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Abstract. The aim of this paper is to present the SPOOL design repository, 
which is the foundation of the SPOOL software engineering environment. The 
SPOOL design repository is a practical implementation of the UML 
metamodel, and is used to store detailed design-level information that is 
extracted from the source code of industrial systems. Its internal mechanisms 
and related tools provide functionalities for querying data and observing 
dependencies between the components of the studied systems, facilitating core 
tasks conducted in reverse engineering, system comprehension, system 
analysis, and reengineering. This paper discusses the architecture, the schema, 
the mechanisms, and the implementation details of the repository, and 
examines the choice of the UML metamodel. Experiences conducted with 
large-scale systems are also presented, along with related work and future 
avenues in design repository research. 
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1 Introduction 

In information systems engineering and software engineering alike, repositories play 
an important role. Repositories at the design level, henceforth referred to as design 
repositories, are key to capture and manage data in domains as diverse as corporate 
memory management [10], knowledge engineering [15], and software development 
and maintenance. In this paper, we report on our experience in designing and 
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implementing a design repository in this latter domain, that is, in the realm of system 
comprehension, analysis, and evolution. 

In order to understand, assess, and maintain software systems, it is essential to 
represent the analyzed systems at a high level of abstraction such as the analysis and 
design level. End user tools need access to this information, and thus, a design 
repository for storing the analyzed systems is required. Such a design repository 
should meet a number of requirements. First, it should be designed such that its 
schema will be resilient to change, adaptation, and extension, in order to address and 
accommodate easily new research projects. Second, it should preferably adopt a 
schema based on a standard metamodel, and offer extensibility mechanisms to cope 
with language-specific constructs. Third, in order to enable easy information 
interchange with other third-party tools, a flexible model interchange format should 
be used for importing and exporting purposes. Finally, the design of the repository 
should take into account scalability and performance considerations. 

In the SPOOL project (Spreading Desirable Properties into the Design of Object-
Oriented, Large-Scale Software Systems), a joint industry/university collaboration 
between the software quality assessment team of Bell Canada and the GELO group at 
Université de Montréal, we are investigating methods and tools for design 
composition [13] and for the comprehension and assessment of software design 
quality [14]. As part of the project, we have developed the SPOOL environment for 
reverse engineering, system comprehension, system analysis, and reengineering. 

At the core of the SPOOL environment is the SPOOL design repository, which we 
designed with the four above-mentioned requirements in mind. The repository 
consists of the repository schema and the physical data store. The repository schema 
is an object-oriented class hierarchy that defines the structure and the behavior of the 
objects that are part of the reverse engineered source code models, the abstract design 
components that are to be identified from the source code, the implemented design 
components, and the recovered and re-organized design models. Moreover, the 
schema provides for more complex behavioral mechanisms that are applied 
throughout the schema classes, which includes uniform traversal of complex objects 
to retrieve contained objects, notification to the views on changes in the repository, 
and dependency accumulation to improve access performance to aggregated 
information. The schema of the design repository is based on an extended version of 
the UML metamodel 1.1 [25]. We adopted the UML metamodel as it captures most of 
the schema requirements of the research activities of SPOOL. This extended UML 
metamodel (or SPOOL repository schema) is represented as a Java 1.1 class 
hierarchy, in which the classes constitute the data of the MVC-based [3] SPOOL 
environment. 

The object-oriented database of the SPOOL repository is implemented using 
POET 6.0 [18]. It provides for data persistence, retrieval, consistency, and recovery. 
Using the precompiler of POET 6.0’s Java Tight Binding, an object-oriented database 
representing the SPOOL repository is generated from the SPOOL schema. As 
POET 6.0 is ODMG 3.0-compliant [16], its substitution for another ODMG 3.0-
compliant database management system would be accomplishable without major 
impact on the schema and the end user tools. 
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To deal with data interchange (importing source code into and exporting model 
information from the repository), XMI [17] technology is used. An import utility 
reads XMI-compliant files and maps the contained XML structures into objects of the 
repository's physical model. For exporting purposes, another utility traverses the 
objects of the repository and produces the corresponding XMI file. The adoption of 
standard technologies such as the UML and XMI enables easy information 
interchange between the SPOOL environment and other tools. 

