
K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 448–464, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Design and Implementation
of a UML-Based Design Repository∗∗∗∗

Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

Département d’informatique et de recherche opérationnelle
Université de Montréal

C.P. 6128, succursale Centre-ville
Montréal (Québec) H3C 3J7, Canada

{keller, bedardje, stdenisg}@iro.umontreal.ca
http://www.iro.umontreal.ca/~{keller, bedardje, stdenisg}

Abstract. The aim of this paper is to present the SPOOL design repository,
which is the foundation of the SPOOL software engineering environment. The
SPOOL design repository is a practical implementation of the UML
metamodel, and is used to store detailed design-level information that is
extracted from the source code of industrial systems. Its internal mechanisms
and related tools provide functionalities for querying data and observing
dependencies between the components of the studied systems, facilitating core
tasks conducted in reverse engineering, system comprehension, system
analysis, and reengineering. This paper discusses the architecture, the schema,
the mechanisms, and the implementation details of the repository, and
examines the choice of the UML metamodel. Experiences conducted with
large-scale systems are also presented, along with related work and future
avenues in design repository research.

Keywords. Design repository, Unified Modeling Language, data interchange,
reverse engineering, system analysis, system comprehension, reengineering,
system visualization.

1 Introduction

In information systems engineering and software engineering alike, repositories play
an important role. Repositories at the design level, henceforth referred to as design
repositories, are key to capture and manage data in domains as diverse as corporate
memory management [10], knowledge engineering [15], and software development
and maintenance. In this paper, we report on our experience in designing and

∗ This research was supported by the SPOOL project organized by CSER (Consortium for

Software Engineering Research) which is funded by Bell Canada, NSERC (Natural Sciences
and Engineering Research Council of Canada), and NRC (National Research Council
Canada).

Design and Implementation of a UML-Based Design Repository 449

implementing a design repository in this latter domain, that is, in the realm of system
comprehension, analysis, and evolution.

In order to understand, assess, and maintain software systems, it is essential to
represent the analyzed systems at a high level of abstraction such as the analysis and
design level. End user tools need access to this information, and thus, a design
repository for storing the analyzed systems is required. Such a design repository
should meet a number of requirements. First, it should be designed such that its
schema will be resilient to change, adaptation, and extension, in order to address and
accommodate easily new research projects. Second, it should preferably adopt a
schema based on a standard metamodel, and offer extensibility mechanisms to cope
with language-specific constructs. Third, in order to enable easy information
interchange with other third-party tools, a flexible model interchange format should
be used for importing and exporting purposes. Finally, the design of the repository
should take into account scalability and performance considerations.

In the SPOOL project (Spreading Desirable Properties into the Design of Object-
Oriented, Large-Scale Software Systems), a joint industry/university collaboration
between the software quality assessment team of Bell Canada and the GELO group at
Université de Montréal, we are investigating methods and tools for design
composition [13] and for the comprehension and assessment of software design
quality [14]. As part of the project, we have developed the SPOOL environment for
reverse engineering, system comprehension, system analysis, and reengineering.

At the core of the SPOOL environment is the SPOOL design repository, which we
designed with the four above-mentioned requirements in mind. The repository
consists of the repository schema and the physical data store. The repository schema
is an object-oriented class hierarchy that defines the structure and the behavior of the
objects that are part of the reverse engineered source code models, the abstract design
components that are to be identified from the source code, the implemented design
components, and the recovered and re-organized design models. Moreover, the
schema provides for more complex behavioral mechanisms that are applied
throughout the schema classes, which includes uniform traversal of complex objects
to retrieve contained objects, notification to the views on changes in the repository,
and dependency accumulation to improve access performance to aggregated
information. The schema of the design repository is based on an extended version of
the UML metamodel 1.1 [25]. We adopted the UML metamodel as it captures most of
the schema requirements of the research activities of SPOOL. This extended UML
metamodel (or SPOOL repository schema) is represented as a Java 1.1 class
hierarchy, in which the classes constitute the data of the MVC-based [3] SPOOL
environment.

The object-oriented database of the SPOOL repository is implemented using
POET 6.0 [18]. It provides for data persistence, retrieval, consistency, and recovery.
Using the precompiler of POET 6.0’s Java Tight Binding, an object-oriented database
representing the SPOOL repository is generated from the SPOOL schema. As
POET 6.0 is ODMG 3.0-compliant [16], its substitution for another ODMG 3.0-
compliant database management system would be accomplishable without major
impact on the schema and the end user tools.

