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Abstract. The architecture of a software system is a high-level descrip-
tion of the major system components, their interconnections and their
interactions. The main hypothesis underlying this paper is that architec-
tural design plays the strategic role in identifying, articulating, and then
reconciling the desirable features with the unavoidable constraints un-
der which a system must be developed and will operate. The hypothesis
results in a two-phase design philosophy and methodology. During the
first phase, the desirable features as well as the constraints are identified.
The second phase is a decision process with features and constraints as
the driving factors, and tradeoffs contingent on a value system that will
always include subjective elements. It is of course impossible to validate
the hypothesis in full generality. Instead, we restrict ourselves to an anal-
ysis – much of it retrospective – of architectures of database management
systems in networks. The analysis demonstrates that the most challeng-
ing part of architectural design is to identify – very much in the abstract
– those features that promise to have the major impact on the architec-
ture. Further, by separating the features into two classes, a primary class
with all those features that dominate the design, and a second class with
those features that can then be treated orthogonally, the complexity of
the design task is reduced.

1 Hypothesis

The architecture of a software system is – much in the tradition of classical
systems analysis – a description of the major system components, their inter-
connections and their interactions. The description is on a high-level: Major
features are identified, but little attention is as yet given to the details of ul-
timate implementation. Or in other words, developing a system architecture is
“programming-in-the-very-large”.
The main hypothesis underlying this paper is that architectural design is a vi-

tal first step in the development of software systems. We claim that architectural
design plays the strategic role in identifying, articulating, and then reconciling
the desirable features with the unavoidable constraints – technical, financial and
personnel – under which a system must be developed and will operate. In a nut-
shell, architectural design is the means for explicating the major conflicts, and
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for deciding and documenting the necessary tradeoffs on a strategic level, and
thus at a time when no major implementation efforts and expenses have as yet
occurred. This may sound platitudinous to most, but in practice all too many
flaws or failures in business systems can be traced back to the lack of an explicit
architectural design and implicit mistakes when viewed from an architectural
perspective.
Our hypothesis drives a two-phase design philosophy and methodology. Dur-

ing the first phase, the desirable features as well as the constraints are identified.
During the second phase, tradeoffs are determined that preserve as many of the
features as possible while minimizing the effects of the constraints. The second
phase clearly is a decision process with features and constraints as the driv-
ing factors, and tradeoffs contingent on a value system that will always include
subjective elements.
A scientifically rigorous approach to verifying the hypothesis would require

us to set up two development teams, supply them with the same system specifi-
cations, have them follow different design strategies of which only one is strictly
architecture-based, and compare the results. Moreover, such an approach would
have to cover a sufficiently wide spectrum of software systems. Obviously, all
this is entirely impractical. The approach to verification we take in this paper is
more circumstantial, then. For one, we concentrate on a few types of database
system architectures as they may appear in distributed information systems.
Second, much of our analysis is retrospective. We examine system architectures
that have found wide acceptance, and try to reinterpret them in the light of
factors we consider particularly critical.

2 Resource Managers in Distributed Information Systems

2.1 Shared Resources and Services

Distributed information systems are a reflection of modern distributed organiza-
tions – business, administration or service industry. Today, business processes are
viewed as the central concept for organizing the way business is done. Designing
the business processes is, therefore, considered a major challenge. Requirements
for distributed information systems should be a major outcome of the design.
Information exchange is a vital part of business processes. Business processes

operate across geographical distances, often on a worldwide scale, and they uti-
lize corporate memory in the form of huge data repositories. Consequently, we
limit ourselves to a view of distributed information systems that concentrates on
those features that support information exchange. Since information exchange
has a spatial and a temporal aspect, distributed information systems are expected
to overcome temporal and spatial distances. This gives a first – trivial – archi-
tectural criterion, the separation of the two aspects into data communications
systems and database management systems.
More abstractly, from the perspective of the business process an information

system can be viewed as a set of information resources together with a suitable
(resource) manager each. Spatial exchange is provided by data communication
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Fig. 1. Business processes and resource managers

managers, with local and global networks as their resources. Temporal exchange
is supplied by database managers, with main and peripheral store as their physi-
cal resources and databases as their logical resources. The spectrum of assistance
a resource manager offers to its customers is referred to as its service. Business
processes, then, call upon the communications and database management ser-
vices of a distributed information system.
Figure 1 illustrates the basic framework. A business process consists of a col-

lection of work units. Each unit draws on the services of one or more resource
managers, and different units may address the same manager. Assume for sim-
plicity that each business process is totally ordered. Within a business process,
then, resources are shared in temporal order. However, in general a large number
of business processes – within the same enterprise or across different enterprises
– take place in parallel.
From a service perspective, we refer to the resource managers as the service

providers and the work units as the service clients.