In the remainder of this paper, we first provide an overview of the SPOOL 
environment. Next, we describe the architecture of the SPOOL repository and detail 
its schema, discussing its top-level, core, relationship, behavior, and extension classes 
and relating it to the UML metamodel. Then, we describe two of the key mechanisms 
of the repository, that is, the traversal of complex objects and dependency 
management, and present one of the front-end user tools of the repository, the SPOOL
Design Browser. Finally, we put our work into perspective, reporting on performance 
and interchange experiments, and discussing related and future work. 

2 The SPOOL Environment 

The SPOOL environment (Figure 1) uses a three-tier architecture to achieve a clear 
separation of concerns between the end user tools, the schema and the objects of the 
reverse engineered models, and the persistent datastore. The lowest tier consists of an 
object-oriented database management system, which provides the physical, persistent 
datastore for the reverse engineered source code models and the design information. 
The middle tier consists of the repository schema, which is an object-oriented schema 
of the reverse engineered models, comprising structure (classes, attributes, and 
relationships), behavior (access and manipulation functionality of objects), and 
mechanisms (higher-level functionality, such as complex object traversal, change 
notification, and dependency accumulation). We call these two lower tiers the 
SPOOL design repository. The upper tier consists of end user tools implementing 
domain-specific functionality based on the repository schema, i.e., source code 
capturing, and visualization and analysis.

In this section, we will describe the environment’s techniques and tools for source 
code capturing and data interchange, as well as for visualization and analysis. 

2.1 Source Code Capturing and Data Interchange 

Source code capturing is the first step within the reverse engineering process. Its goal 
is to extract an initial model from the source code. At this time, SPOOL supports C++ 
and uses Datrix [6] to parse C++ source code files. With the deployment of the Datrix 
Java parser, SPOOL will soon be able to extend its support for reverse engineering 
Java source code. Datrix provides complete information on the source code in form of 
an ASCII-based representation, the Datrix/TA intermediate format. The purpose of 
this intermediate representation is to make the Datrix output independent of the 
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programming language being parsed. Moreover, it provides a data export mechanism 
to analysis and visualization tools, ranging from Bell Canada’s suite of software 
comprehension tools to the SPOOL environment and to third-party source code 
comprehension tools. A conversion utility, built with ANTLR [1] and the Datrix/TA
grammar description, assembles the nodes and arcs of the Datrix/TA source code 
representation files, applies some transformations to the resulting graphs (such as 
normalization of directory and file structures as well as addition of primitive data 
types) to map the Datrix/TA structures to those of the repository model, and generates 
XMI files. Thereafter, the resulting XMI files are read by an import utility, which 
leverages some components built for the Argo project [21] and which uses IBM’s 

Visualization and Analysis
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Fig. 1. Overview of the SPOOL environment 
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xml4j XML parser [12]. The importer constructs the objects of an initial physical 
model in the SPOOL repository. Another utility is used to export the content of the 
repository, translating the structures of the internal schema into a resulting XMI-
compliant file. At the current state of development, we capture and manage in the 
repository the source code information as listed in Table 1. 

Table 1. Source code information managed in the SPOOL repository 

1. Files (name, directory). 
2. Classifier – classes, structures, unions, anonymous unions, primitive types (char, int, 

float, etc.), enumerations [name, file, visibility]. Class declarations are resolved to point 
to their definitions. 

3. Generalization relationships [superclass, subclass, visibility]. 
4. Attributes [name, type, owner, visibility]. Global and static variables are stored in 

utility classes (as suggested by the UML), one associated to each file. Variable 
declarations are resolved to point to their definitions. 

5. Operations and methods [name, visibility, polymorphic, kind]. Methods are the 
implementations of operations. Free functions and operators are stored in utility classes 
(as suggested by the UML), one associated to each file. Kind stands for constructor,
destructor, standard, or operator.

5.1 Parameters [name, type]. The type is a classifier.
5.2 Return types [name, type]. The type is a classifier.
5.3 Call actions [operation, sender, receiver]. The receiver points to the class to which a 

request (operation) is sent. The sender is the classifier that owns the method of the call 
action. 