450 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

To deal with data interchange (importing source code into and exporting model
information from the repository), XMI [17] technology is used. An import utility
reads XMI-compliant files and maps the contained XML structures into objects of the
repository's physical model. For exporting purposes, another utility traverses the
objects of the repository and produces the corresponding XMI file. The adoption of
standard technologies such as the UML and XMI enables easy information
interchange between the SPOOL environment and other tools.

In the remainder of this paper, we first provide an overview of the SPOOL
environment. Next, we describe the architecture of the SPOOL repository and detail
its schema, discussing its top-level, core, relationship, behavior, and extension classes
and relating it to the UML metamodel. Then, we describe two of the key mechanisms
of the repository, that is, the traversal of complex objects and dependency
management, and present one of the front-end user tools of the repository, the SPOOL
Design Browser. Finally, we put our work into perspective, reporting on performance
and interchange experiments, and discussing related and future work.

2 The SPOOL Environment

The SPOOL environment (Figure 1) uses a three-tier architecture to achieve a clear
separation of concerns between the end user tools, the schema and the objects of the
reverse engineered models, and the persistent datastore. The lowest tier consists of an
object-oriented database management system, which provides the physical, persistent
datastore for the reverse engineered source code models and the design information.
The middle tier consists of the repository schema, which is an object-oriented schema
of the reverse engineered models, comprising structure (classes, attributes, and
relationships), behavior (access and manipulation functionality of objects), and
mechanisms (higher-level functionality, such as complex object traversal, change
notification, and dependency accumulation). We call these two lower tiers the
SPOOL design repository. The upper tier consists of end user tools implementing
domain-specific functionality based on the repository schema, i.e., source code
capturing, and visualization and analysis.

In this section, we will describe the environment’s techniques and tools for source
code capturing and data interchange, as well as for visualization and analysis.

2.1 Source Code Capturing and Data Interchange

Source code capturing is the first step within the reverse engineering process. Its goal
is to extract an initial model from the source code. At this time, SPOOL supports C++
and uses Datrix [6] to parse C++ source code files. With the deployment of the Datrix
Java parser, SPOOL will soon be able to extend its support for reverse engineering
Java source code. Datrix provides complete information on the source code in form of
an ASCII-based representation, the Datrix/TA intermediate format. The purpose of
this intermediate representation is to make the Datrix output independent of the

Design and Implementation of a UML-Based Design Repository 451

programming language being parsed. Moreover, it provides a data export mechanism
to analysis and visualization tools, ranging from Bell Canada’s suite of software
comprehension tools to the SPOOL environment and to third-party source code
comprehension tools. A conversion utility, built with ANTLR [1] and the Datrix/TA
grammar description, assembles the nodes and arcs of the Datrix/TA source code
representation files, applies some transformations to the resulting graphs (such as
normalization of directory and file structures as well as addition of primitive data
types) to map the Datrix/TA structures to those of the repository model, and generates
XMI files. Thereafter, the resulting XMI files are read by an import utility, which
leverages some components built for the Argo project [21] and which uses IBM’s

Visualization and Analysis

• Source code visualization

• Dependency analysis

• Searching and browsing

• Design querying

• Design inspection and visualization

• Design component editing

• Metrics analysis

Design Repository

Repository Schema
• Reverse engineered source code models
• Abstract design components
• Implemented design components
• Recovered design models
• Re-organized design models

Object-Oriented
Database Management System

XMI files

Source Code Capturing

Source code parser
(Datrix)

ASG to XMI
converter

Source code
(C/C++, Java)

Fig. 1. Overview of the SPOOL environment

452 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

xml4j XML parser [12]. The importer constructs the objects of an initial physical
model in the SPOOL repository. Another utility is used to export the content of the
repository, translating the structures of the internal schema into a resulting XMI-
compliant file. At the current state of development, we capture and manage in the
repository the source code information as listed in Table 1.

Table 1. Source code information managed in the SPOOL repository

1. Files (name, directory).
2. Classifier – classes, structures, unions, anonymous unions, primitive types (char, int,

float, etc.), enumerations [name, file, visibility]. Class declarations are resolved to point
to their definitions.

3. Generalization relationships [superclass, subclass, visibility].
4. Attributes [name, type, owner, visibility]. Global and static variables are stored in

utility classes (as suggested by the UML), one associated to each file. Variable
declarations are resolved to point to their definitions.

5. Operations and methods [name, visibility, polymorphic, kind]. Methods are the
implementations of operations. Free functions and operators are stored in utility classes
(as suggested by the UML), one associated to each file. Kind stands for constructor,
destructor, standard, or operator.

