and right allow a designer to place particular elements at the boundaries
of the visual display – permitting a set of buttons to be positioned at the bottom of the
screen, for example.

The set of constraints described here is by no means complete. This set does not

come close to supporting the degree of control possible with a UI toolkit such as
AWT or Motif. This is by intent. Our goal here is provide an easy-to-use, high-level
set of constraints that can be used to specify interface characteristics to be applied
across a wide range of possible devices. We anticipate that designers who want truly
beautiful interfaces for particular target platforms will take the output of our
specialization engine, and tweak it by hand, as mentioned in the introduction. Our
goal is to produce a usable interface for any device, with provisions for a designer to
improve the default interface for particular devices or sets of devices.

Pervasive Application Development and the WYSIWYG Pitfall 163

5 The WYSIWYG Interface Problem

In designing a constraint-specification interface for user-interface layout, it is
tempting to develop a single-view, direct-manipulation, “what you see is what you
get” (WYSIWYG) interface. Such an interface would provide the following
functionality, required for any design environment of this sort:
1. Selecting items. A WYSIWYG view can be used for selecting user-interface

components on which operations are to be performed (positioned, sized, etc). This
is common practice, allowing the designer to quickly and effectively specify the
items in context.

2. Viewing constraints. The WYSIWYG view can also be used to display the
constraints by visually identifying the interface components and the constraints that
apply to them. This is attractive, because it minimizes the cognitive load on the
designer. S/he can see which interaction elements have constraints applied to
them, and what those constraints are, while reviewing the visual appearance of the
interface.

3. Viewing layout. It is critical that any interface design system provide visual
feedback to the designer. A WYSIWYG interface shows the effects of changes in
the layout specification by presenting a representation of the sizes and positions of
the user interface components as they will appear in the final application.
Although it seems desirable to provide all of this functionality in a single view,

there are several serious problems in using a single WYSIWYG view as a direct-
manipulation interface when specifying constraints for device-independent
applications2. Some of these problems have to do with the fact that the application
will, in general, be laid out across multiple screens, some of them have to do with the
fact that the application is to be deployed on multiple platforms. These problems, in
order of decreasing importance, are as follows:
1. The most serious drawback to a WYSIWYG interface is that the user is “led down

the garden path.” What the user sees is not what the user is going to get in general,
since only a single device is emulated in the interface. The user is being tempted
to customize the design for one particular device, rather than thinking about the
general problem of constraints that are appropriate for all devices. Even though an
interface may provide a capability for toggling between device emulations, thereby
allowing a view of multiple layouts, this feature is easily overlooked. A possible
solution is to simultaneously provide multiple views. This can easily lead to
confusion between viewing and control (in the model/view/controller sense),
however.

2. A WYSIWYG screen layout changes each time a constraint is specified. If the
WYSIWYG view is also being used as a set of direct-manipulation controls, this
has the effect of moving those controls after each operation, a highly undesirable
characteristic. Furthermore, the constraint solver may move some of the
interaction elements to different screens (i.e., pages), compounding the sense of
dislocation experienced by the user, particularly if only one virtual screen is
displayed at a time – interaction elements will disappear from view. This seriously

2 Single-view WYSIWYG interfaces may be effective for customizing a design for a particular

device, a process we call tweaking, but this is not the device-independent design we are
discussing here.

164 Lawrence D. Bergman et al.

reduces the usability of the interface. It may be possible to partially alleviate this
problem by having the user explicitly specify when the interface is to be re-laid
out, but this breaks the WYSIWYG model.

3. Constraints cannot always be satisfied. For example, the screen size may not be
large enough to contain all interaction elements in a group. A single-view
WYSIWYG interface may be unable to display the constraint in that case (e.g.,
displaying group as some form of visual containment is not possible). Switching
the emulation to a larger device may allow that constraint to be included, and
hence displayed. This is misleading and confusing behavior.

4. The user may wish to specify constraints between interaction elements on separate
screens. For example, after or group constraints may involve interaction elements
on more than one screen. This makes the specification a bit awkward, since the
user must switch screens while selecting interaction elements. Either multiple
screens must be displayed simultaneously, which can strain screen resources, or the
designer will need to toggle between screens. Intuitive constraint displays such as
arrows for after or visual containment for group (using a bounding box, for
example) becomes problematic. The interface needs to rely more heavily on less
obvious visual metaphors and/or user memory.