5.4 Create actions. These represent object instantiations. 
5.5 Variable use within a method. This set contains all member attributes, parameters, and 

local attributes used by the method. 
6. Friendship relationships between classes and operations. 
7. Class and function template instantiations. These are stored as normal classes and as 

operations and methods, respectively. 

2.2 Visualization and Analysis 

The purpose of design representation is to provide for the interactive visualization 
and analysis of source code models, abstract design components, and implemented 
components. It is our contention that only the interplay among human cognition, 
automatic information matching and filtering, visual representations, and flexible 
visual transformations can lead to the all-important why behind the key design 
decisions in large-scale software systems. To date, we have implemented and 
integrated tools (for details, see [14]) for 
− Source code visualization,
− Interactive and incremental dependency analysis (see Section 4.2), 
− Design investigation by searching and browsing, based on both structure and full-

text retrieval, using the SPOOL Design Browser (see Section 4.3), 
− Design querying to classes that collaborate to solve a given problem, 
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− Design inspection and visualization within the context of the reverse engineered 
source code models, 

− Design component editing, allowing for the interactive description of design 
components, and 

− Metrics analysis to conduct quantitative analyses on desirable and undesirable 
source and design properties. 

3 Repository Architecture and Schema 

The major architectural design goal for the SPOOL repository was to make the 
schema resilient to change, adaptation, and extension, in order to address and 
accommodate easily new research projects. To achieve a high degree of flexibility, 
we decided to shield the implementation of the design repository completely from the 
client code that implements the tools for analysis and visualization. The retrieval and 
manipulation of objects in the design repository is accomplished via a hierarchy of 
public Java interfaces, and instantiations and initializations are implemented via an
Abstract Factory [9]. 

The schema of the SPOOL repository is an object-oriented class hierarchy whose 
core structure is adopted from the UML metamodel. Being a metamodel for software 
analysis and design, the UML provides a well-thought foundation for SPOOL as a 
design comprehension environment. However, SPOOL reverse engineering starts 
with source code from which design information should be derived. This necessitates 
extensions to the UML metamodel in order to cover the programming language level 
as far as it is relevant for design recovery and analysis. In this section, we present the 
structure of the extended UML metamodel that serves as the schema of the SPOOL 
repository. This includes the top-level classes, the core classes, the relationship 
classes, the behavior classes, and the extension classes. 

3.1 Top-Level Classes 

The top-level classes of the SPOOL environment prescribe a key architectural design 
decision, which is based on the Model/View/Controller (MVC) paradigm of software 
engineering [3, 9]. MVC suggests a separation of the classes that implement the end 
user tools (the views) from the classes that define the underlying data (the models). 
This allows for both views and models to be reused independently. Furthermore, 
MVC provides for a change notification mechanism based on the Observer design 
pattern [9]. The Observer pattern allows tools, be they interactive analysis or 
background data processing tools, to react spontaneously to the changes of objects 
that are shared among several tools. In SPOOL, the classes Element, ModelElement,
and ViewElement implement the functionality that breaks the SPOOL environment 
apart into a class hierarchy for end user tools (subclasses of ViewElement) and a class 
hierarchy for the repository (subclasses of ModelElement). The root class Element
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prescribes the MVC based communication mechanism between ViewElements and 
ModelElements. 

Fig. 2. SPOOL repository schema: Core classes 

3.2 Core Classes 

The core classes of the SPOOL repository schema adhere to a large extent to the 
classes defined in the core and model management packages of the UML metamodel. 
These classes define the basic structure and the containment hierarchy of the 
ModelElements managed in the repository (see Figure 2). At the center of the core 
classes is the Namespace class, which owns a collection of ModelElements. A 
GeneralizableElement defines the nodes involved in a generalization relationship, 
such as inheritance. A Classifier provides Features, which may be structural 
(Attributes) or behavioral (Operations and Methods) in nature. A Package is a means 
of clustering ModelElements. 
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3.3 Relationship Classes 

“A relationship is a connection among model elements.” [25] The UML introduces 
the notion of Relationship as a superclass of Generalization, Dependency, Flow, and 
Association for reasons of convenience, so that tools can refer to any connections 
among ModelElements based on the same supertype (for details, see [24]). 