5.1 Parameters [name, type]. The type is a classifier.
5.2 Return types [name, type]. The type is a classifier.
5.3 Call actions [operation, sender, receiver]. The receiver points to the class to which a

request (operation) is sent. The sender is the classifier that owns the method of the call
action.

5.4 Create actions. These represent object instantiations.
5.5 Variable use within a method. This set contains all member attributes, parameters, and

local attributes used by the method.
6. Friendship relationships between classes and operations.
7. Class and function template instantiations. These are stored as normal classes and as

operations and methods, respectively.

2.2 Visualization and Analysis

The purpose of design representation is to provide for the interactive visualization
and analysis of source code models, abstract design components, and implemented
components. It is our contention that only the interplay among human cognition,
automatic information matching and filtering, visual representations, and flexible
visual transformations can lead to the all-important why behind the key design
decisions in large-scale software systems. To date, we have implemented and
integrated tools (for details, see [14]) for
− Source code visualization,
− Interactive and incremental dependency analysis (see Section 4.2),
− Design investigation by searching and browsing, based on both structure and full-

text retrieval, using the SPOOL Design Browser (see Section 4.3),
− Design querying to classes that collaborate to solve a given problem,

Design and Implementation of a UML-Based Design Repository 453

− Design inspection and visualization within the context of the reverse engineered
source code models,

− Design component editing, allowing for the interactive description of design
components, and

− Metrics analysis to conduct quantitative analyses on desirable and undesirable
source and design properties.

3 Repository Architecture and Schema

The major architectural design goal for the SPOOL repository was to make the
schema resilient to change, adaptation, and extension, in order to address and
accommodate easily new research projects. To achieve a high degree of flexibility,
we decided to shield the implementation of the design repository completely from the
client code that implements the tools for analysis and visualization. The retrieval and
manipulation of objects in the design repository is accomplished via a hierarchy of
public Java interfaces, and instantiations and initializations are implemented via an
Abstract Factory [9].

The schema of the SPOOL repository is an object-oriented class hierarchy whose
core structure is adopted from the UML metamodel. Being a metamodel for software
analysis and design, the UML provides a well-thought foundation for SPOOL as a
design comprehension environment. However, SPOOL reverse engineering starts
with source code from which design information should be derived. This necessitates
extensions to the UML metamodel in order to cover the programming language level
as far as it is relevant for design recovery and analysis. In this section, we present the
structure of the extended UML metamodel that serves as the schema of the SPOOL
repository. This includes the top-level classes, the core classes, the relationship
classes, the behavior classes, and the extension classes.

3.1 Top-Level Classes

The top-level classes of the SPOOL environment prescribe a key architectural design
decision, which is based on the Model/View/Controller (MVC) paradigm of software
engineering [3, 9]. MVC suggests a separation of the classes that implement the end
user tools (the views) from the classes that define the underlying data (the models).
This allows for both views and models to be reused independently. Furthermore,
MVC provides for a change notification mechanism based on the Observer design
pattern [9]. The Observer pattern allows tools, be they interactive analysis or
background data processing tools, to react spontaneously to the changes of objects
that are shared among several tools. In SPOOL, the classes Element, ModelElement,
and ViewElement implement the functionality that breaks the SPOOL environment
apart into a class hierarchy for end user tools (subclasses of ViewElement) and a class
hierarchy for the repository (subclasses of ModelElement). The root class Element

454 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

prescribes the MVC based communication mechanism between ViewElements and
ModelElements.

Fig. 2. SPOOL repository schema: Core classes

3.2 Core Classes

The core classes of the SPOOL repository schema adhere to a large extent to the
classes defined in the core and model management packages of the UML metamodel.
These classes define the basic structure and the containment hierarchy of the
ModelElements managed in the repository (see Figure 2). At the center of the core
classes is the Namespace class, which owns a collection of ModelElements. A
GeneralizableElement defines the nodes involved in a generalization relationship,
such as inheritance. A Classifier provides Features, which may be structural
(Attributes) or behavioral (Operations and Methods) in nature. A Package is a means
of clustering ModelElements.

Design and Implementation of a UML-Based Design Repository 455

3.3 Relationship Classes

“A relationship is a connection among model elements.” [25] The UML introduces
the notion of Relationship as a superclass of Generalization, Dependency, Flow, and
Association for reasons of convenience, so that tools can refer to any connections
among ModelElements based on the same supertype (for details, see [24]).

