Increasing Reusability in Information Systems
Development by Applying Generic Methods

Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

Information Systems Group,
TU Braunschweig
P.O.box 3329, D-38023 Braunschweig
{s.eckstein, p.ahlbrecht,k.neumann}@tu-bs.de

Abstract. Increasing the reuse of parts of the specification and imple-
mentation of complex software systems, as for example information sys-
tems, may lead to substantial progress in the development process. This
paper focuses on reusing parts of specifications with the help of generic
methods and explores two aspects: the parameterization concepts of the
languages UML and TROLL, and how formal parameters in such concepts
can be restricted if needed.

1 Introduction

The development of large information systems is by far no trivial task, since
the probability of errors grows significantly with increasing complexity. How-
ever, approaches are being made to realize large systems on the basis of generic
methods (cf. e.g. [5]) and thereby to reduce the complexity of the development
process. The term “generic methods” also includes parameterized programming
and related approaches at the specification level [9].

Information systems are mostly rather complex programs, which are fre-
quently custom tailored for special applications. Their central part is usually a
database system, and additional functionality, especially the user interface, is
realized as an extensive application program. In recent years database technol-
ogy moved from centralized systems to distributed databases and client/server
systems [BJ40], and the swift acceptance of the World Wide Web led to the sit-
uation that nowadays users are expecting to be able to use their familiar web
browser as the interface to various information systems [212].

In this paper we focus on the specification of such information systems and
particularly on parameterization aspects. In general, we propose to apply UML
[29/43] together with the formal specification language TROLL [27J25] developed
in our group, in order to utilize the advantages of both a semi—formal graphical
language and a formal one, as discussed for instance in [48] for an older version of
TROLL and a predecessor of the UML, the Object Modeling Technique (OMT)
[42]. Regarding parameterization, both languages do provide such concepts, and
in this paper we study how they correspond to each other.

To this end we first give an overview of current research activities related
to generic methods, putting special emphasis on parameterization concepts for

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 251-266] 2001.
© Springer-Verlag Berlin Heidelberg 2001

252 Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

describing variants of a system. We then introduce the formal object oriented
specification language TROLL before sketching our area of application. In Sect.
we introduce and investigate the parameterization concepts of TROLL und UML
and focus on one hand on the parameter granularity and on the other hand on
parameter constraints. Finally we summarize our paper.

2 Generating Software

As a long-term objective the possibility to describe families of information sys-
tems with the support of specification libraries is as desirable as generating
concrete runnable systems from such a description. However, while the concept
of generators has been in use in some fields of software engineering, for instance
as scanner and parser generators in the area of compiler construction or the
generation of user interfaces [44], to name a very recent approach, there is so far
no uniform theory and methodology on generating information systems. Nev-
ertheless the automatic implementation of such reactive systems is considered
possible, not only based on specifications given at a high level of abstraction,
but even starting from the results of the requirements analysis [26].

[B] discusses various generators for highly specialized software systems, for
example Genesis as a generator for database management systems, Ficus for
generating distributed file systems, ADAGE as a generator for avionic software,
and SPS for software on signal processing. According to [4], all these generators
belong to the so-called GenVoca approach, in which the generator constructs
a software system with respect to the following points: a system consists of
modules, which can be assigned to different fields of application, and which
form distinctively larger units than given by classes or functions. Modules are
implemented by components, and different components for the same task provide
the same interface. The combination of modules and their adaptation to meet
special requirements is achieved by parameterization. In addition to these points
the possibility to check configurations for validity should also be given [B0].

The different types of generators can be classified according to a variety of
criteria. We may, for example, distinguish between whether they are composi-
tional or transformational. While the former compose the desired software out of
prefabricated components, the latter actually generate the code themselves. An-
other classification criterion is the question of whether the software is generated
statically or dynamically, i.e. of whether a generated complete system may be
reconfigured at runtime or not. Regarding parametric languages it is also possi-
ble to differentiate between generators that switch from the source language to a
different target language, and those which maintain the same language for input
and output. Generators of the latter type will replace formal parameters by pro-
vided elements during instantiation, thus producing non-parametric code of the
same language. Domain-specific generators exist which are capable of creating
systems of a special type — examples are scanner and parser generators — and
there are also generators for “arbitrary” systems like, for instance, compilers for
programming languages.

Increasing Reusability in Information Systems Development 253

Under the term generic methods we should subsume not only generators
and their application for creating software, but also languages which permit a
description of families of specification and implementation modules by means
of generic elements — so—called formal parameters — in such a way that these
descriptions may then be adjusted according to given special requirements by
binding the formal parameters to actual values.

