

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 157–170, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Relaxed Soundness of Business Processes

Juliane Dehnert1,∗ and Peter Rittgen2

1 Institute of Computer Information Systems, Technical University Berlin, Germany
dehnert@cs.tu-berlin.de

2 Institute of Business Informatics, University Koblenz-Landau, Germany
rittgen@uni-koblenz.de

Abstract. Business processes play a central role in the reorganization of a
company and the (re)design of the respective information system(s). Typically
the processes are described with the help of a semiformal, graphical language
such as the Event-driven Process Chains (EPCs) by Scheer. This approach
provides a suitable medium for the communication between the participants: the
domain experts and the IT specialists. But these models leave room for
interpretation and hence ambiguities which makes them less suitable as a basis
for the design of information systems. To remedy this we suggest to transform
the EPCs into a formal representation (Petri nets) preserving the ambiguities,
i.e. all possibly intended behaviour. Now formal techniques can be used to find
out whether the possible behaviours comprise sensible behaviour. If so, we call
the net relaxed sound. By not limiting the modeler compared to previous ways
(e.g. [8], [3]) we take a pragmatic approach to correctness which only requires
that the net represents some valid behaviour. This allows us to draw conclusions
on mistakes in the original EPC and to make suggestions for its improvement
thereby enhancing both the model’s quality and its suitability for software
engineering.

1 Motivation

Business processes play a central role in the reorganization of a company and the
(re)design of the respective information system(s). Typically the processes are
described with the help of a semiformal, graphical language such as the Event-driven
Process Chains (EPCs) by Scheer [15]. Approaches of this type are suitable for the
analysis phase of an IT project where the focus is on communication: reaching an
agreement on how the process should look like between participants with totally
different backgrounds and “knowledge cultures”: CEOs, heads of department,
department staff, IT experts and so on. In this phase it is imperative that the language
used represents the greatest common denominator of the people involved. And more
than that it should leave room for interpretation: the more ways there are to interpret a
certain construct the more likely it is that an agreement is reached. The participants
might not (yet) be ready to specify the “final” behaviour in detail and decide for the
“correct” interpretation. But although this feature is desirable in the analysis phase of
IS development it constitutes a major problem in the design phase where we need an

∗ This work is supported by Deutsche Forschungsgemeinschaft (reference WE 1214-3-3a,

research group Petri Net Technology)

158 Juliane Dehnert and Peter Rittgen

unambiguous description of the process. To remedy this problem we suggest to
transform the EPCs into a formal representation (Petri nets) while preserving the
ambiguities, i.e. all possibly intended behaviour. For this we use the workflow nets by
van der Aalst based on which we can now employ established formal techniques to
determine the correctness of the process in a pragmatic fashion: we analyse the net
and try to find, among all the possible ways of behaviour, only the ones that are
suitable, i.e. where the final state can be reached from the start state so that nothing
blocks or remains undone. If enough of such execution paths exists we are satisfied
and call the respective net relaxed sound. The execution paths leading to undesired
behaviour can then be used to infer potential mistakes in the original EPC and to
suggest possible improvements. An alternative approach might be to reduce the net to
the well-behaved paths automatically and to use the resulting net directly as a basis
for the design assuming that the EPC is of sufficient quality or a revision to costly. If
the workflow net is not relaxed sound we can still do something: we can point out the
parts of the EPC that lead to the net not being relaxed sound so that the modeler(s)
know(s) where revision should take place. All in all the sketched approach allows us
to enhance both the model’s quality and its suitability for software engineering.

2 EPCs for Modeling Business Processes

Business processes have been at the heart of IS research for many years if the
evidence of many publications concerned with this topic is anything to go . As a
result, the amount of different approaches is equally high: IDEF, RAD, ARIS/EPC
and Oracle Designer to name but a few. Despite this fact, one of these approaches
plays a more predominant role, especially in practice, namely the Event-driven
Process Chains (EPCs) of the Architecture of integrated Information Systems (ARIS)
described in [15]. The reasons for this prevalence are manifold: on the pragmatic side,
a commercial tool for EPCs (ARIS toolset) has been available for quite some time
already. In addition, the great success of the company SAP suite of business
applications tremendously promoted the use of this method. On the other side, EPCs
have also been investigated quite thoroughly in research.