2.2 Service Features

From an abstract perspective client and provider enter into a contract, a so-called
service agreement. Crudely speaking, an agreement deals with two aspects:What
is to be performed, and how well it is to be performed. For service features that
make up the first aspect the provider is expected to give absolute guarantees,
whereas for features within the second aspect graded guarantees can be nego-
tiated. We refer to features of the first kind as service functionality and of the
second kind as service quality. Ideally, service functionality would correspond to
the desirable features and service quality to the constraints.
To start with the service functionality of distributed information systems,

the features seem to fall into four broad categories.

1. Utility. This is the raison d’être for the agreement. It describes the collection
of functions through which the client initiates spatial and temporal data
exchange.
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Fig. 2. Service functionality and qualities in distributed information systems

2. Ubiquity. Data exchange should be possible between any pair of clients at
any time at any place. Data access should be possible for any client at any
time from any place.

3. Durability. Access to stored data – unless explicitly overwritten – must re-
main possible at any time in an unlimited future.

4. Information parity. Data carries information, but it is not information by
itself. To exchange information, the sender has to encode its information
as data, and the receiver reconstructs the information by interpreting the
data. Any exchange should ensure, to the extent possible, that the inter-
pretations of sender and receiver agree, that is, that meaning is preserved.
This requires some common conventions, e.g., a formal framework for in-
terpretation. The requirement is more stringent for temporal exchange than
for spatial exchange because the former does not offer an opportunity for
direct communication to clear up any misunderstandings. Rather, in tempo-
ral exchange the conventions must be made known to the service provider
to ensure that the interpretation remains the same on data generation and
access.

For distributed information systems, service quality has two major aspects.

1. Robustness. The service must remain reliable under any circumstances, be
they errors, disruptions, failures, incursions, interferences. Robustness must
always be founded on a failure model.

2. Scalability. The service must tolerate a continuous growth of service requests,
both for data transmission and data storage or retrieval.

Figure 2 illustrates how the service features interact. Ubiquity is primarily
the responsibility of data communications, durability of database management.
All other features are the shared responsibility of both.
As seen from the contract angle, architectural design is a parallel effort to

contract negotiation. Given the service features, systems designers determine
how they affect each other under further constraining factors such as limitations
of physical resources. They decide how they may be traded against each other
and, ultimately, whether the deal can be closed or terms must be renegotiated.
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2.3 Service Dynamics

From Fig. 1 we observe three kinds of relationships in an information system.

1. Client-provider. Clients issue service requests to a provider by calling a ser-
vice function. The provider autonomously fills the request and returns the
result to the client. Client and provider run in separate processes, the com-
munication may be synchronous or asynchronous.

2. Client-client. By sharing resources, business processes, through their work
units, may interact. If the interaction is wanted because the processes pursue
a common objective we have a case of cooperation. If it is unwanted we have
a case of conflict between the processes.

3. Provider-provider. A business process may call upon the services of a num-
ber of providers. To ensure that the process reaches its final objective the
providers involved must coordinate themselves.

2.4 Refining the Hypothesis

Chapter 2 provides us with a general framework for expressing the external
factors that govern architectural design. Altogether we isolated six features, too
many to be considered all at once. Hence, we refine our hypothesis to one that
assumes that some features exert more influence than others. The major features
are used to develop a gross architecture. A measure of correct choice would be
that the other features affect only a single component of the gross architecture,
or add a single component to it. We refer to this property as design orthogonality.
The ensuing four chapters will test the hypothesis in retrospective for vari-

ous database system architectures. Some of them (Chaps. 3 and 6) are widely
accepted, others (Chaps. 4 and 5) are less so that this paper could even be
regarded as a – modest – original contribution.

3 Database Management Systems Reference Architecture

3.1 Service Features

Our focus is database management systems (DBMS). To indicate the focus, we
use a specialized terminology for the features.

1. Data model. A data model expresses DBMS utility. The utility is generic:
Due to the huge investment that goes into the development, DBMS must be
capable of supporting a large and broad market of applications. As such a
data model provides a collection of primitive state spaces and transition op-
erators, and additional constructors that allow these to be grouped into more
complex state spaces and transition procedures, respectively. More formally
speaking, a data model can be compared to a polymorphic type system.
Operators and procedures correspond to the service functions that may be
called by clients. Scalability has a functional counterpart in a constructor
for dynamic sets of record-structured elements.
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2. Consistency. Given a state of the business world, the goal is to have the
database reflect a suitable abstraction of this state (the miniworld) in an up-
to-date version. Information parity is thus refined to a notion of restricting
the content and evolution of the data store to a well-defined set of states and
state transitions considered meaningful. Each state of the database is to be
interpreted as a particular state of affairs in the miniworld. An update to
the database intended to reflect a certain change in the miniworld is indeed
interpreted as that same change by every observer of the database. However,
since a DBMS cannot divine the true state of the miniworld, it would be
too much to ask for preservation of meaning in this ideal sense. Instead, one
settles for lesser guarantees. Static consistency means that the current state
of the database is always drawn from a predefined set of consistent database
states, which are considered to be valid and unambiguous descriptions of
possible states of the miniworld. Dynamic consistency ensures that state
transitions take consistent states to consistent states. To enforce the two,
the appropriate sets of states and state transitions need to be defined in a
database schema. Usually a database schema can be considered as a database
type together with further state constraints. The polymorphic transition
operators ensure consistency by observing the schema. Generally speaking,
then, consistency refers to the degree of information parity between database
and miniworld.