5. A WYSIWYG interface, because it presents only final appearance, lacks
information about the structure of the task model, information that might be of
value to the interface designer. In specifying layout constraints, it may be
important to know with which task or subtask particular interaction elements are
associated. Although it would be possible to provide some of this information – by
labeling emulated screens with subtask names, for example – it is difficult to
envision an interface that will provide all of this structural information in the
context provided by a WYSIWYG view.
From this discussion, it should be clear that a better interface paradigm is required.

In the next section, we discuss an alternative to the single-view, direct-manipulation
WYSIWYG interface, and describe our implementation.

6 A Solution: The Two-View Constraint Editor

In this section we will discuss the desired characteristics of a two-view constraint
editor, describe our implementation, and explain how the two-view interface solved
the “WYSIWYG pitfall.”

6.1 Desired Characteristics

The fundamental problem with a single-view direct-manipulation WYSIWYG editor
is that the single view is not adequate to display both the logical structure of the
constraint set within the context of the task model, as well as an indication of the
types of layouts produced by that constraint set. What is desired is a single logical
view of the task structure and interaction elements that could be used both as an
interface to specify constraints, and also as a conceptual view of these constraints.
The logical view should be arranged to make it easy to see and think about the entire
constraint set.

Pervasive Application Development and the WYSIWYG Pitfall 165

Additionally, the designer should be able to view the effects of the constraints on
interfaces that are generated for various devices, but with minimal opportunity for the
user to assume that the preview is a “true” representation of what will be produced for
multiple devices. A clear separation of the logical view from the device preview
should facilitate this. For these reasons, a two-view system is more likely to embody
all the desired characteristics of a constraint-specification interface for pervasive
application development than a single-view WYSIWYG editor.

6.2 Current Implementation

The constraint-specification interface is one component of an application
development (AD) tool for specifying device independent applications. The AD tool
is a part of our device-independent application framework, called PIMA (Platform-
Independent Model for Applications) [3]. Other components of the AD tool include a
task editor for managing task structure and navigation; and a task details editor for
specifying interaction elements, variables, and events that comprise individual tasks.

Figure 2 shows the two-view constraint-specification interface with some
constraints specified. On the left hand side is a graphical representation of the task
structure and interaction elements. We call this the logical view. Tasks are
represented as labeled, nested rectangles, with gray rectangular icons representing
interaction elements contained within them. The logical view serves two purposes. It
is used to add and remove constraints, and also to view the set of constraints that are
currently specified.

Interaction elements are selected by clicking on them, and then operations are
applied to individual interaction elements or groups of interaction elements. The user
can select one or more icons using the mouse. Once a set of interaction element icons
has been selected, pressing a button corresponding to the desired constraint type
specifies a constraint. A visual representation of the constraint is added to the
display. In a similar fashion, constraints can be removed.

The right-hand side of the two-view interface is a representation of a screen layout
for a single screen on a particular device, with each widget (interaction elements will
be presented as widgets in a GUI) represented as a named rectangle, sized and
positioned as it would be in the final running application. We call this the layout
view. In figure 2, the layout view displays an emulation of the first screen of our job
fair application, configured for a PC running Java. Each change to the constraint
specification triggers an update in the layout view. The user can navigate the screens
for a particular device by selecting from a set of radio buttons, or select from a set of
different devices by choosing from a selectable list. Each device is emulated using
the task/interaction element/constraint description, and a device capabilities file that
defines screen size and default widget sizes.

Figure 2 shows the interface after specification of several constraints. Dark circles
in the upper left and lower right corners of interaction elements icons in the logical
view, indicate first and last constraints, respectively. “Name” has been specified as
first, and “URL” as last. Arrows connecting two interaction elements shows ordering.
The arrow between “Name” and “Phone” indicates that “Name” is to precede
“Phone.”

166 Lawrence D. Bergman et al.

Fig. 2. Two-view layout constraint specification interface

To facilitate legibility, we ensure that all arrows point downward, rearranging icon

placement if necessary. For obvious reasons, cycles are detected by the interface and
disallowed. Small arrow icons point to the side of interaction element icons for which
anchoring has been specified. “Skillslist” is anchored on the right, and “Years of
experience” on the left. Double-headed arrows are used to indicate same size
constraints – vertical arrows for height constraints, and horizontal arrows for width
constraints. The arrows have numbers associated with them, the members of a same-
size set all displaying the same number. “Degree” and “URL” have the same width in
our example.

Groups are represented by repositioning all entities to be grouped so they are
contiguous, and drawing a rectangle that encloses them. The figure shows a single
group containing “Name” and “Phone.”

Figure 3 shows a later version of the same interface. Notice that we have included
two device-specific layout views on the right-hand side (layout for a PC on top, for a
browser on the bottom). This allows a user to see the effects of constraints on
multiple devices simultaneously. We expect this to further reduce the tendency
towards “what you see is what you get” design.