3.4 Behavior Classes 

The behavior classes of the SPOOL repository implement the dynamics of the reverse 
engineered system. It is important to understand that the UML metamodel takes a 
forward engineering perspective and focuses on software analysis and design, rather 
than on the reverse engineering of source code. Therefore, the UML metamodel does 
not aim to encompass and unify programming language constructs.  

The purpose of analysis and design is to specify what to do and how to do it, but it 
is the later stage of implementation in which the missing parts of a specification are 
filled to transform it into an executable system. However, the UML is comprehensive 
in that it provides a semantic foundation for the modeling of any specifics of a model. 
For example, the UML suggests State Machine diagrams (similar to Harel’s 
Statechart formalism [11]) to specify the behavior of complex methods, operations, or 
classes. To cite another example, collaboration diagrams can be used to specify how 
different classes or certain parts of classes (that is, roles) have to interact with each 
other in order to solve a problem that transcends the boundaries of single classes. 

In SPOOL, we look at a system from the opposite viewpoint, that is from the 
complete source code, and the goal is to derive these behavior specification models to 
get an improved understanding of the complex relationships among a system’s 
constituents. For this purpose, we included in the SPOOL repository the key 
constructs of the behavior package of the UML metamodel, including the UML’s 
Action and Collaboration classes. However, we modified certain parts to reduce space 
consumption and improve performance. For more information about the behavior 
classes of the SPOOL repository, see [24]. 

3.5 Extension Classes 

The UML metamodel suggests two approaches to metamodel extension; one is based 
on the concept of TaggedValues and the other on the concept of Stereotypes. In 
SPOOL, we have only implemented the former approach since Stereotypes as defined 
in the UML metamodel would not scale to meet the performance requirements of the 
SPOOL repository. 
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4 Repository Mechanisms and Front-End 

To be usable and reusable as the backend for a diverse set of interactive reverse 
engineering tools, the SPOOL repository implements a number of advanced 
mechanisms. The traversal mechanism defines how to retrieve objects of certain 
types from a complex object containment hierarchy. The dependency mechanism
allows for compression of the vast amount of dependencies among ModelElements 
for fast retrieval and visualization. Finally, as a front-end to the repository and an 
interface to other SPOOL visualization tools, the SPOOL Design Browser is 
provided. 

4.1 Traversal Mechanism 

In SPOOL, the Namespace serves as a container for a group of ModelElements 
(Figure 2). Consequently, it defines methods that traverse complex object structures 
and retrieve ModelElements of a given type. For example, to identify all classes of a 
system, all files in all subdirectories of the system at hand must be checked for 
instances of the metatype Class. Unlike the objects in text-based repositories [8, 27], 
the objects in SPOOL’s object-oriented database are typed and can be queried 
according to their types. SPOOL allows for the identification of the type of an object 
merely by using the Java instanceof operator or the reflective isInstance operation of 
the Java class Class. Hence, metaclass types can be provided as parameters to the 
retrieval methods of Namespace, which then recursively traverse the containment 
hierarchy of the namespace at hand and examine each ModelElement whether it is an 
instance of that type. If this is the case, the ModelElement is added to a return set, 
which is passed through the recursive traversal. 

4.2 Accumulated Dependency Mechanism 

An important requirement of the SPOOL repository is to provide information on 
dependencies between any pair of ModelElements within interactive response time. A 
straightforward approach to identify dependencies among ModelElements would be 
the traversal of the whole object structure at run-time. However, applied to reverse 
engineered software with directories that contain hundreds of files, this approach 
would require batch processing. A radically different approach would be to store each 
and every dependency among ModelElements as separate dependency objects, which 
would result in an unmanageable amount of dependency data. Hence, the solution 
that we adopted in SPOOL constitutes a trade-off between run-time efficiency and 
space consumption. 