3. Persistency. Durability calls for the preservation of data on non-volatile stor-
age, i.e. on a medium with an (at least conceptually) unlimited lifetime.
Moreover, preservation should be restricted to those database states that
are regarded consistent. Such states are called persistent. As a rule, only the
outcome of executing a transactional procedure (called a (database) trans-
action) is considered to be persistent.

4. Resilience. A robust DBMS must be able to recover from a variety of failures,
including loss of volatile system state, hardware malfunctions and media loss.
All failure models to achieve robustness should be based on the notion of
consistency. A distinction must be made, though, whether a transaction is
affected in isolation or by conflict with others. In the first failure case the
failure model causes the database to revert to an earlier persistent state or,
if this proves impossible, to somehow reach an alternative consistent state.
In the second case, the failure model is one of synchronizing the conflict-
ing transactions so that the result is persistent both from the perspective
of the individual transaction (internal consistency) and the totality of the
transactions (external consistency).

5. Performance. DBMS functionality must scale up to extremely large volumes
of data and large numbers of transactions. Scalability will manifest itself
in the response time of a transaction. System administrators will instead
stress transaction throughput. Collectively the two are referred to as DBMS
performance.
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In classical centralized database management systems, ubiquity is usually
ignored. The topic becomes more important in networked database management
systems.

3.2 Physical and Economical Bottlenecks

As noted in Sect. 2.2, utility is the raison d’être for DBMS, but so is durability.
Moreover, both are closely intertwined: the former assumes the latter. Conse-
quently, the first step is to analyze whether any of the remaining features directly
affects one of them and thus indirectly the other. We claim that the feature that
exerts a major influence is performance.
The effect of performance is due to constraints that originate with the phys-

ical resources. Even after decades durability is still served almost exclusively by
magnetic disk storage. If we use processor speed as the yardstick, a physical
bottleneck is one that slows down processing by at least an order of magnitude.
The overwhelming bottleneck, by six orders of magnitude, is access latency,
which is composed of the movement of the mechanical access mechanism for
reaching a cylinder and the rotational delay until the desired data block appears
under the read/write head. This bottleneck is followed by a second one of three
orders of magnitude, transmission bandwidth.
We note that even main memory introduces one order of magnitude. Com-

puters attempt to overcome it by staging data in a fast cache store. DBMS should
follow a similar strategy of data staging by moving data early enough from pe-
ripheral to main storage. But now we observe a second, economical bottleneck:
The price per bit for main memory is by two to three orders of magnitude higher
than for magnetic disk. Data staging that finds a suitable balance between phys-
ical and economical bottlenecks will thus have to be one of the principles guiding
the architectural design of DBMS.

3.3 Primary Tradeoff: Balancing Data Model and Performance

Section 3.2 suggests that utility and performance should dictate the design strat-
egy, i.e., that they should have first priority. We thus introduce two diametrically
opposed design directions: A top-down direction of mapping the data model to
the physical resources, and a bottom-up direction of lessening the bottlenecks
by data staging (Fig. 3). This is a complicated undertaking that by tradition
requires a stepwise approach in order to break up the decision space into smaller
portions. The result is a multi-layered architecture.
Determining the decision space for each layer is the paramount challenge.

Our conjecture is that we have to find suitable abstractions for both utility and
performance such that both match for the purpose of balancing the needs. Util-
ity is in terms of function mapping, and performance in terms of criteria for
“early enough” data staging. Figure 4 illustrates the approach. Mapping utility
downwards is equivalent to reducing the expressiveness of the data model. Mov-
ing performance upwards is equivalent to widening the context for determining
what “early enough” means.
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Fig. 3. Architectural design centered on data model and performance
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Fig. 5. Reference architecture for set/record-oriented database management systems

A well-known reference architecture for DBMS uses five layers. Figure 5 shows
the architecture. We demonstrate that this architecture can be explained in terms
of the two factors data model and performance, following the principal ideas just
mentioned.