In the theory of abstract datatypes the idea of parameterization is a well
known concept which has already been investigated some time ago. Here it suf-
fices to mention the frequently used example of a stack for storing elements of
an unspecified type. C++4, for instance, supports the implementation of such a
parameterized abstract datatype with its template construct. In Java, however,
a corresponding language element is currently still not available, but attempts to
add such a parameterization concept are being made (cf. e.g. [38[7]). Compared
to C++ these approaches also provide the possibility to define (syntactical) prop-
erties of the parameters. In the literature this possibility is also termed bounded
parametric polymorphism 1] or constrained genericity [36].

Parameterization concepts have also been investigated and formalized in the
field of algebraic specification of abstract datatypes (cf. e.g. [T9)35]). Here, it is
also possible to define semantic properties by providing axioms which the actual
parameters have to meet, in addition to being able to describe the signature of
the parameters. [20] transferred these results on to larger units, namely modules,
which may themselves have other modules as parameters. Quite a few specifi-
cation languages have been developed in this area, which we will not discuss in
further detail, but refer this to [49], which provides a useful overview.

We only mention OBJ [23], as this specification language had a major impact
on the development of LILEANNA [22], even though the latter also incorporates
implementation aspects in addition to specification concerns and the formal se-
mantics of the languages differ. LILEANNA, too, facilitates having entire mod-
ules as parameters and has been used during the already mentioned ADAGE
project for the generation of avionic software. Furthermore, the language dis-
tinguishes between a vertical and horizontal composition and, accordingly, also
between horizontal and vertical parameters. Vertical composition permits the de-
scription of a system in separate layers, while horizontal composition supports
structuring of the single layers [24].

In all the approaches which we have discussed so far the structuring ele-
ments like classes or abstract datatypes may be generic. The structure which
they describe, however, is and remains unchangeable. In contrast to this the
collaboration—based design [A6] assumes that the collaborations among differ-
ent classes, i.e. class—spanning algorithms, represent the reusable units, which
should be adaptable to various concrete class structures. In [37] these collabora-
tions are described relatively to an abstract class graph, which again represents
the interface to a concrete class graph. This setup is termed structure gemeric
components.

254 Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

Irrespective of the type of components, classes or modules, they have to be
stored in libraries to be available for reuse. Here, powerful tool support is needed
(cf. e.g. [LOU31YTT]) to make effective reuse possible.

3 The TrOLL-Approach

The object oriented language TROLL [27/25] was developed for specifying infor-
mation systems at a high level of abstraction. It has been successfully utilized
in an industrial environment to develop an information system in the area of
computer aided testing and certifying of electrical devices [32[2]].

In this approach informations systems are regarded as being communities
of concurrent, interacting (complex) objects. Objects are units of structure and
behavior. They have their own state spaces and life cycles, which are sequences
of events. A TROLL specification is called object system and consists of a set of
datatype and a set of object class specifications, a number of object declarations
and of global interaction relationships.

Object classes describe the potential objects of the system by means of struc-
ture, interface, and behavior specifications. Attributes are used to model the
state spaces of the objects. Together with the actions they form the objects’
local signatures. Attributes have datatypes and may be declared as hidden, i.e.
only locally visible, optional or constant. They can be derived, meaning their
values are calculated from the values of other attributes, or initialized.

The second part of the signature determines the actions of the objects. Each
action has a unique name and an optional parameter list. Input and output values
are distinguished and each parameter has a certain datatype. The visibility of
actions can be restricted in such a way that they do not belong to the object
class’ interface but can be used internally only. Actions that create objects of a
class, so called birth actions, and actions that destroy objects, so called death
actions, are explicitly marked.

While the signature part of an object class determines the interface of the
objects, the behavior part constitutes the reactions of the objects to calls of the
actions declared in the interface. The admissible behavior of the objects can be
restricted by means of initialization constraints and invariants.

Complex objects may be built using aggregation and with the consequence
that the component objects can exists only in the context of the complex one
and that the superior object can restrict the behavior of its components. By
means of specialization hierarchies base classes may be extended with further
aspects.

The set of potential instances is determined by object declarations at the
object system level. At runtime concrete instances can be created through the
calling of birth actions of the respective object classes. All instances of a system
are concurrent to each other and synchronize when they interact. Interactions
are global behavior rules that together with the local ones describe the behavior
of the system.