3.4 Behavior Classes

The behavior classes of the SPOOL repository implement the dynamics of the reverse
engineered system. It is important to understand that the UML metamodel takes a
forward engineering perspective and focuses on software analysis and design, rather
than on the reverse engineering of source code. Therefore, the UML metamodel does
not aim to encompass and unify programming language constructs.

The purpose of analysis and design is to specify what to do and how to do it, but it
is the later stage of implementation in which the missing parts of a specification are
filled to transform it into an executable system. However, the UML is comprehensive
in that it provides a semantic foundation for the modeling of any specifics of a model.
For example, the UML suggests State Machine diagrams (similar to Harel’s
Statechart formalism [11]) to specify the behavior of complex methods, operations, or
classes. To cite another example, collaboration diagrams can be used to specify how
different classes or certain parts of classes (that is, roles) have to interact with each
other in order to solve a problem that transcends the boundaries of single classes.

In SPOOL, we look at a system from the opposite viewpoint, that is from the
complete source code, and the goal is to derive these behavior specification models to
get an improved understanding of the complex relationships among a system’s
constituents. For this purpose, we included in the SPOOL repository the key
constructs of the behavior package of the UML metamodel, including the UML’s
Action and Collaboration classes. However, we modified certain parts to reduce space
consumption and improve performance. For more information about the behavior
classes of the SPOOL repository, see [24].

3.5 Extension Classes

The UML metamodel suggests two approaches to metamodel extension; one is based
on the concept of TaggedValues and the other on the concept of Stereotypes. In
SPOOL, we have only implemented the former approach since Stereotypes as defined
in the UML metamodel would not scale to meet the performance requirements of the
SPOOL repository.

456 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

4 Repository Mechanisms and Front-End

To be usable and reusable as the backend for a diverse set of interactive reverse
engineering tools, the SPOOL repository implements a number of advanced
mechanisms. The traversal mechanism defines how to retrieve objects of certain
types from a complex object containment hierarchy. The dependency mechanism
allows for compression of the vast amount of dependencies among ModelElements
for fast retrieval and visualization. Finally, as a front-end to the repository and an
interface to other SPOOL visualization tools, the SPOOL Design Browser is
provided.

4.1 Traversal Mechanism

In SPOOL, the Namespace serves as a container for a group of ModelElements
(Figure 2). Consequently, it defines methods that traverse complex object structures
and retrieve ModelElements of a given type. For example, to identify all classes of a
system, all files in all subdirectories of the system at hand must be checked for
instances of the metatype Class. Unlike the objects in text-based repositories [8, 27],
the objects in SPOOL’s object-oriented database are typed and can be queried
according to their types. SPOOL allows for the identification of the type of an object
merely by using the Java instanceof operator or the reflective isInstance operation of
the Java class Class. Hence, metaclass types can be provided as parameters to the
retrieval methods of Namespace, which then recursively traverse the containment
hierarchy of the namespace at hand and examine each ModelElement whether it is an
instance of that type. If this is the case, the ModelElement is added to a return set,
which is passed through the recursive traversal.

4.2 Accumulated Dependency Mechanism

An important requirement of the SPOOL repository is to provide information on
dependencies between any pair of ModelElements within interactive response time. A
straightforward approach to identify dependencies among ModelElements would be
the traversal of the whole object structure at run-time. However, applied to reverse
engineered software with directories that contain hundreds of files, this approach
would require batch processing. A radically different approach would be to store each
and every dependency among ModelElements as separate dependency objects, which
would result in an unmanageable amount of dependency data. Hence, the solution
that we adopted in SPOOL constitutes a trade-off between run-time efficiency and
space consumption.

In SPOOL, we capture and accumulate dependencies at the level of Classifiers (for
instance, classes, unions, or utilities). Accumulation refers to the fact that we store for
each dependency its types together with the total number of primitive Connections on
which each type is based. Given a pair of dependent Classifiers, we generate a so-

Design and Implementation of a UML-Based Design Repository 457

called AccumulatedDependency object, which captures this information for the
dependencies in the two directions. To be able to identify dependencies between
higher-level namespaces, such as directories, files, or packages, without much lag
time, we store the union of all AccumulatedDependencies of all contained Classifiers
of a given Namespace redundantly with the Namespace. Hence, if we want to
identify, for example, dependencies between the directories Directory1 and
Directory2, we only need to iterate over the set of AccumulatedDependencies of
Directory1 and look up for each element of the set whether the ModelElement at the
other end of the element at hand (that is, the one which is not contained in the
Namespace under consideration) has as one of its parent namespaces Directory2.