1. We assume a service-level data model that is set/record-structured and uses
a set-oriented and, hence, descriptive query language such as SQL or OQL.
For data staging on the topmost layer we assume a predominance of read
queries. Consequently we examine the sequence of read queries and analyze
the result for frequent patterns of collectively retrieved data (read profile).
Data would then be staged by rearranging the database according to these
patterns. This in turn determines the data model for the next lower layer
(internal data model): It should again be set/record-structured.

2. We now turn to the functional mapping. Some reduction in expressiveness
should take place. Since structurally there is little difference, the difference
can only be in the operators. These will now be record-oriented, i.e., naviga-
tional. The mapping encompasses three aspects. One is the actual rearrange-
ment of the external structures. The second concerns the translation of the
queries into set-algebraic expressions over the rearranged database, the alge-
braic and non-algebraic optimization of the expressions with a cost function
that minimizes estimated sizes of the intermediate results. The third pro-
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vides implementations of the algebraic operators in terms of the next lower
data model.

3. We alternate again with data staging. We analyze the entire query profile,
now in terms of the record operators. Our hope is to find characteristic
patterns of operator sequences for each internal set. Each pattern will deter-
mine a suitable data organization together with operator implementations.
Consequently, the data model on the next lower layer offers a collection of
something akin to classes (physical data structures).

4. Back to the functional mapping we mainly assign physical data structures
to the internal sets.

5. At this point we change direction and start from the bottom. Given the
storage devices we use physical file management as provided by operating
systems. We choose a block-oriented file organization because it makes the
least assumptions about subsequent use of the data and offers a homogeneous
view on all devices. We use parameter settings to influence performance. The
parameters concern, among others, file size and dynamic growth, block size,
block placement, block addressing (virtual or physical). To lay the foundation
for data staging we would like control over physical proximity: adjacent block
numbering should be equivalent to minimal latency on sequential access.
Unfortunately, not all operating systems offer this degree of control. The
data model is defined by classical file management functions.

6. The next upper layer, segment management, is particularly critical from a
functional perspective in that it forms a bridge between a world that is devoid
of service content and just moves blocks of bytes around, and a world which
has to prepare for the services. The bridge maintains the block structure,
but makes the additional assumption that blocks contain records of much
smaller size. This requires a more sophisticated space management within
as well as across blocks and an efficient dynamic placement and addressing
scheme for records. Because of all this added value the data model refers
to blocks as pages and files as segments. The operators determine access to
pages and records and placement of records.

7. The segment management will also determine the success of data staging on
the upper layers. For one, if the physical proximity of blocks is to be exploited
for pages, mapping of pages to blocks is critical (placement strategy). Even
more critical is how the layer exploits main memory to improve page access
by three to five orders of magnitude. Use is made of large page buffers. Aside
from buffer size the crucial factor is the predictive model of “early enough”
page loading (caching strategy).

8. This leaves the details of the physical data structures layer. Given a page,
all records on the page can be accessed with main memory speed. Since
each data structure reflects a particular pattern of record operations, we
translate the pattern into a strategy for placing jointly used records on the
same page (record clustering). The functional mapping is then concerned
with the algorithmic solutions for the class methods.
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3.4 Schema Consistency

If data model and performance are indeed the most critical design factors, then
the remaining features should only have an orthogonal influence.
Consider the functional mapping in Sect. 3.3. It was entirely based on data

models and, hence, generic. One of the features to be added at this point is
schema consistency. Schema consistency is equivalent to type safety in program-
ming. In generic solutions type checking is done at runtime. Consequently, type
information – often referred to as metadata – must be maintained by the opera-
tions in each layer. The content of the metadata on each layer is derived from the
metadata on the next upper level, by a mapping that is determined by the func-
tional mapping for the data models. On the topmost layer the database schema
constitutes the metadata. Figure 6 illustrates the principle, and demonstrates
that consistency is indeed orthogonal to the data model.
Since from a data management perspective metadata is just data, the meta-

data of all layers are often collected into a separate repository called the data
dictionary, thus perfecting the orthogonality (Fig. 7).

3.5 Consistency, Persistency and Resilience

Transactions define achievable consistency and persistency. They also incorpo-
rate the failure model for resilience – atomicity for failures and isolation for
suppression of conflicts. Such transactions are said to have the ACID properties.
Transaction management consists of three components: a transaction coordina-
tor that does all the interaction with the clients and the necessary bookkeeping,
a scheduler that orders the operations of a set of concurrent transactions to en-
sure serializability and recoverability, and a recovery manager that guarantees
persistency and resilience.
Since buffer managers are in charge of a critical part of performance they

operate fairly autonomously. On the other hand, atomicity requires close collab-
oration between recovery manager (including a log manager) and buffer manager.
Therefore, recovery managers are made an integral part of segment management.
If we wish to achieve orthogonality we should concentrate most or all other tasks
of transaction management within this layer, i.e., within segment management.
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As a consequence, we make schedulers a part of segment management as well,
and synchronize on the basis of page accesses. Transaction coordinators remain
outside the basic architecture because they are uncritical for performance. Fig-
ure 8 illustrates the solution.