Increasing Reusability in Information Systems Development 255

Semantics is given to TROLL specifications using different techniques: the
static structure of an object system is semantically described with algebraic
methods, and to describe properties of distributed objects a special kind of
temporal logic has been developed. This logic is called Distributed Temporal
Logic (DTL) [I7)16] and is based on n-agent logics. Each object has a local logic
allowing it to make assertions about system properties through communication
with other objects. Objects are represented by a set of DTL formulae interpreted
over labelled prime event structures [39]. Interaction between concurrent objects
is done by synchronous message passing. The system model is obtained from its
object models, whereby object interaction is represented by shared events. An
exhaustive description of the model theory is given in [IRITH].

Presently, an extension of TROLL with module concepts is under investiga-
tion, aiming on one hand at providing more sophisticated structuring concepts
and on the other hand at supporting reuse of specifications by means of concepts
for parameterization [T2/T3]. Regarding theoretical foundations, module theory
is being addressed e.g. in [33[34], where in particular DTL has been extended to
MDTL (Module Distributed Temporal Logic).

4 Area of Application

The starting point for our investigations on generic information systems are
web-based information systems which can be generated in order to facilitate
the administration of tutorials. In a tutorial, students are supervised in small
groups which are guided by a tutor. The students have to complete exercises
handed out by one of the lecturer’s assistants in teams of two. If they achieve a
certain percentage of the total of points assigned to the exercises, they obtain a
certificate for the course at the end of term.

Looking from an organizational point of view this means that the students
have to form teams of two, and register for the tutorial providing certain personal
information (name, registration number, etc.). During term time the tutors keep
account of the points which the teams and students of their group receive, so
that by the end of term the certificates can be printed and signed by the lecturer.

As a first basic structuring of the administration system three layers can
be identified (cf. also [41]): one for presenting information, one for storing it,
and the third to facilitate the exchange of data between the former two. These
tasks are taken over by the packages Presentation and Storage and the class
Controller, respectively, which are components of the package TutorialAdminis-
trationSystem, which again represents the entire system. In the following a more
detailed discussion will be given only for the package modeling the user interface.
Figure [M shows the corresponding class diagram for the package Presentation.

In this figure, the possibilities to access the single web pages are modeled by
compositions. The parts cannot be created before and die at the latest with the
death of the composite object. A StandardPage, for example, can be viewed only
after a successful log-on on a StartPage. The specialization of the StandardPage
into the Assistant—, Tutor— and StudentPage states that access to the Tutorial-

Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

256

ofeq aeq
JRWLILUOD) —wea, oSequiea],
—uone[EouE) —Juapmg —JOS2100§
1 § 1
1

aSeg
T oFed oFed
—uoday 7|m,,_8wx,n_:£y5 —as1010XFAJIPOIA
I 1
oFed 2FegmaInlong
—MIIAIOAQ
BN-H

oFegoyu]

—aImpoaaguey)

JUSpMISAJIPOIN

aSeq ofeq
JUpMSIRISU]

{aox}

adeq
—wea] AJIPON

aSeq
—tomng,
—KyipoN
I I
a3eq ageq aTegmaratonQ
—MIIAIAQ euon,
—juopmg —1UASISSY

7 aFeqiuapmg 7 1 aeqiomy, 7?_

aBequualsissy 7

afegojuraInoa

93ed MAIAIIAQISIONOXNE

afegprepuels
1

BegmararAQRLIOIN],

aBequonensidoy

ofequeis

UONEIIPUTUONENSISYJOUONBULIJUOD) 7

PUIRS QAT HaquINNuONEISIFY |

uonedpura[qusstwpeupndupIayLng 7

UONEIIPULR[QISSOJIONUONENSISNY 7

uoneiuasalg

Fig. 1. Detailed class diagram of package Presentation

Increasing Reusability in Information Systems Development 257

and Fzxercise OverviewPage as well as to the LecturelnfoPage is also possible from
the specialized pages. In contrast to this, changing the password or sending e-
mail can only be done from the specialized pages.

Access to the system is possible via a StartPage only. There, a user can choose
to register for the tutorials or retrieve general information on them. Someone al-
ready registered with the system may, in accordance with his user status, retrieve
further information or perform additional operations. Students for example may
change their address and retrieve the score of their team. Identification is accom-
plished by prompting for a login and password at the StartPage. An unregistered
student may enroll himself and others using the RegistrationPage as many times
as admissible to enter the data of the team members. A detailed description of
the registration procedure using activity diagrams can be found in [14]; due to
space restrictions we refrain from elaborating on it here.

On the one hand, the static part of the Presentation package thus describes
the information which the system has to provide for the different groups of users.
On the other hand it also models the possibilities for navigating between the user
interfaces, as e.g. [45] recommends for the design of web sites.