Fig. 3. SPOOL dependency diagram with dialog box for inspection of properties

Figure 3 shows a dependency diagram for the top-level directories of the system
ET++ [26]. A property dialog box can be opened to inspect the nature of a specific
dependency. In Figure 3, for instance, the dependency between the directories
CONTAINER and foundation includes 13 generalization connections, 50 feature type
connections (types of attributes and return types of operations and methods), 541
parameter type connections, 5 class instantiation connections (CreateAction), 498
operation call connections (CallAction), and 0 friendship connection. On demand, the
dialog can also be invoked for each direction of a dependency. For more information
about the accumulated dependency mechanism, see [24].

458 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

4.3 SPOOL Design Browser

The SPOOL environment provides a number of tools for design investigation and
visualization. Among these is the Design Browser, which acts as a standard query
engine to support design navigation. The SPOOL Design Browser offers predefined
queries to the user, while making it possible to modify the set of predefined queries
based on the traversal mechanism provided by the repository. It also manages the
execution of queries, and displays the query results in a user-friendly way. For details
on the Design Browser, refer to [22].

5 Experience and Perspectives

In this section, we first report on our experience with the SPOOL repository with
respect to scalability and performance. Then, we discuss data interchange between the
repository and external tools. Furthermore, we examine our choice of the UML
metamodel and wrap up with a conclusion and a discussion of future work.

5.1 Scalability and Performance

Scalability and performance are critical for the success of source code investigation.
Each step in the investigation process should be fast enough in order to avoid
confusion and disorientation with the user, and the tools should be robust enough to
accommodate industrial sized systems. In the following, we present two anecdotal
experiments in which the performance of SPOOL queries was measured. The
experiments were conducted on a 350MHz Pentium II machine with 256Mb of RAM
running Windows NT 4.0. Two industrial C++ software systems were analyzed:
ET++ 3.0 [26], a well-known application framework, and System A, a large-scale
system from the telecommunications domain provided by Bell Canada (for
confidentiality reasons, we cannot disclose the real name of the system). The size
metrics of these systems are shown in Table 2 (top section).

The first experiment consisted of measuring the times needed to execute a simple
query which is predefined in the Design Browser but which is not directly supported
by the repository schema, namely, the retrieval of all the ModelElements (directories,
files, classes, C++ structures, C++ unions, C++ enumerations, operations, methods,
and attributes) of a system. Table 2 (middle section) depicts the data for this query.
The table shows that the first time the query is run, it takes longer (Duration 1)
because, first, Poet needs to recreate the persistent objects that are stored on disk and,
second, when loading a system, SPOOL caches some of the objects in internal hash
tables. As soon as an element is “touched” by a query, it becomes available in
memory, and the next time a query is accessing it, the execution is much faster
(Duration 2+).

Design and Implementation of a UML-Based Design Repository 459

Table 2. Size metrics and durations of queries for two industrial systems

Size Metrics : ET++ System A

Lines of code
Lines of pure comments
Blank lines

70,796
3,494

12,892

472,824
60,256
80,463

of files (.C/.h) 485 1,900
of classes (.C/.h) 722 3,103
of generalizations 466 1,422
of methods 6,255 17,634
of attributes 4,460 1,928
Size of the system in the repository 19.3 MB 63.1 MB
of ModelElements 20,868 47,834

Simple Query : ET++ System A

Duration 1 (seconds) 22 47
Duration 2+ (seconds) 2 6

Template Method Query : ET++ System A

of occurrences found 371 364
Duration (seconds) 15 360

The above experiment shows that the retrieval of elements that are already
referenced in the database is pretty fast. The execution of more complicated queries
may take considerably longer. As a second experiment, we measured the time needed
to retrieve all occurrences of the Template Method pattern [9] in the two systems.
This query basically consists of the following five steps:
1. retrieve all classes in the system,
2. for each class, retrieve all methods,
3. for each method, retrieve all call actions,
4. for each call action, get the receivers,
5. for each receiver, look if the call action is defined in the same class and

implemented in a subclass.
Table 2 (bottom section) shows the times needed to execute this query for the first

time, assuming that all the ModelElements are already cached (a query that retrieves
all ModelElements in the system was executed previously). These numbers are quite
good considering that a considerable number of relations must be crossed in order to
retrieve the desired information. The time needed to run a particular query may be
higher, but these experiments suggest that only the complexities of the query and of
the system are susceptible to increase execution time, whereas the access time to the
ModelElements of the repository is relatively constant (mainly due to the use of hash
tables).