4 Semistructured Database Management Systems

4.1 Service Features

In Chap. 3 we identified the data model as one of the predominant features.
If we continue to verify our refined hypothesis, it makes sense to modify the
assumptions for the data model. In this section we replace the data model of
sets of small-size records and set operations by a data model for semistructured
databases. The model reflects attempts to take a database approach to the more
or less structured document databases of the Web or classical information re-
trieval.

1. Data model. The record of the reference model is replaced by a graph struc-
ture. A node is labeled by a non-unique tag, and even siblings may have
identical tags. A node may include text of any length and optionally a tradi-
tional attribute/value list. From the system perspective the text is atomic.
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Fig. 8. Incorporating transaction management

Retrieval is considered the predominant service function and is, for all or
parts of the graph structure and even across sets of graphs, by pattern
matching. Changes to a graph structure, no matter how complicated, are
treated as atomic.
The choice of data model has consequences for some of the other features.

2. Consistency. Regularity of structured databases is the basis for schema con-
sistency. Whether the DBMS can guarantee information parity even in the
limited form of schema consistency depends on the degree of regularity that
one may observe for a semistructured database. Regularity will have to be
defined in the less restrictive form of regular expressions. Graphs added to
the database must then conform to the schema. Because consistency is de-
fined on single graphs and updates to them are already atomic, transactional
procedures seem to play a lesser role.

3. Persistency. With lesser need for transactions, durability usually implies
persistency.

4. Resilience.Without transactions, a different failure model must be employed.
Failures may occur as well, but there are no longer any fallback positions
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that can automatically be recognized by the DBMS. Instead, clients must
now explicitly identify persistent states, so-called checkpoints, to which to
revert on failure. Since changes to a graph structure are atomic, the failure
model does not have to take interferences into account.

5. Performance. The physical bottleneck remains the same. Consequently, data
staging will have to remain the primary strategy for performance enhance-
ment.

4.2 Architectures

Low Consistency. The notion of database schema makes sense only in an
environment with some degree of regularity in database structures. Consequently,
where there is no such regularity there is little to enforce in terms of consistency.
There are further drawbacks. Little guidance can be given to the analysis of
access profiles, and since there is no notion of type extension, little opportunity
exists for descriptive access across sets and thus for query optimization. Hence,
the upper two layers in terms of the reference architecture of Chap. 3 can exert
only very little influence on performance, and there are no major challenges to
functional mapping. We may thus collapse the layers into a single one.
There is a strong notion of physical proximity, though. Proximity is defined

by the topology of a graph structure, and because reading access is by pattern
matching, the topological information should be clustered on as few file blocks as
possible. Since long text fields in the nodes are the biggest obstacle to clustering,
these should be separated out and kept on other blocks, again in a clustered
fashion. Contrary to the reference architecture of Chap. 3 where, due to small
record sizes, the individual page is the primary object of concern, performance
now dictates that clusters of blocks are considered.
Two tasks remain, then. For performance, clusters of adjacent blocks of data

must be staged in main memory. For utility, the graph topology and node fields
must be mapped to block clusters. The tasks become part of a layer that replaces
the layers of physical data structures and segment management in the reference
architecture. With a transaction concept lacking, no further factors exert an
influence. Figure 9 shows the result of the discussion.

Schema Consistency. The solution of the previous section treats semistruc-
tured databases in isolation. This is against recent trends of combining the tradi-
tional structured databases of Chap. 3 with semistructured databases. Suppose
that for reasons of transparency we maintain a single data model, and we agree
on semistructured data as the more general of the two data models. Clearly
though, incorporating structured databases forces us to include consistency as
an important design factor. In turn we need graph structures that are similar in
terms of the underlying regular expressions. These will have to be classified into
types. Consequently, even though one will observe less regularity across their in-
stances as in the traditional case there is a notion of database schema possible.
To gain set orientation, access should cover complete type extensions so that
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Fig. 9. Architecture for low-consistency semistructured database systems

query languages may again be descriptive, though their concern is retrieval only.
Analyses of retrieval profiles may be done along the lines of the graph types.
These are all arguments that favor an upper layer similar to the one in the ref-
erence architecture of Chap. 3. In the details of functional mapping this layer
will in all probability be much more powerful.
From a performance standpoint the retrieval patterns should have an influ-