Pervasive Application Development and the WYSIWYG Pitfall 167

Fig. 3 A later version of the two-view constraint specification interface showing the constraint
view on the left, and the device-specific layouts for two different devices on the right

6.3 Solutions to the WYSIWYG Interface Problems

We note that the two-view interface solves the previously described problems of the
WYSIWYG interface as follows:
1. Since the logical (interface/constraint display) view is provided as a single,

scrollable display, not separate virtual screens; no context switching is required to
select multiple interaction elements. Display of ordering is readily achieved on the
single panel.

2. Since the logical and layout views are separated, constraints can always be
visualized, even if constraints cannot be satisfied for particular devices being
emulated.

3. The task model is integrated into the logical view, facilitating high-level, device-
independent thinking about the constraint set.

4. Although interface controls can move in this interface (since specification of
ordering constraints can lead to re-ordering of the interaction element icons in the
logical view), context is much more readily maintained than it would be with a
single-view WYSIWYG interface. The task structure helps to retain orientation,
and the problem of some of the interaction elements vanishing off-screen for
certain operations has been solved. Note that allowing the user to specify when
icons are to be reordered would be a viable possibility, and would not pose the
problem discussed earlier of breaking a WYSIWYG model.

168 Lawrence D. Bergman et al.

5. The user is much less tempted to think that the emulation view is “reality” than
with a single-view WYSIWYG interface. The separate logical view encourages
device-independent thinking.

7 Discussion

The main thrust of the two-view interface is to encourage a designer to think
generically. When designing a device-independent application intended to run across
a variety of pervasive devices, it is critical that design choices be made on general
principles, not based on specific display characteristics. The interface should
encourage thinking of the form, “This particular interaction element really belongs at
the beginning of the task on any device.” If the designer is thinking, “I see a blank
spot at the top of this screen, I’d like to move that widget to the top to fill it,” s/he has
missed the point and trouble may ensue.

By separating the logical structure of the application from its presentation view,
and integrating the constraint interface with that logical structure, we encourage
device-independent design. It is rather difficult for a designer to make the connection
between specific constraints and the generated layout. This is by intent. By not
providing the easy connection, “this widget is at the top of the screen because a ‘top’
constraint was specified,” there will be far less temptation to do “appearance-guided
design,” in our opinion the major potential pitfall for device-independent UI
development.

Even though we have separated the logical view from the UI appearance,
presentation of a single concrete representation of the layout could still pose a
problem, leading the user to believe it is the view. We have recently added multiple
device presentations to our interface. Since these presentations are for viewing only,
not for interface control, providing multiple views is less problematic than for a
WYSIWYG editor. Whether providing multiple views is an effective solution will
require future user studies.

8 Future Work

Although we have presented a problem with interfaces for device-independent user
interface development, and proposed a solution, user studies are clearly necessary.
Two questions need to be addressed. The first is, “does the device-independent
application model, with specification of device-independent constraints provide
enough control – allowing the designer to create applications that run reasonably well
on all platforms, and that are easily tweaked to produce high-quality interfaces on
selected platforms?”

The second question broadly is, “what is the ‘best’ interface for specifying device-
independent interface constraints?” We propose a more focused question, namely, “is
a two-view interface more usable for specifying device-independent interface
constraints than a WYSIWYG interface?” A user study that pits our two-view
interface against a single-view WYSIWYG interface, measuring the quality of the
interfaces produced and/or the speed of production should provide valuable insight

Pervasive Application Development and the WYSIWYG Pitfall 169

into the nature of the device-independent application development process, and the
tools required to support it. Note that to tweak an interface for a specific platform, a
single-view direct-manipulation WYSIWYG interface is clearly appropriate.

Another question that we plan to investigate is, “how does one provide a designer
with tools for specifying interface characteristics for classes of devices?” We have
discussed two points on a continuum – either creating a generic device-independent
specification, or customizing an interface for a particular device type. Clearly there
are points in between. We can envision classifying device characteristics – graphical
vs. voice, large-screen vs. small screen, presence/absence of hardware inputs such as
hard buttons, etc., and then providing different sets of constraints or hints for different
classes. Essentially design becomes a process of specifying sets of rules – “if the
application is running on a small-screened device, place this widget on its own
screen,” for example. The question then is, does such a design methodology produce
usable interfaces with fewer burdens on the designer than producing an interface
separately for each device to be supported? We believe that with a carefully
developed methodology, the answer will be yes, both in terms of less work being
required, and in providing support for devices not in existence when the application is
developed.