460 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

5.2 Data Interchange

Before selecting XMI as the model interchange format for the SPOOL design
repository, five interchange formats were considered and evaluated [23]. Advantages
and disadvantages of the five formats were identified, where XMI came out as the
strongest approach, mainly because it reuses existing solutions like the UML, XML,
and MOF, has important industry support, and is generally complete. Other useful
features that put XMI on top are partial or differential model exchanges, and general
extension mechanisms. Working with XMI documents meant that we could benefit
from readily available XML tools, components and expertise to develop our model
importer, which was written in Java.

At the time of writing, we have completed our first experiments on exchanging
XMI files with other software engineering tools such as Rational Rose [20]. We
achieved good preliminary results, yet further experiments will be required, once
more precise mappings between the supported programming languages and the
respective repository schema constructs are available.

5.3 Discussion

The UML is hardly accepted in the reverse engineering community. Demeyer et al.
have articulated some reasons for the “why not UML” [7]. We wholeheartedly agree
that there is a lack of complete and precise mappings of programming languages to
the UML. However, we consider this as a challenge for researchers, rather than a
reason for abandoning the UML. With its Stereotype and TaggedValue extension
mechanisms, the UML does provide constructs to capture the many details of source
code written in different programming languages. The issue at hand is to define
unambiguously how to map the various UML constructs to source code constructs
and to provide tool support for the traceability in both directions. A second argument
of Demeyer et al. against the UML is that it “does not include dependencies, such as
invocations and accesses” [7]. This reflects a misconception in the software
engineering community about the UML. All too often, the UML is looked at as a
notation for structure diagrams only, and all other diagrams are rather neglected. Yet,
the behavior package of the UML metamodel provides for a precise specification of
the method internals. However, a critique against the UML may be that the behavioral
package is too heavyweight to be directly applicable to software engineering. It is
impossible to generate and store for each method a StateMachine object together with
all its internal objects. In SPOOL, we implemented a shortcut solution for the
representation of the bulk of the methods. We associated Actions directly to methods
instead of generating StateMachines, which consist of Actions that are invoked by
Messages. Refer to the UML for further details on the structure of StateMachines [2].
We do, however, allow StateMachines to be reverse engineered and stored for
methods or classes of interest.

The UML has several advantages. First, the UML metamodel is well documented
and based on well-established terminology. This is of great help to convey the

Design and Implementation of a UML-Based Design Repository 461

semantics of the different modeling constructs to tool developers. Second, the
metamodel is designed for the domain of software design and analysis, which is at the
core of forward engineering and which constitutes the target of the reverse
engineering process. The UML introduces constructs at a high level of granularity,
enabling the compression of the overwhelming amount of information that makes
source code difficult to understand. Third, the UML metamodel is object-oriented,
meaning that the structure, the basic access and manipulation behavior, and complex
mechanisms can be separated from end user tools and encapsulated in the repository
schema. Fourth, the UML defines a notation for the metamodel constructs, thus
providing reverse engineering tool builders guidelines for the visual representation of
the model elements. Finally, since the UML has gained much popularity in industry
and academia alike, tools and utilities supporting the UML and related formalisms
such as XMI are becoming readily available. This proves highly beneficial in projects
such as ours.

Other research efforts in repository technology include the design of the Software
Information Base (SIB) and prototype implementation, as described by
Constantopoulos and Dörr [4], and Constantopoulos et al. [5]. The SIB, as a
repository system, is used to store descriptions of software artefacts and relations
between them. Requirement, design, and implementation descriptions provide
application, system, and implementation views. These descriptions are linked by
relationship objects that express attribution, aggregation, classification,
generalization, correspondence, etc. between two or more software components.
Links may express semantic or structural relationships, grouping of software artefact
descriptions into larger functional units, and even user-defined or informal
relationships for hypertext navigation or annotations. The representation language
used in the SIB is Telos [15], a conceptual modelling language in the family of entity-
relationship models with features for increasing its expressiveness. Finally, the SIB
comes with a set of visual tools for querying and browsing, which allow the user to
search for software component descriptions that match specific criteria expressed as
queries, or to navigate through the repository's content in an exploratory way within a
given subset of the SIB.