ence. Our conjecture is that a notion of proximity can again be associated with
these patterns. If we assume that reading access is limited to extensions of single
type, proximity can be translated to subgraphs that correspond to query pat-
terns. Performance mapping, then, consists of dividing the original graph into
(possibly overlapping) subgraphs. As above, the graphs should be separated into
topology and long text fields or, more generally, arbitrary media data. Functional
mapping now includes query optimization.
Subgraphs and long fields require different underlying implementations. In

fact, by closer scrutiny of the subgraphs we may detect that some exhibit the
strong regularity of traditional structured databases. Hence, there is a need
for assigning different physical data structures and, consequently, a need for the
second layer of our reference architecture. However, whereas the uppermost layer
seems to be more complicated than the one in Chap. 3, the reverse seems to be
true for the second layer.
For the implementation we take a two-track approach. There is a good chance

that subgraphs have a size that can be limited to single blocks. Hence, their im-
plementation may follow the reference architecture of Chap. 3 from the physical
data structures layer on downwards, though in detail the techniques may differ.
Fields with unstructured media data should follow the architecture of Fig. 9.
Figure 10 summarizes the discussion.
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5 Multimedia Databases

5.1 Service Features

Even though one may attach any type of media data to a graph node, and
the types may vary, semistructured databases are by no means multimedia
databases. They become multimedia databases only if we offer services that take
note of the interrelationships between different media and, hence, are capable of
combining two or more media. The new service functionality, cross synchronici-
ty, ensures that the contents of the related media match along a time scale. Take
as an example the continuous playback of combined video and audio.
Cross synchronicity relies on playback synchronicity, the ability of a sys-

tem to present media data under temporal conditions identical to those during
recording. As a service feature, playback synchronicity straddles the line between
functionality and quality. Poor playback synchronicity limits utility, but there
is a certain tolerance as to speed, resolution and continuity of playback within
which utility remains preserved. Hence, playback synchronicity could also be
regarded as a service quality.
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5.2 Architecture

To study the architectural effects we presume that cross synchronicity is a ser-
vice functionality and playback synchronicity a service quality. Since cross syn-
chronicity is a feature over and above those that gave rise to our reference ar-
chitecture, we should try to treat it as an orthogonal feature, and encapsulate
it in a separate layer or component somewhere on the upper levels.
Playback synchronicity seems closely related to performance, because it has

to deal with the same kind of bottleneck – peripheral storage. However, con-
ditions are even more stringent. Playback must remain fairly continuous over
minutes up to an hour or so. Longer breaks or jitter due to relocation of ac-
cess mechanisms or contention by other processes must stay within guaranteed
limits. Hence, depending on speed special storage devices (stream devices) or
dedicated disk storage are employed. Special buffering techniques will have to
even out the remaining breaks and jitter. The layers further up should intervene
as little as possible. Hence, for continuous media the right-hand branch in Fig. 10
must become even more specialized. The physical data structures layer should
now restrict itself to storing an incoming stream of media data and managing
it. Discontinuous media data and graph structures could follow the architecture
of Fig. 10.
Now, given playback synchronicity of each individual media data, the upper

layers of Fig. 10 may be preserved to deal with the structural aspects of the
interrelationships between the media, again intervening only during storing of the
data and during the setup phase of playback. On top we add another layer that
controls cross synchronicity, usually along the lines of a given script. Figure 11
gives an overall impression of the architecture.

6 Networked Databases

6.1 Service Features

We return to Fig. 1. In distributed information systems the single business pro-
cess and even a work unit faces a multiplicity of resource managers. All these
may be placed at geographically disparate locations. Consequently, ubiquity en-
ters the picture as an additional service functionality.
In Sects. 2 and 3.1 the service functionalities of consistency and persistency

and the service quality of resilience where tied to the notion of database transac-
tion and, hence, to a single resource manager. In general, these features ought to
be tied to the business process as a whole. Technically then, we refer to a busi-
ness process as an application transaction. Usually, an application transaction
is distributed. Since each component deals with transactional properties on an
individual basis, coordination comes into play as a further service functionality.
Service clients as well as service providers differ in a large number of char-

acteristics. Some of these are entirely technical in nature, such as differences of
hardware and operating system platforms or the transmission protocols they un-
derstand. These discrepancies are referred to as technical heterogeneity. Other
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Fig. 11. Architecture for multimedia database systems

differences – noted as semantic heterogeneity – have to do with functionality,
e.g., different data models, or consistency, e.g., different schemas. How much
heterogeneity is acceptable seems more of a gradual decision. Consequently, we
add a new service quality: homogeneity of services.