9 Conclusions

In this paper we have explored some issues surrounding design of development tools
for creating device-independent applications. In particular, we have pointed out
particular pitfalls when designing for multiple devices that do not exist when
designing an application for a single device, or a very small set of predetermined
devices.

The central problem that we have identified is that a design tool must be carefully
structured to not tempt a designer to believe that emulations of the interface represent
what will actually be displayed on target devices; the targets cannot be known or
adequately represented at design-time. We suggest the need for design environments
that facilitate intent-based rather than graphical thinking.

We have proposed one solution to this problem – a two-view system for specifying
interface characteristics. Although we have not proven the utility of this approach, we
have clearly identified the problems that exist, and suggested how different design
interface characteristics might alleviate or exacerbate the problem. We have provided
a framework for future studies and interface development in this area.

Acknowledgments

We would like to thank Noi Sukaviriya and Rachel Bellamy for illuminating
conversations, which helped fuel this work. John Richards and Jonathon Brezin
identified the “single-view direct-manipulation WYSIWYG” problem, and were
instrumental in helping us formulate a viable solution. John Turek provided valuable
support and feedback during the course of this work.

170 Lawrence D. Bergman et al.

References

1. M. Abrams, C. Phanouriou, A. Batongbacal, S. Williams, and J. Shuster, UIML: An
Appliance-Independent XML User Interface Language, in Proceedings of the Eighth
International World Wide Web Conference, May 1999, p. 617-630.

2. Greg J. Badros, Jeffrey Nichols, and Alan Borning, SCWM---an Intelligent Constraint-
enabled Window Manager, in Proceedings of the AAAI Spring Symposium on Smart
Graphics, March 2000.

3. PIMA project home page. http://www.research.ibm.com/PIMA
4. Larry Birnbaum, Ray Bareiss, Tom Hinrichs, and Christopher Johnson, Interface Design

Based on Standardized Task Models, in Proceedings of the 1998 International Conference
on Intelligent User Interfaces 1998, p.65-72.
http://www.acm.org/pubs/articles/proceedings/uist/268389/p65-birnbaum/p65-
birnbaum.pdf

5. Alan Borning, Kim Marriott, Peter Stuckey, and Yi Xiao, Solving Linear Arithmetic
Constraints for User Interface Applications, in Proceedings of the 1997 ACM Symposium
on User Interface Software and Technology, October 1997, p. 87-96.
http://www.acm.org/pubs/articles/proceedings/uist/263407/p87-borning/p87-borning.pdf

6. Danny Epstein and Wilf LaLonde, A Smalltalk Window System Based on Constraints, in
Proceedings of the 1988 ACM Conference on Object-Oriented Programming Systems,
Languages and Applications, San Diego, September 1988, p. 83-94.

7. Phil Gray, Richard Cooper, Jessie Kennedy, Peter Barclay, and Tony Griffiths, Lightweight
Presentation Model for Database User Interfaces, in Proceedings of the 4th ERCIM
Workshop on “User Interfaces for All” 1998 n.16, p.14. http://www.ics.forth.gr/proj/at-
hci/UI4ALL/UI4ALL-98/gray.pdf

8. Takashi Hattori, Programming Constraint System by Demonstration, in Proceedings of the
1999 International Conference on Intelligent User Interfaces 1999, p.202.
http://www.acm.org/pubs/articles/proceedings/uist/291080/p202-hattori/p202-hattori.pdf

9. Scott Hudson and Ian Smith, Ultra-Lightweight Constraints, in Proceedings of the ACM
Symposium on User Interface Software and Technology 1996, p.147-155.
http://www.acm.org/pubs/articles/proceedings/uist/237091/p147-hudson/p147-hudson.pdf

10. http://www.javasoft.com/
11. David Maulsby, Inductive Task Modeling for User Interface Customization, in Proceedings

of the 1997 International Conference on Intelligent User Interfaces 1997, p. 233-236.
www.acm.org/pubs/articles/proceedings/uist/238218/p233-maulsby/p233-maulsby.pdf

12. Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S. Ferrency, Andrew
Faulring, Bruce D. Kyle, Andrew Mickish, Alex Klimovitski and Patrick Doane. The
Amulet Environment: New Models for Effective User Interface Software Development,
IEEE Transactions on Software Engineering, Vol. 23, no. 6. June, 1997. pp. 347-365.