Even if the Software Information Base and the SPOOL design repository share
apparent similarities in their architecture and functionality, the SIB is mainly intended
for the storage of user-written descriptions of software artefacts residing outside the
system (links can be made from the descriptions to the physical components on
external storage). The main goal of the SIB is to act as a large encyclopedia of
software components, may they be requirements specifications, design descriptions,
or class implementations in a specific programming language. These components are
classified using a well-defined scheme, in a way that system developers may rapidly
browse the contents of the SIB to find the building blocks they need for composing a
new system with the help of registered parts. In contrast, the SPOOL repository stores
information extracted from source code to help software engineers conduct metrics
analysis and investigate the properties of object-oriented systems, such as the
presence of design pattern instances and the existence of dependencies between
classes, files, or directories. While a prototype of the SIB storing extracted facts from

462 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

source code parsing has been developed, the retained facts remain of basic nature and
serve as a start-up structure for the manual classification of classes, operations, and
attributes. Furthermore, the SIB offers a mechanism to import artefact descriptions
into its database; however, no export mechanism or data interchange facility is
provided, assuming that information sharing with other tools is not seen as a primary
objective. The SPOOL repository, in order to exchange information with other
academic and commercial tools, comprises a stable and well-known internal
datamodel and data interchange format. While both SPOOL and SIB were carefully
designed with strict architectural and performance considerations, the main
differences between them on the functionality side are best explained by their focus
on reverse engineering and artefact reuse, respectively.

5.4 Conclusion and Future Work

In this paper, we presented the SPOOL design repository, the core part of the SPOOL
environment. Based on the UML metamodel, its schema permits to store detailed
information about the source code of systems, enabling users to conduct essential
tasks of reverse engineering, system comprehension, system analysis, and
reengineering. Its internal advanced mechanisms provide the core functionalities
needed by the interactive visualization tools of the environment. XMI is used as
model interchange format, easing information sharing between the SPOOL design
repository and other software engineering environments. Our experience suggests that
the choice of the UML and its metamodel was indeed a key factor in meeting the
repository requirements stated at the outset of the project.

In our future work on the SPOOL design repository, we will aim to provide
complete and precise mappings between the constructs of the UML-based SPOOL
repository schema and the four programming languages C, C++, Java, and a
proprietary language deployed by Bell Canada. We will also increase the information
content of the SPOOL repository in respect to dynamic behavior. As discussed
previously, a balance between space consumption and fast response time needs to be
sought. One solution that we will investigate is parsing the source code of methods on
the fly when querying, for example, control flow information. A third area of work
will be to provide Web-based access to the repository, which will allow our project
partners to remotely check in source code systems and immediately use SPOOL tools
to query and visualize the repository content. Finally, we plan to investigate the
UML-based repository approach beyond SPOOL in two other domains of our
interest, that is, in corporate memory research [10], and in schema evolution [19].

Acknowledgments

We would like to thank the following organizations for providing us with licenses of
their tools, thus assisting us in the development part of our research: Bell Canada for
the source code parser Datrix, Lucent Technologies for their C++ source code

Design and Implementation of a UML-Based Design Repository 463

analyzer GEN++ and the layout generators Dot and Neato, and TakeFive Software
for their software development environment SNiFF+.

References

1. ANTLR, ANother Tool for Language Recognition, 2000. <http://www.antlr.org>.
2. Booch, G., Jacobson, I., and Rumbaugh, J. The Unified Modeling Language User Guide.

Addison-Wesley, 1999.
3. Buschmann, F., Meunier, R., Rohnert, H., Somerlad, P., and Stal, M. Pattern-Oriented

Software Architecture – A System of Patterns. John Wiley and Sons, 1996.
4. Constantopoulos, P., and Dörr, M. “Component Classification in the Software Information

Base”, Object-Oriented Software Composition, Oscar Nierstrasz and Dennis Tsichritzis
(Eds.), pp. 177-200. Prentice Hall, 1995.

5. Constantopoulos, P., Jarke, M., Mylopoulos, J., and Vassiliou, Y. “The Software
Information Base: A Server for Reuse.” VLDB Journal 4(1):1-43, 1995.

6. Datrix homepage, 2000, Bell Canada. <http://www.iro.umontreal.ca/labs/gelo/datrix/>.
7. Demeyer, S., Ducasse, S., and Tichelaar, S. “Why unified is not universal: UML

shortcomings for coping with round-trip engineering.” In Bernhard Rumpe, editor,
Proceedings UML'99 (The Second International Conference on the Unified Modeling
Language). Springer-Verlag, 1999. LNCS 1723.