6.2 Middleware

If we wish to prove our hypothesis, we should follow our previous architectural
strategy and realize the new features orthogonally whenever possible. In the
case of distributed information systems, the strategy translates into touching
the resource managers only lightly, and adding infrastructure that deals with
the new features. This infrastructure goes under the name of middleware.
The first issue to deal with is ubiquity. The issue is resolved by utilizing the

data communications infrastructure and employing a common high-level pro-
tocol, e.g. TCP/IP. The second is technical homogeneity. Middleware enforces
the homogeneity by establishing an internal standard (take the IIOP protocol
of CORBA) and requiring site-local adapters. Practically all modern middle-



Database Systems Architecture 31

mediatormediator

facilitator
mediation layer

service clients

ubiquity:
technical homogeneity

resource
manager

resource
manager

resource
manager

resource
manager

middleware

consistency, persistency, resilience:
schema-level semantic homogeneity,
coordination

wrapper wrapper wrapper wrapper
middleware

utility:
data model semantic homogeneity,

Fig. 12. Reference architecture for middleware

ware approach semantic homogeneity by setting their own data model standard
(e.g., HTML documents for the WWW, remote objects for CORBA, DCOM and
RMI).
This leaves as tasks those that are much more difficult to standardize, es-

sentially all those that have to do with content. Content affects consistency and
derived features such as persistency or resilience. If one cannot come up with
standards, meta-standards may help. The architectural representation of meta-
standards is by frameworks. A framework that is oriented towards semantic
homogeneity on the schema level, and coordination issues, is the I3 (Intelligent
Integration of Information) architecture. Figure 12 combines the middleware and
I3 approaches into a single architecture.
Wrappers, mediators and facilitators are part of the I3 framework. Wrap-

pers adapt their resource managers on the semantic level, by mapping the local
data model to the common, standardized data model and the schema to one ex-
pressed in terms of the common data model. Mediators homogenize the schemas
by overcoming discrepancies in terminology and structure. Increasingly they rely
on ontologies that are represented by thesauri, dictionaries, catalogues, or knowl-
edge bases. Other mediators accept queries that span several resources, translate
them according to the homogenized schemas, send them off to the resource man-
agers, and collect the homogenized results. Facilitators ease the orientation of
service clients in the network. Examples of facilitators are Web search engines
or catalogues of data sources.
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6.3 Data Model, Consistency and Performance

Local utility and consistency are the responsibility of the individual resource
manager. Collective utility and consistency are the realm of the mediator. From
the viewpoint of the individual database management system all aspects of global
utility are an add-on service functionality and, hence, relegated to a new top
layer. Figure 13 illustrates this logical view. The view leaves open whether the
mediator is a centralized component or distributed across the resource managers.
Mediators achieve on a network-wide basis what the external data model

layer does locally: query translation, query optimization, query shipping and
result collection and integration. These are tremendously complicated issues,
but nonetheless orthogonal to all the local tasks. The mediator is supported by
metadata structures such as the catalogues and ontologies mentioned before, or
a global schema (the so-called federated schema).
The wrapper, besides mapping the schema, queries and results to the common

data model, acts as a kind of filter in order to make visible only those parts of
the database which are globally accessible (the so-called export schema).
Because the local database system remains unaffected, all new performance

bottlenecks arise from distribution. In the past it was transmission time that
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dominated the mediation strategies, and it remains so still today to the extent
that bandwidths have not kept pace with processor speed. Independent of speed,
latency, i.e. the time delay between request and start of transmission, remains
a serious handicap. Therefore, query optimization is largely governed by trans-
mission cost.

6.4 Consistency, Persistency and Resilience

Globally, the service functionalities of consistency and persistency and the ser-
vice qualities of concurrency and resilience are tied to an application transac-
tion. Locally, the functionalities and qualities are guaranteed by ACID database
transactions. We limit our considerations to application transactions that also
are ACID. Consequently, unless it suffices for global isolation and atomicity to
rely solely on local isolation and atomicity, some global – possibly distributed –
coordination mechanisms must be introduced.
It is well known from transaction theory that local isolation is the basis for

any kind of global isolation. Consequently, conflicts among business processes
(see Fig. 1) are handled purely locally. Likewise it is well known that global
atomicity – global persistency and resilience – require coordination in the form
of global commit protocols. These protocols are centralized in the sense that
they distinguish between a coordinator and its agents, where the agents reflect
those resource managers that updated their databases. The most widely used
protocol, Two-Phase-Commit (2PC), requires that even after local commit the
agents are capable, during the so-called uncertainty phase, of rolling back the
transaction. In purely local transaction management an uncertainty phase does
not exist. As a consequence, the recovery manager must suitably be adapted.
This leaves the question of where to place coordination and, incidentally,

transaction monitoring. Both are generic tasks. If we assume that application
transactions pass through the mediator, it seems only natural to place the tasks
with the middleware (Fig. 14). And indeed, this is what middleware such as
CORBA and DCOM try to do. In fact, today’s understanding of many of the
earlier transaction processing systems is that of middleware.
In summary, accounting for distributed transaction management is still close

to orthogonal: A global component is added, and a single local component is
adapted.