The requirements which have been outlined here so far apply to many tutori-
als with different deviations. For example, the size of the teams and the required
minimum score may vary. The tutorials may be held several times per week or
less, and even completely irregularly. Furthermore, they do not have to take place
at the same time, which should be reflected in the application procedure: With
different contact hours of the tutors it would be nice to offer the students the
possibility to choose a time which suits their timetable, requiring a completely
different algorithm from the one which merely distributes them equally over the
available tutorials in the case of simultaneous contact hours. Finally, the num-
ber of teams per group may be restricted, for instance for practicals which use
equipment that is only available in a limited number.

5 Specifying Generic Information Systems

The application area introduced in Sect. @] has been a starting point for a case
study addressing certain aspects from the subject “generating information sys-
tems”. We studied parameterization concepts at the specification level or, more
precisely, parameterization concepts of the UML, which can be used to describe
variants of a system, and implemented a generator program, which produces
runnable systems from prefabricated components.

In this paper we concentrate on the specification aspects. In particular, we
present the parameterization concepts of TROLL, compare them to those of the
UML and discuss some results of our case study.

The UML not only allows to parameterize classes, as e.g. C++ does, but also
arbitrary model elements. Such parameterized classes, collaborations, packages
etc. are called templates or template classes, template packages and so forth.
TROLL provides exactly one parameterizable model element, the so—called mod-
ule, which can, however, consist of one or more classes together with their struc-

258 Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

tural and communication relationships, or even entire subsystems. The latter are
comparable to UML—-packages.

There are different types the formal parameters of a UML—template can
belong to: If actual arguments of a parameter are supposed to be values of a
certain datatype, the parameter is specified in the form name: type. If, on the
other hand, the actual argument is supposed to be a class or a datatype itself,
it suffices to state the formal parameter’s name. In this case we also talk about
datatype parameters. Furthermore parameters may even represent operations.
To represent a template, a small dashed rectangle containing the formal param-
eter is superimposed on the upper—right corner of the respective model element.
In TROLL formal parameters always have to be declared together with a type.
Valid types for formal parameters are datatypes or classes themselves, the state-
ment “type”, if the actual value is supposed to be a datatype or a class, or the
statement “module”, if the actual value is supposed to be a bunch of classes.

TutorialAdministrationSystem | ________________ ‘

,,,,,,,,,,,,,,,,,

Presentation

:
‘
<<call>> 1
|
v
Controller

<<call>> |
v
Storage

}

|
|
| <<bind>> (3)
|
j

TutorialAdministrationSystem with
at most 3 students per team

Fig. 2. Parameterized TutorialAdministrationSystem

Let us start examining these concepts by means of a small example from our
application area. We stated in Sect.[d that the students should complete exercises
in teams of two. It may be desirable to leave the exact team size open at first
and generalize the tutorial administration system by specifying the maximal
number of students per team (mazTeamSize) as a parameter. In order to obtain
a concrete or actual model element the parameters have to be instantiated.

Increasing Reusability in Information Systems Development 259

Here, the formal parameter is bound to the value “3”. The corresponding UML
specification is shown in Fig. Bland in TROLL this looks like the following:

module TutorialAdministration
parameterized by maxTeamSize: nat;

subsystem Presentation ... end_subsystem:

object class Controller ... end;

subsystem Storage ... end_-subsystem:
end-module;

Instantiation is expressed as follows:

instantiate module TutorialAdministration
as TutorialAdministrationSystem with_at most_3_students_per_team;
bind maxTeamSize to 3;

In the course of the case study it turned out to be beneficial to use lager units
as parameters than those provided by the UML. The reason for this is that the
number of parameters may increase rapidly and consequently the specification
becomes unintelligible. Using UML as the specification language, we chose to
employ the concept of packages and allow them to be used as parameters. As
mentioned earlier, in TROLL modules are allowed to be used as parameters for
other modules and hence parameters can be as large and as complex as needed.

In [I4] these results are illustrated by means of a somewhat more complex
part of our application area. There, two different procedures to registrate for
the tutorials are discussed. For the first one it is assumed that all tutorials take
place at the same time. Consequently, the students can be distributed on the
tutorials automatically, whereby a level partition is guaranteed. In the second
procedure the students are allowed to choose their groups on their own. In [14]
three variants are discussed of how to parameterize the specification in such a way
that the different registration procedures are taken into account. In the following
we give an overview of these three variants, which differ in the granularity of the
employed parameter types. Due to space limitations we refrain from presenting
the respective translation to TROLL.