8. Finnigan, P. J., Holt, R. C., Kalas, I., Kerr, S., Kontogiannis, K., Müller, H. A.,
Mylopoulos, J., Perelgut, S. G., Stanley, M., and Wong, K. “The software bookshelf.” IBM
Systems Journal, 36(4):564-593, 1997.

9. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

10. Gerbé, O., Keller, R. K., and Mineau, G. “Conceptual graphs for representing business
processes in corporate memories.” In Proceedings of the Sixth International Conference on
Conceptual Structures, pages 401-415, Montpellier, France, August 1998.

11. Harel, D. “On visual formalisms.” Communications of the ACM, 31(5):514-530, May
1988.

12. IBM-alphaWorks. XML Parser for Java, 2000.
<http://www.alphaworks.ibm.com/tech/xml>.

13. Keller, R. K., and Schauer, R. “Design components: towards software composition at the
design level.” In Proceedings of the 20th International Conference on Software
Engineering, Kyoto, Japan, pages 302-310, April 1998.

14. Keller, R. K., Schauer, R., Robitaille, S., and Pagé, P. “Pattern-based reverse engineering
of design components.” In Proceedings of the Twenty-First International Conference on
Software Engineering, pages 226-235, Los Angeles, CA, May 1999. IEEE.

15. Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. “Telos: Representing
Knowledge About Information Systems.” ACM Transactions on Information Systems,
Vol. 8, No. 4, October 1990, pages 325-362.

16. Object Data Management Group (ODMG), 2000. On-line at <http://www.odmg.com>.
17. OMG. “XML Metadata Interchange (XMI)”, Document ad/98-10-05, October 1998.

On-line at <ftp://ftp.omg.org/pub/docs/ad/98-10-05.pdf>.
18. Poet Java ODMG binding, on-line documentation. Poet Software Corporation, San Mateo,

CA, 2000. On-line at <http://www.poet.com>.

464 Rudolf K. Keller, Jean-François Bédard, and Guy Saint-Denis

19. Pons, A., and Keller, R. K. “Schema evolution in object databases by catalogs.” In
Proceedings of the International Database Engineering and Applications Symposium
(IDEAS'97), pages 368-376, Montréal, Québec, Canada, August 1997. IEEE.

20. Rational Software Corporation, 2000. On-line at <http://www.rational.com>.
21. Robbins, J. E., and Redmiles, D. F. “Software architecture critics in the Argo design

environment.” Knowledge-Based Systems, (1):47-60, September 1998.
22. Robitaille, S., Schauer, R., and Keller, R. K. “Bridging program comprehension tools by

design navigation.” In Proceedings of the International Conference on Software
Maintenance (ICSM'2000), pages 22-32, San Jose, CA, October 2000. IEEE.

23. Saint-Denis, G., Schauer, R., and Keller, R. K. “Selecting a Model Interchange Format:
The SPOOL Case Study.” In Proceedings of the Thirty-Third Annual Hawaii International
Conference on System Sciences (CD ROM, 10 pages). Maui, HI, January 2000.

24. Schauer, R., Keller, R. K., Laguë, B., Knapen, G., Robitaille, S., and Saint-Denis, G. “The
SPOOL Design Repository: Architecture, Schema, and Mechanisms.” In Hakan Erdogmus
and Oryal Tanir, editors, Advances in Software Engineering. Topics in Evolution,
Comprehension, and Evaluation. Springer-Verlag, 2001. To appear.

25. UML. Documentation set version 1.1, 2000. On-line at <http://www.rational.com>.
26. Weinand, A., Gamma, A., and Marty, R. “Design and implementation of ET++, a seamless

object-oriented application framework.” Structured Programming, 10(2):63-87,
February 1989.

27. Wong, K., and Müller, H. (1998). Rigi user’s manual, version 5.4.4. University of Victoria,
Victoria, Canada. On-line at <ftp://ftp.rigi.csc.uvic.ca/pub>.

	1 Introduction
	2 The SPOOL Environment
	2.1 Source Code Capturing and Data Interchange
	2.2 Visualization and Analysis

	3 Repository Architecture and Schema
	3.1 Top-Level Classes
	3.2 Core Classes
	3.3 Relationship Classes
	3.4 Behavior Classes
	3.5 Extension Classes

	4 Repository Mechanisms and Front-End
	4.1 Traversal Mechanism
	4.2 Accumulated Dependency Mechanism
	4.3 SPOOL Design Browser

	5 Experience and Perspectives
	5.1 Scalability and Performance
	5.2 Data Interchange
	5.3 Discussion
	5.4 Conclusion and Future Work

	References