Nevertheless, there is still some argument concerning the suitability of EPCs for
modeling business processes that are to be supported by an information system.
Advantages such as being highly flexible and easy to learn and understand are
compensated by significant disadvantages: first of all ambiguity and vagueness. It
cannot be in the interest of the user if the processes described in the specification are
interpreted differently by the designer. When this misunderstanding is discovered by
the user it is often too late to correct the design accordingly. Where is the path that
leads out of this dilemma and towards a better understanding between the participants
in the software development process? We think the answer lies in a pragmatic
interpretation of the correctness of an EPC as we will show in the following sections.

The language of EPCs provides the user with a set of graphical notation elements
for the representation of (business) functions, events and routing constructs to
describe the control flow. Functions are used to model the dynamic part of the
process. Typical functions are procurement, quality assurance or processing an
invoice. They are decomposed hierarchically in a separate diagram, the so-called
function diagram. The behaviour of each such function is modeled as a complete
EPC. Another constructive element is the event. An event either triggers a function or

Relaxed Soundness of Business Processes 159

marks the termination of it. For example, the event not_ok triggers the function
complaint whereas the event data revised marks the termination of complaint.
Furthermore, to describe more complex behaviour such as sequential, conditional,
parallel, and iterative routing, connectors are introduced. These fall into two
categories: splits and joins. In both we have AND, XOR and OR connectors.

>

>

complaint

not_okok

goods
arrived

check goods

E16

C7

E11

C6

F8

C8

E15 E14

F10

F9

C12C11

E20

F13

E12

record
receipt of

goods

XOR

XOR >

data
revised

goods
recorded

store goods

stored

Fig. 1. Handling of incoming goods

160 Juliane Dehnert and Peter Rittgen

Fig. 1 shows an EPC modeling the process “Handling of incoming goods”
introduced by [8]. The process starts with the event goods arrived. After that the
execution is split into two parallel paths (AND split C6), the left one checking the
goods and performing the ensuing functions, the right one doing the accounting. The
result of check goods is either ok or not_ok. In the latter case a complaint is compiled,
in the former nothing happens. In either case (XOR join C11) the goods are stored
afterwards (store goods). Connectors C7 and C12 make sure that in case of a
complaint the corrected data is waited for before the receipt of goods is recorded.
Otherwise the receipt can be recorded straight away.

EPCs are a semiformal method for business process modeling. Although they have
been utilized quite successfully there authors did neither define a comprehensive and
consistent syntax nor a corresponding semantics. A first formal description of EPCs
was given in [6] (syntax) and [4] (semantics) but only for a restricted subset of EPCs.
Other approaches to formalization have been developed by [14], [3], [13] and [9]. In
this paper we refer mainly to the approach of [3]. Here syntax and semantics of an
EPC have been described formally. The definition of an EPC includes:
• Events and functions have exactly one incoming and one outgoing arc (except start

and end events).
• There are no isolated nodes.
• Connectors are either splits or joins.
• An event is always followed by a function and vice versa (modulo connectors).

As in most of the approaches mentioned the semantics of an EPC is defined by a
mapping onto Petri nets. Petri nets are used because they have a clear and precise
definition [10] and a similar graphical notation to that of EPCs. In addition they give
us access to many existing analysis techniques and tools. The approach presented in
[3] is based on the classical Petri net whereas [8], [13] and [9] use high-level variants.
Alternatively we could define a formal semantics for EPCs and then define the criteria
of section 4 directly on EPCs. Work to that effect is in progress.

In this paper EPCs are transformed into workflow nets but contrary to [3] we allow
for ambiguity as e.g. introduced by the incorporation of the OR connector. We do this
to increase the flexibility of the modeling method in the early phase of software
engineering, i.e. to provide room for interpretation. This is necessary to foster the
integration of the incompatible views on the common domain held by the
heterogeneous parties involved in this process. Moreover it requires less modeling
expertise and a less precise knowledge of the domain. Hence contrary to all existing
approaches we do not resolve ambiguity. Instead, we ensure that the model is
reasonable in spite of ambiguity, i.e. that it covers some reasonable behaviour that can
be used as a basis for either the revision of the EPC or the design of the information
system. In the following section we show how EPCs are transformed into workflow
nets which are then used to assert certain properties of the EPC, most notably
soundness and relaxed soundness.