Allowing packages as types for parameters we can model the sketched sce-
nario as follows (Fig.[B): The registrationPage and all its depending classes are
comprised in a package called registration, which represents a formal parameter.
This parameter can be instantiated with packages that contain the classes needed
for the respective variants of registration. The controller is modelled as a formal
parameter of type class. The expected actual arguments are classes, which offer
operations needed for the interactions between the presentation and the storage
component and which differ in the registration procedure. By instantiating the
parameters registration and controller with suitable packages and classes unpa-
rameterized specifications result, which describe systems realizing the respective
variant of registration.

A variant to model the requested scenario without using packages would
look like Fig. Blwith the Registration: package being removed. Essentially, actual

260 Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

TutorialAdministrationSystem

I
| Registration: package |
| Controller: class !

Presentation P ‘
. Registration: package

Registratio

T
I
I
! <<call>>
I
|

y

Controller

T

|

I

| <<call>>

I

|
v

Storage

Fig. 3. Variant 1: Packages and classes as parameters

arguments for this parameter are equal to the ones sketched above, but the
specification of the presentation package becomes somewhat more complex. As in
this variant no packages are allowed to be used as parameters, it is not possible to
group all required classes into one unit and exchange them together. Accordingly,
this part of the specification has to be so general that it can deal with all actual
controller classes which the formal parameter may be instantiated with and thus
becomes more complex and a number of additional integrity constraints arises.

Figure [shows the last variant we are going to present here. Only data val-
ues and operations are used as actual arguments and thus the parameterization
exhibits a much finer granularity than before. For instantiating the template two
numerical values and an operation have to be provided. The numerical values
determine the multiplicity values mazTeamSize and maxNumberOfTeamsPer-
Tutorial, while the operation determines the core algorithm of the registration
procedure.

For this variant, too, the above remarks with respect to the complexity of the
presentation package hold, as only the specification of the controller has changed.
Comparing the three parameterization variants one can see that in the third one
the list of formal parameters may quickly become long and unintelligible while
at the same time one can easier determine which parts of the specification are
actually variable.

Increasing Reusability in Information Systems Development 261

Tutorial AdministrationSystem |

|
| maxTeamSize: nat, 3

! maxNumberOfTeamsPerTutorial: nat, :

! registered(I

1 ! in teamData: List(StudentDataElement) |
I

! I

! I

Presentation): integer : operation
R e T
|
<<call>> |
|

|
I
maxNumberOfTeamsPerTutorial: nat, i
registered(I
in teamData: List(StudentDataElement) |
): integer : operation |
I

Controller

T
I
<<call>> |
I
|

1V
Storage

Fig. 4. Variant 3: Values and operations as parameters

It is true that variants one and two are easier to understand, but they re-
quire more redundancy between the different actual arguments a certain formal
parameter may be bound to. For example considerable parts of the controller
specification would be identical for each actual argument, resulting in prob-
lems with the maintenance of the specification. Presumably best results will be
reached with a gradually applied parameterization of mixed granularity.

Independent from the (permissible) parameter granularity it is often neces-
sary to restrict the set of potential actual arguments by means of additional rules.
Such rules can for instance determine which combinations of actual arguments
for different formal parameters can be used together, or which requirements the
actual arguments have to fulfill in general in order to produce a correct non—
parameterized specification. Depending on the type of parameter, different kinds
of rules may be applied.

Five types of parameters can be distinguished. Table [[gives an overview
of the possibilities to restrict the respective types of parameters. The simplest
case are value parameters as, for example, the maximum team size mentioned
above. These parameters are roughly described by their datatype and can be
made more concrete by a further restriction of their range.

All other types of parameters are settled at a higher level of abstraction,
where datatypes make no sense. Instead, the expected signature can be speci-
fied. For classes, operations and packages it may be useful to fix the complete

262 Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

Table 1. Possible parameter restrictions

value parameter|datatype parameter|operation|package/
basis datatype|class module

type specification X
signature X X X
signature part X X X
range restriction X X
pre— and postcond. X
choice X X X

signature. In the case of operations this would be the operation name as well
as the names and datatypes of the input and output parameters. In the case of
classes this would be the operations the respective class is expected to provide,
and in the case of packages it would be the classes with their signatures.