In SPOOL, we capture and accumulate dependencies at the level of Classifiers (for 
instance, classes, unions, or utilities). Accumulation refers to the fact that we store for 
each dependency its types together with the total number of primitive Connections on 
which each type is based. Given a pair of dependent Classifiers, we generate a so-
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called AccumulatedDependency object, which captures this information for the 
dependencies in the two directions. To be able to identify dependencies between 
higher-level namespaces, such as directories, files, or packages, without much lag 
time, we store the union of all AccumulatedDependencies of all contained Classifiers 
of a given Namespace redundantly with the Namespace. Hence, if we want to 
identify, for example, dependencies between the directories Directory1 and 
Directory2, we only need to iterate over the set of AccumulatedDependencies of 
Directory1 and look up for each element of the set whether the ModelElement at the 
other end of the element at hand (that is, the one which is not contained in the 
Namespace under consideration) has as one of its parent namespaces Directory2.

Fig. 3. SPOOL dependency diagram with dialog box for inspection of properties 

Figure 3 shows a dependency diagram for the top-level directories of the system 
ET++ [26]. A property dialog box can be opened to inspect the nature of a specific 
dependency. In Figure 3, for instance, the dependency between the directories 
CONTAINER and foundation includes 13 generalization connections, 50 feature type 
connections (types of attributes and return types of operations and methods), 541 
parameter type connections, 5 class instantiation connections (CreateAction), 498 
operation call connections (CallAction), and 0 friendship connection. On demand, the 
dialog can also be invoked for each direction of a dependency. For more information 
about the accumulated dependency mechanism, see [24]. 
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4.3 SPOOL Design Browser 

The SPOOL environment provides a number of tools for design investigation and 
visualization. Among these is the Design Browser, which acts as a standard query 
engine to support design navigation. The SPOOL Design Browser offers predefined 
queries to the user, while making it possible to modify the set of predefined queries 
based on the traversal mechanism provided by the repository. It also manages the 
execution of queries, and displays the query results in a user-friendly way. For details 
on the Design Browser, refer to [22]. 

5 Experience and Perspectives 

In this section, we first report on our experience with the SPOOL repository with 
respect to scalability and performance. Then, we discuss data interchange between the 
repository and external tools. Furthermore, we examine our choice of the UML 
metamodel and wrap up with a conclusion and a discussion of future work. 

5.1 Scalability and Performance 

Scalability and performance are critical for the success of source code investigation. 
Each step in the investigation process should be fast enough in order to avoid 
confusion and disorientation with the user, and the tools should be robust enough to 
accommodate industrial sized systems. In the following, we present two anecdotal 
experiments in which the performance of SPOOL queries was measured. The 
experiments were conducted on a 350MHz Pentium II machine with 256Mb of RAM 
running Windows NT 4.0. Two industrial C++ software systems were analyzed: 
ET++ 3.0 [26], a well-known application framework, and System A, a large-scale 
system from the telecommunications domain provided by Bell Canada (for 
confidentiality reasons, we cannot disclose the real name of the system). The size 
metrics of these systems are shown in Table 2 (top section). 

The first experiment consisted of measuring the times needed to execute a simple 
query which is predefined in the Design Browser but which is not directly supported 
by the repository schema, namely, the retrieval of all the ModelElements (directories, 
files, classes, C++ structures, C++ unions, C++ enumerations, operations, methods, 
and attributes) of a system. Table 2 (middle section) depicts the data for this query. 
The table shows that the first time the query is run, it takes longer (Duration 1)
because, first, Poet needs to recreate the persistent objects that are stored on disk and, 
second, when loading a system, SPOOL caches some of the objects in internal hash 
tables. As soon as an element is “touched” by a query, it becomes available in 
memory, and the next time a query is accessing it, the execution is much faster 
(Duration 2+).
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Table 2. Size metrics and durations of queries for two industrial systems 

Size Metrics : ET++ System A 

Lines of code 
Lines of pure comments 
Blank lines 

70,796
3,494

12,892

472,824
60,256
80,463

# of files (.C/.h) 485 1,900 
# of classes (.C/.h) 722 3,103 
# of generalizations 466 1,422 
# of methods 6,255 17,634 
# of attributes 4,460 1,928 
Size of the system in the repository 19.3 MB 63.1 MB 
# of ModelElements 20,868 47,834 