7 Conclusions

Does the paper support our hypothesis that architectural design plays the strate-
gic role in identifying, articulating, and then reconciling the desirable features
with the unavoidable constraints under which a system must be developed and
will operate? Is the design philosophy and methodology with a first phase for
identifying the desirable features and the constraints and a second phase for
determining the tradeoffs the correct consequence? We claim the paper does.
Equally important – and this seems the novel aspect of our approach and thus

the contribution of the paper – is a refinement of the strategy that challenges
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designers to identify – very much in the abstract – those features that promise to
dominate the design of the architecture. If successful, the remaining features in
the second class can be treated orthogonally. Orthogonality may either be perfect
so that the features give rise to additional components, or at least sufficiently
strong so that the features can be taken care in a single component within the
architecture developed so far.
The proof was by circumstance and limited to one kind of system – database

management systems in networks. Architectures that have proven their worth
in the past were evaluated in retrospective. Others – DBMS architectures for
semistructured and multimedia databases – still vary widely, and the ones we
developed in this paper reflect those in the literature that sounded most con-
vincing to the author. Also, there is by no means universal agreement on how
to divide the responsibilities for the service features between resource managers
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and middleware. Our hope is that this paper will contribute to future design
decisions.
One may argue that our base was way too small and too specialized to render

statistically significant evidence. Clearly, the study should continue to cover
other kinds of systems. Our next candidate for attention is data communications
systems. Nonetheless, it should have become clear that a design strategy based
on our hypothesis is little more than a conceptual framework. Architectural
design of software systems remains a creative task, albeit one that should follow
sound principles of engineering.

8 Bibliographic Notes

The reference architecture of Chap. 3 is due to T. Härder and A. Reuter and
is itself based on the early System R architecture. A modern interpretation can
be found in Härder, T.; Rahm, E.: Datenbanksysteme: Konzepte und Techniken
der Implementierung. Springer, 1999 (in German). Many of the numerous and
excellent textbooks on database systems that have appeared in the more recent
past use similar architectures as a reference. Where publications on commercial
database products present system architectures (unfortunately not too many do)
they seem to indicate that overall the same principles were applied. A careful
analysis of peripheral storage as the performance bottleneck is given in Gray, J.,
Graefe, G.: The Five-Minute Rule Ten Years Later, and Other Computer Storage
Rules of Thumb. ACM SIGMOD RECORD, 1998. Among the textbooks and
publications on semistructured database systems hardly any deal with issues
of architecture to any detail. Of those on multimedia databases the situation
is only slightly better. Architectures can be found in Apers, P.M.G.; Blanken,
H.M.; Houtsma, M.A.W. (eds.): Multimedia Databases in Perspective. Springer,
1997 and Chung, S.M. (ed.): Multimedia Information Storage and Management.
Kluwer Academic Publ., 1996.
The classical textbook on transaction management, which starts from an ar-

chitectural view is Gray, J., Reuter, A.: Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publ., 1993. An architectural approach is also
taken by Bernstein, P.A., Newcomer, E.: Principles of Transaction Processing.
Morgan Kaufmann, 1997. For middleware the reader is referred to the numer-
ous literature over the past few years. A good pointer to the I3 architecture is
Wiederhold, G.: Intelligent Integration of Information. Kluwer Academic Publ.,
1996, whereas the details have remained in draft form: Arens, Y. et al.: Refer-
ence Architecture for the Intelligent Integration of Information. Version 2, ARPA
Tech. Report.

Acknowledgements

The author is grateful to Gerd Hillebrand for his thoughtful comments and dis-
cussion on an earlier version of the paper. Klaus Dittrich through his comments
helped sharpen the focus of the paper.


	1 Hypothesis
	2 Resource Managers in Distributed Information Systems
	2.1 Shared Resources and Services
	2.2 Service Features
	2.3 Service Dynamics
	2.4 Refining the Hypothesis

	3 Database Management Systems Reference Architecture
	3.1 Service Features
	3.2 Physical and Economical Bottlenecks
	3.3 Primary Tradeoff: Balancing Data Model and Performance
	3.4 Schema Consistency
	3.5 Consistency, Persistency and Resilience

	4 Semistructured Database Management Systems
	4.1 Service Features
	4.2 Architectures

	5 Multimedia Databases
	5.1 Service Features
	5.2 Architecture

	6 Networked Databases
	6.1 Service Features
	6.2 Middleware
	6.3 Data Model, Consistency and Performance
	6.4 Consistency, Persistency and Resilience

	7 Conclusions
	8 Bibliographic Notes