Besides specifying the complete signature, one may also want to fix only that
part of it that is relevant in the respective template. For example, it could be
sufficient to state that the required datatype has to provide a compare operation
for its elements. For classes it can be useful to specify a base class where the
class given as an argument has to be derived from. While it does not make
much sense to specify an incomplete signature for an operation, it sometimes
makes sense to restrict the range of its return values. One may for instance
think about an operation to produce random numbers, where the interval of the
output values shall be restricted to a certain range. Furthermore, operations can
be characterized by the specification of pre— and postconditions. All restrictions
that can be constituted for operations that are parameters in their own right
can also be constituted for operations as parts of class or package parameters.

Other types of restrictions are needed in the case that the actual arguments
a parameter can be bound to should not be any arguments which fulfill the re-
strictions, but only such arguments which are provided by a library. Here, rules
regarding permisible combinations of actual arguments are of interest. Referring
to our case study one may think of the situation where all possible registra-
tion algorithms and all variants of the controller class belonging to them are
provided by a library. In the case that for instance algorithm x works together
with controller classes a and b only, while algorithm y needs controller class c
to cooperate with, this should be stated as a parameter rule.

The UML does not explicitly provide language constructs for the specification
of parameter rules in templates. As also mentioned in [6], which develops a
classification for stereotypes similar to the one given here for types of formal
parameters, with the OCL (Object Constraint Language) being part of the UML
7], we have a formalism at hand with which such rules can in principle be
stated. However, if we employ UML together with TROLL in order to utilize the
advantages of both, we could shift the specification of parameter constraints to
TROLL and use the power of a formal specification language for this purpose.

Increasing Reusability in Information Systems Development 263

In our example from above such a parameter rule would be specified as
follows:

module TutorialAdministration
parameterized by maxTeamSize: nat;
parameter constraint 1 < maxTeamSize < 6;

subsystem Presentation ... end_subsystem:

object class Controller ... end;

subsystem Storage ... end_subsystem:
end-module;

Here, the range of maxTeamSize is restricted. In general all kinds of rules
that have been sketched above can be specified.

6 Conclusions

Further demands on the already complex task of developing information sys-
tems motivate using generic methods, which facilitate and support reusing parts
of a specification and implementation. Having outlined this in the first chap-
ter of this paper, we gave an overview of current research activities related to
generic methods putting special emphasis on parameterization concepts for de-
scribing variants of a system. Chapter [3 provided a brief introduction to the
general concepts of the object oriented language TROLL, to its building blocks
for specifications as well as to its formal semantics. Following this, we sketched
an application area for information systems at universities, namely the admin-
istration of tutorials, and showed that also in this area use of generic methods
is desirable and useful.

With this as the foundation, in chapter [5] we outlined a specification for a
tutorial administration systems, introducing and investigating on the parame-
terization concepts of TROLL und UML. Our first main focus here was on the
granularity which the formal parameters of parameterized elements of specifica-
tions should have, and it turned out that presumable best results with regard
to intelligibility and redundancy will be achieved by a gradually applied param-
eterization of mixed granularity.

The other main focus of chapter Blwas to discuss how restrictions on formal
parameters, which are frequently needed with generic methods, can be expressed
using rules. We gave an overview of different types of formal parameters together
with the possibilities to restrict them, and provided examples of where such re-
strictions might be desired. Even though the UML provides the sublanguage
OCL, which could — after some extensions — be used to express such restric-
tions, we propose to use TROLL instead and in general to use the UML only
for the description of the overall architecture, shifting the specification of details
to the textual language. To profit significantly from this joint application of a
semi—formal graphical language with a formal textual one, it is essential to give
a precise definition of their combination [§], which is one of the further steps we
plan to do.

264

Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

M. Abadi and L. Cardelli. A Theory of Objects. Springer—Verlag, New York, 1996.
S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, San Francisco,
2000.

P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database Systems: Concepts,
Languages and Architectures. McGraw—Hill, London, 1999.

D. Batory. Software Generators, Architectures, and Reuse. Tutorial, Department
of Computer Science, University of Texas, 1996.

D. Batory. Intelligent Components and Software Generators. Invited presentation
to the “Software Quality Institute Symposion on Software Reliability”, Austin,
1997.

S. Berner, M. Glinz, and S. Joos. A Classification of Stereotypes for Object—
Oriented Modeling Languages. In Proc. 2nd Int. Conf. on the UML, LNCS 1723,
pages 249-264. Springer, Berlin, 1999.

G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for
the past: Adding genericity to the java programming language. In Proc. Int. Conf.
on Object Oriented Programming Systems, Languages and Applications (OOP-
SLA’98), pages 183-200, 1998.