Simple Query : ET++ System A

Duration 1 (seconds) 22 47
Duration 2+ (seconds) 2 6 

Template Method Query : ET++ System A

# of occurrences found 371 364 
Duration (seconds) 15 360 

The above experiment shows that the retrieval of elements that are already 
referenced in the database is pretty fast. The execution of more complicated queries 
may take considerably longer. As a second experiment, we measured the time needed 
to retrieve all occurrences of the Template Method pattern [9] in the two systems. 
This query basically consists of the following five steps: 
1. retrieve all classes in the system, 
2. for each class, retrieve all methods, 
3. for each method, retrieve all call actions, 
4. for each call action, get the receivers, 
5. for each receiver, look if the call action is defined in the same class and 

implemented in a subclass. 
Table 2 (bottom section) shows the times needed to execute this query for the first 

time, assuming that all the ModelElements are already cached (a query that retrieves 
all ModelElements in the system was executed previously). These numbers are quite 
good considering that a considerable number of relations must be crossed in order to 
retrieve the desired information. The time needed to run a particular query may be 
higher, but these experiments suggest that only the complexities of the query and of 
the system are susceptible to increase execution time, whereas the access time to the 
ModelElements of the repository is relatively constant (mainly due to the use of hash 
tables). 
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5.2 Data Interchange 

Before selecting XMI as the model interchange format for the SPOOL design 
repository, five interchange formats were considered and evaluated [23]. Advantages 
and disadvantages of the five formats were identified, where XMI came out as the 
strongest approach, mainly because it reuses existing solutions like the UML, XML, 
and MOF, has important industry support, and is generally complete. Other useful 
features that put XMI on top are partial or differential model exchanges, and general 
extension mechanisms. Working with XMI documents meant that we could benefit 
from readily available XML tools, components and expertise to develop our model 
importer, which was written in Java. 

At the time of writing, we have completed our first experiments on exchanging 
XMI files with other software engineering tools such as Rational Rose [20]. We 
achieved good preliminary results, yet further experiments will be required, once 
more precise mappings between the supported programming languages and the 
respective repository schema constructs are available. 

5.3 Discussion 

The UML is hardly accepted in the reverse engineering community. Demeyer et al. 
have articulated some reasons for the “why not UML” [7]. We wholeheartedly agree 
that there is a lack of complete and precise mappings of programming languages to 
the UML. However, we consider this as a challenge for researchers, rather than a 
reason for abandoning the UML. With its Stereotype and TaggedValue extension 
mechanisms, the UML does provide constructs to capture the many details of source 
code written in different programming languages. The issue at hand is to define 
unambiguously how to map the various UML constructs to source code constructs 
and to provide tool support for the traceability in both directions. A second argument 
of Demeyer et al. against the UML is that it “does not include dependencies, such as 
invocations and accesses” [7]. This reflects a misconception in the software 
engineering community about the UML. All too often, the UML is looked at as a 
notation for structure diagrams only, and all other diagrams are rather neglected. Yet, 
the behavior package of the UML metamodel provides for a precise specification of 
the method internals. However, a critique against the UML may be that the behavioral 
package is too heavyweight to be directly applicable to software engineering. It is 
impossible to generate and store for each method a StateMachine object together with 
all its internal objects. In SPOOL, we implemented a shortcut solution for the 
representation of the bulk of the methods. We associated Actions directly to methods 
instead of generating StateMachines, which consist of Actions that are invoked by 
Messages. Refer to the UML for further details on the structure of StateMachines [2]. 
We do, however, allow StateMachines to be reverse engineered and stored for 
methods or classes of interest. 

The UML has several advantages. First, the UML metamodel is well documented 
and based on well-established terminology. This is of great help to convey the 
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semantics of the different modeling constructs to tool developers. Second, the 
metamodel is designed for the domain of software design and analysis, which is at the 
core of forward engineering and which constitutes the target of the reverse 
engineering process. The UML introduces constructs at a high level of granularity, 
enabling the compression of the overwhelming amount of information that makes 
source code difficult to understand. Third, the UML metamodel is object-oriented, 
meaning that the structure, the basic access and manipulation behavior, and complex 
mechanisms can be separated from end user tools and encapsulated in the repository 
schema. Fourth, the UML defines a notation for the metamodel constructs, thus 
providing reverse engineering tool builders guidelines for the visual representation of 
the model elements. Finally, since the UML has gained much popularity in industry 
and academia alike, tools and utilities supporting the UML and related formalisms 
such as XMI are becoming readily available. This proves highly beneficial in projects 
such as ours. 