13. Angel Puerta and Jacob Eisenstein, Towards a General Computational Framework for
Model-Based Interface Development Systems Model-Based Interfaces, Proceedings of the
1999 International Conference on Intelligent User Interfaces 1999, p.171-178.
http://www.acm.org/pubs/articles/proceedings/uist/291080/p171-puerta/p171-puerta.pdf

14. Kathy Ryall, Joe Marks, and Stuart Shieber, An Interactive Constraint-based System for
Drawing Graphs, in Proceedings of UIST 1997, Banff, Alberta Canada, October 1997, p.
97-104. http://www.acm.org/pubs/articles/proceedings/uist/263407/p97-ryall/p97-ryall.pdf

15. Piyawadee "Noi" Sukaviriya, James D. Foley, and Todd Griffith, A Second Generation
User Interface Design Environment: The Model and the Runtime Architecture, in
Proceedings of ACM INTERCHI'93 Conference on Human Factors in Computing Systems
1993, p.375-382. http://www.acm.org/pubs/articles/proceedings/chi/ 169059 /p375-
sukaviriya/p375-sukaviriya.pdf

16. Pedro Szekely, Ping Luo, and Robert Neches, Beyond Interface Builders: Model-Based
Interface Tools, in Proceedings of ACM INTERCHI'93 Conference on Human Factors in

Pervasive Application Development and the WYSIWYG Pitfall 171

Computing Systems 1993, p.383-390. http://www.acm.org/pubs/articles/proceedings/chi/
169059/p383-szekely/p383-szekely.pdf

17. Allison Woodruff, James Landay, and Michael Stonebraker, Constant Density
Visualizations of Non-Uniform Distributions of Data Visualization, Proceedings of the
ACM Symposium on User Interface Software and Technology 1998, p.19-28.
http://www.acm.org/pubs/articles/proceedings/uist/288392/p19-woodruff/p19-woodruff.pdf

18. XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16, November 1999.
http://www.w3.org/TR/xslt See also, www.xslt.com.

Discussion

L. Nigay: I would like to come back to the specialization mechanism. How do you go
from abstract widgets to concrete widgets? Do you have a model to describe devices?
L. Bergman: Simple mapping. Only graphical modalities. Thinking of speech input.

K. Schneider: Does the multi-view editor support "tweaking" the user interface? Are
the "tweaks" retained when a constraint is added or moved or changed? Can it
"tweak" the constraints, such as order, for a particular concrete user interface?
L. Bergman: We are just beginning to address those issues. The editor supports
"tweaking". The "tweaks" to the properties of an element are retained but the
structural "tweaks" are not. And, yes, you can override the constraints when
"tweaking" the user interface.

J. Höhle: I agree that people want/need a hands-on approach to explore/play with the
design. But do you really think that tools like MS FrontPage will continue to be
wanted? Couldn't your tool provide hands-on and not produce output that only works
with MS-Explorer, only in 640x480, generates incorrect HTML, etc. ?
L. Bergman: We have a handful of feedback: these people really want to move around
stuff and not learn a new model. We need more feedback, though.

N. Graham: What are the limits of this kind of approach? When designing for very
different interfaces (eg electronic whiteboard vs palm pilot), the resulting interfaces
may be completely different, not just different in choice of widgets.
L. Bergman: This approach is very much biased towards form-based approaches. This
is a limitation when trying to get cross-platform design.

C. Roast: I'm interested in the user's response to a logical view and possible concrete
views. There is evidence that the concrete view presists for designers. What plans do
you have for your user studies?
L. Bergman: Because of the concrete bias we are interested in example driven uses of
the editor. As for user studies, we are still planning.

M. Borup-Harning: Can your approach cope with situations where e.g. presenting
editable information on a GUI vs. a HTML based platform might result in one form-
based interface on the GUI platform, whereas the HTML based one will be divided
into a presentation page with an edit button and one or more form-based pages for
editing.
L. Bergman: I am not sure I understand the question? But the system was not meant to
deal with arbitrarily long lists of information.

172 Lawrence D. Bergman et al.

J. Williams: Have you considered providing a transition from the concrete interface
view to the logical representation? This would allow developers to specify in the
concrete, yet you retain reuse across devices. In addition, you can transform existing
specifications.
L. Bergman: Yes, this is future work.

	Pervasive Application Developmentand the WYSIWYG Pitfall
	1 Introduction
	2 Related Work
	3 The Application Development Model
	4 User-Interface Constraint Specification
	4.1 Generic Constraints
	4.2 Graphical Constraints

	5 The WYSIWYG Interface Problem
	6 A Solution: The Two-View Constraint Editor
	6.1 Desired Characteristics
	6.2 Current Implementation
	6.3 Solutions to the WYSIWYG Interface Problems

	7 Discussion
	8 Future Work
	9 Conclusions
	Acknowledgments
	References
	Discussion