S. Brinkkemper, M. Saeki, and F. Harmsen. Assembly Techniques for Method En-
gineering. In B. Pernici and C. Thanos, editors, Proc. 10th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’98), Pisa, LNCS 1413, pages 381-400.
Springer, Berlin, 1998.

K. Czarnecki and U.W. Eisenecker. Generative Programming — Methods, Tools,
and Applications. Addison—Wesley, Boston, 2000.

E. Damiani, M.G. Fugini, and C. Belletini. A hierarchy—aware approach to faceted
classification of object—oriented components. ACM Transactions on Software En-
gineering and Methodology, 8(3):215-262, 1999.

K.R. Dittrich, D. Tombros, and A. Geppert. Databases in Software Engineering:
A RoadMap. In A. Finkelstein, editor, The Future of Software Engineering (in
congunction with ICSE 2000), pages 291-302. ACM Press, 2000.

S. Eckstein. Modules for Object Oriented Specification Languages: A Bipartite
Approach. In V. Thurner and A. Erni, editors, Proc. 5th Doctoral Consortium on
Advanced Information Systems Engineering (CAiSE’98), Pisa. ETH Ziirich, 1998.
S. Eckstein. Towards a Module Concept for Object Oriented Specification Lan-
guages. In J. Barzdins, editor, Proc. of the 8rd Int. Baltic Workshop on Data Bases
and Information Systems, Riga, volume 2, pages 180-188. Institute of Mathematics
and Informatics, University of Latvia, Latvian Academic Library, Riga, 1998.

S. Eckstein, P. Ahlbrecht, and K. Neumann. From Parameterized Specifications to
Generated Information Systems: an Application. (In German). Technical Report
00-05, Technical University Braunschweig, 2000.

H.-D. Ehrich. Object Specification. In E. Astesiano, H.-J. Kreowski, and B. Krieg-
Briickner, editors, Algebraic Foundations of Systems Specification, chapter 12,
pages 435—465. Springer, Berlin, 1999.

H.-D. Ehrich and C. Caleiro. Specifying Communication in Distributed Information
Systems. Acta Informatica, 36:591-616, 2000.

H.-D. Ehrich, C. Caleiro, A. Sernadas, and G. Denker. Logics for Specifying Con-
current Information Systems. In J. Chomicki and G. Saake, editors, Logics for
Databases and Information Systems, chapter 6, pages 167-198. Kluwer Academic
Publishers, Dordrecht, 1998.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

Increasing Reusability in Information Systems Development 265

H.-D. Ehrich and A. Sernadas. Local Specification of Distributed Families of Se-
quential Objects. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent
Trends in Data Types Specification, Proc. 10th Workshop on Specification of Ab-
stract Data Types joint with the 5th COMPASS Workshop, S.Margherita, Italy,
May/June 1994, Selected papers, LNCS 906, pages 219-235. Springer, Berlin, 1995.
H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer, Berlin,
1985.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifi-
cations and Constraints. Springer, Berlin, 1990.

A. Gal, S. Kerr, and J. Mylopoulos. Information Services for the Web: Building
and Maintaining Domain Models. Int. Journal of Cooperative Information Systems
(IJCIS), 8(4):227-254, 1999.

J. Goguen. Parameterized Programming and Software Architecture. In IEEE Com-
puter Society, editor, Proceedings Fourth International Conference on Software
Reuse, pages 2-11, 1996.

J. Goguen and G. Malcolm, editors. Software Engineering with OBJ: Algebraic
Specification in Action. Kluwer, Boston, 2000.

J. Goguen and W. Tracz. An Implementation Oriented Semantics for Module Com-
position. In G.T. Leavens and M. Sitaraman, editors, Foundations of Component—
Based Systems, pages 231-263. Cambridge University Press, 2000.

A. Grau, J. Kiister Filipe, M. Kowsari, S. Eckstein, R. Pinger, and H.-D. Ehrich.
The TROLL Approach to Conceptual Modelling: Syntax, Semantics and Tools. In
T.W. Ling, S. Ram, and M.L. Lee, editors, Proc. 17th Int. Conf. on Conceptual
Modeling (ER’98), pages 277-290. Springer, LNCS 1507, 1998.

D. Harel. From Play—In Scenarios to Code: An Achievable Dream. In T. Maibaum,
editor, Proc. 8rd Int. Conf. on Fundamental Approaches to Software Engineering
(FASE 2000), pages 22-34. Springer, LNCS 1783, 2000.

P. Hartel. Conceptual Modelling of Information Systems as Distributed Object
Systems. (In German). Series DISDBIS. Infix—Verlag, Sankt Augustin, 1997.