Other research efforts in repository technology include the design of the Software 
Information Base (SIB) and prototype implementation, as described by 
Constantopoulos and Dörr [4], and Constantopoulos et al. [5]. The SIB, as a 
repository system, is used to store descriptions of software artefacts and relations 
between them. Requirement, design, and implementation descriptions provide 
application, system, and implementation views. These descriptions are linked by 
relationship objects that express attribution, aggregation, classification, 
generalization, correspondence, etc. between two or more software components. 
Links may express semantic or structural relationships, grouping of software artefact 
descriptions into larger functional units, and even user-defined or informal 
relationships for hypertext navigation or annotations. The representation language 
used in the SIB is Telos [15], a conceptual modelling language in the family of entity-
relationship models with features for increasing its expressiveness. Finally, the SIB 
comes with a set of visual tools for querying and browsing, which allow the user to 
search for software component descriptions that match specific criteria expressed as 
queries, or to navigate through the repository's content in an exploratory way within a 
given subset of the SIB. 

Even if the Software Information Base and the SPOOL design repository share 
apparent similarities in their architecture and functionality, the SIB is mainly intended 
for the storage of user-written descriptions of software artefacts residing outside the 
system (links can be made from the descriptions to the physical components on 
external storage). The main goal of the SIB is to act as a large encyclopedia of 
software components, may they be requirements specifications, design descriptions, 
or class implementations in a specific programming language. These components are 
classified using a well-defined scheme, in a way that system developers may rapidly 
browse the contents of the SIB to find the building blocks they need for composing a 
new system with the help of registered parts. In contrast, the SPOOL repository stores 
information extracted from source code to help software engineers conduct metrics 
analysis and investigate the properties of object-oriented systems, such as the 
presence of design pattern instances and the existence of dependencies between 
classes, files, or directories. While a prototype of the SIB storing extracted facts from 
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source code parsing has been developed, the retained facts remain of basic nature and 
serve as a start-up structure for the manual classification of classes, operations, and 
attributes. Furthermore, the SIB offers a mechanism to import artefact descriptions 
into its database; however, no export mechanism or data interchange facility is 
provided, assuming that information sharing with other tools is not seen as a primary 
objective. The SPOOL repository, in order to exchange information with other 
academic and commercial tools, comprises a stable and well-known internal 
datamodel and data interchange format. While both SPOOL and SIB were carefully 
designed with strict architectural and performance considerations, the main 
differences between them on the functionality side are best explained by their focus 
on reverse engineering and artefact reuse, respectively. 

5.4 Conclusion and Future Work 

In this paper, we presented the SPOOL design repository, the core part of the SPOOL 
environment. Based on the UML metamodel, its schema permits to store detailed 
information about the source code of systems, enabling users to conduct essential 
tasks of reverse engineering, system comprehension, system analysis, and 
reengineering. Its internal advanced mechanisms provide the core functionalities 
needed by the interactive visualization tools of the environment. XMI is used as 
model interchange format, easing information sharing between the SPOOL design 
repository and other software engineering environments. Our experience suggests that 
the choice of the UML and its metamodel was indeed a key factor in meeting the 
repository requirements stated at the outset of the project. 

In our future work on the SPOOL design repository, we will aim to provide 
complete and precise mappings between the constructs of the UML-based SPOOL 
repository schema and the four programming languages C, C++, Java, and a 
proprietary language deployed by Bell Canada. We will also increase the information 
content of the SPOOL repository in respect to dynamic behavior. As discussed 
previously, a balance between space consumption and fast response time needs to be 
sought. One solution that we will investigate is parsing the source code of methods on 
the fly when querying, for example, control flow information. A third area of work 
will be to provide Web-based access to the repository, which will allow our project 
partners to remotely check in source code systems and immediately use SPOOL tools 
to query and visualize the repository content. Finally, we plan to investigate the 
UML-based repository approach beyond SPOOL in two other domains of our 
interest, that is, in corporate memory research [10], and in schema evolution [19]. 
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