P. Hartel, G. Denker, M. Kowsari, M. Krone, and H.-D. Ehrich. Information
systems modelling with TROLL — formal methods at work. Information Systems,
22(2-3):79-99, 1997.

M. Hitz and G. Kappel. UML@Work. dpunkt, Heidelberg, 1999.

S. Jarzabek and P. Knauber. Synergy between Component-Based and Generative
Approaches. In O. Nierstrasz and M. Lemoine, editors, Software Engineering -
ESEC/FSE’99, pages 429-445. Springer, LNCS 1687, 1999.

M. Jeusfeld, M. Jarke, M. Staudt, C. Quix, and T. List. Application Experience
with a Repository System for Information Systems Development. In R. Kaschke,
editor, Proc. EMISA (Methods for Developing Information Systems and their Ap-
plications), pages 147-174. Teubner, 1999.

M. Krone, M. Kowsari, P. Hartel, G. Denker, and H.-D. Ehrich. Developing an
Information System Using TROLL: an Application Field Study. In P. Constan-
topoulos, J. Mylopoulos, and Y. Vassiliou, editors, Proc. 8th Int. Conf. on Advanced
Information Systems Engineering (CAiSE’96), LNCS 1080, pages 136-159, Berlin,
1996. Springer.

J. Kiister Filipe. Foundations of a Module Concept for Distributed Object Systems.
PhD thesis, Technical University Braunschweig, 2000.

J. Kiister Filipe. Fundamentals of a Module Logic for Distributed Object Systems.
Journal of Functional and Logic Programming, 2000(3), March 2000.

J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. John
Wiley & B. G. Teubner, New York, 1996.

266

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Silke Eckstein, Peter Ahlbrecht, and Karl Neumann

B. Meyer. Object—oriented Software Construction. Prentice Hall, New York, 1988.
M. Mezini and K. Lieberherr. Adaptive Plug-and—Play Components for Evolu-
tionary Software Development. In Proc. of the 1998 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
’98), volume 33 (10) of SIGPLAN Notices, pages 97-116, Vancouver, 1998.

A.C. Myers, J.A. Bank, and B. Liskov. Parameterized Types for Java. In Proc. of
the 24th ACM Symposium on Principles of Programming Languages, pages 132—
145, Paris, 1997.

M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13:85-108, 1981.

M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, Upper Saddle Rive, 2. edition, 1999.

G. Preuner and M. Schrefl. A Three-Level Schema Architecture for the Concep-
tual Design of Web-Based Information Systems: From Web-Data Management to
Integrated Web-Data and Web-Process Management. World Wide Web Journal,
Special Issue on World Wide Web Data Management, 3(2), 2000.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object—
Oriented Modeling and Design. Prentice Hall, New York, 1991.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Guide. Addison—Wesley, 1999.

P. di Silva, T. Griffiths, and N. Paton. Generating User Interface Code in a Model
Based User Interface Development Environment. In V. di Gesu, S. Levialdi, and
L. Tarantino, editors, Proc. Advanced Visual Interfaces (AVI 2000), pages 155-160.
ACM Press, New York, 2000.

O. De Troyer. Designing Well-Structured Websites: Lessons to Be Learned from
Database Schema Methodology. In T.W. Ling, S. Ram, and M.L. Lee, editors,
Proc. 17th Int. Conf. on Conceptual Modeling (ER’98), Singapore, pages 51-64.
Springer, LNCS 1507, 1998.

M. VanHilst and D. Notkin. Using Role Components to Implement Collabora-
tion Based Designs. In Proc. of the 1996 ACM SIGPLAN Conference on Object—
Oriented Programming Systems, Languages and Applications (OOPSLA ’96), vol-
ume 28 (10) of SIGPLAN Notices, pages 359-369, San Jose, 1996.

J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Addison—Wesley, Reading, 1999.

R. Wieringa, R. Jungclaus, P. Hartel, T. Hartmann, and G. Saake. OMTROLL —
Object Modeling in TROLL. In U.W. Lipeck and G. Koschorreck, editors, Proc. In-
tern. Workshop on Information Systems — Correctness and Reusability I1S-CORE
’98, Technical Report, University of Hannover No. 01/93, pages 267283, 1993.
M. Wirsing. Algebraic Specification Languages: An Overview. In E. Astesiano,
G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specification,
pages 81-115. Springer, LNCS 906, 1995.

	1 Introduction
	2 Generating Software
	3 The Troll--Approach
	4 Area of Application
	5 Specifying Generic Information Systems
	6 Conclusions
	References