3 Transformation into Workflow Nets

Workflow nets (WF nets) have been introduced by van der Aalst [2] applying Petri-
Net theory to the specification of workflow processes. A WF net is a Petri net which

Relaxed Soundness of Business Processes 161

has a unique source place (i) and a unique sink place (o). In addition a WF net
requires all nodes (i.e. transitions and places) to be on a path from i to o. This ensures
that every task (transition) and every condition (place) contribute to the business
process.

In this paper we use the definitions of a Petri net and WF net from [2], namely:

Definition (Petri net). A Petri net is a triple (P, T, F) where:
• P is a finite set of places,
• T is a finite set of transitions,
• F ⊂ (P × T) ∪ (T × P) is a set of arcs (flow relation).
The function M: P → Ν is called marking of PN. M(p) is the number of tokens
contained by the place p for the marking M. A transition t is said to be enabled by a
marking M iff each input place p of t contains at least one token. An enabled
transition may fire. If transition t fires then t consumes one token from each input

place and produces one token in each output place. Note that the term 21 MM t→

means that the firing of transition t takes the process from state M1 to state M2.

21 MM →∗ indicates that there is some firing sequence of transitions that leads

from state M1 to state M2. We use (PN, 0M) to denote a Petri net with an initial

state 0M . A state 'M is reachable in (PN, 0M) iff '0 MM →∗ .

Definition (strongly connected). A Petri net is strongly connected if and only if for
every pair of nodes (i.e. places and transitions) x and y there is a path leading from x
to y.

A WF net is a special Petri net defined as follows.

Definition (WF net): A Petri net PN = (P, T, F) is a WF net if and only if:
i. PN has two special places: i and o. Place i is a source place and place o is a sink

place.
ii. If we add a transition t* to PN which connects place o with i then the resulting

Petri net is strongly connected.

The transformation of EPCs into Petri nets takes place in two steps. First we map

elements of the EPC onto Petri net-modules. In the second step we provide rules to
combine the different modules to form a complex process model. Our set of
transformation rules is shown in Fig. 2.

Events and functions are transformed into places and transitions respectively
including in- and outgoing arcs. Routing constructs such as AND split, AND join,
XOR split, XOR join, OR split and OR join are mapped to small Petri net-modules.
The Petri net-modules describe the behaviour of the routing constructs explicitly. This
is primarily relevant for the OR, because its semantic has not been described
consistently.

In Fig. 3 we see an EPC with an OR join on the left and its Petri net translation on
the right side. The EPC as well as the Petri net have the semantics that E can be
reached if either F1 or F2 or both occur. In the EPC all these different cases are
described through one connector whereas in the Petri net-module all possibilities are
modeled explicitly via the transitions ta, tb and tc. The behaviour of the EPC and the

162 Juliane Dehnert and Peter Rittgen

Petri net are equivalent, because both accept the same executions. Note that the case
that E is reached twice if F1 and F2 occur sequentially has not been excluded.

XOR

PNPN

>
>

>
>

XOR

EPC EPC

Fig. 2. Transformation rules for an EPC into a place/transition net (rule 1)

E
E

F1 F2 F1 F2

ttta cb

>

EPC PN

Fig. 3. Transformation of the OR-Connector

To form a coherent Petri net the single modules are (automatically) connected as
follows (rule 2):
a) if input and output elements are different (place and transition) then the arcs are

fused

Relaxed Soundness of Business Processes 163

b) if input and output elements are of the same kind (e.g. both places) then the
different nodes are unified.

Fig. 4 illustrates the transformation of EPCs into place/transition nets.

(rule 2a)
Fusion of arcsApplication of

>

>

(rule 2b)
Unification of nodes

transformation rules
Application of

transformation rules

XOR

XOR

(rule 1)

(rule 1)

Fig. 4. Illustrating the transformation

The proposed transformation approach is slightly more general than the
transformations described in [13] and [3]. The rules presented here can also be
applied to transform EPCs where connectors follow each other immediately as e.g.
C6/C7 in Fig. 1.

Another advantage of this approach is that the resulting Petri net is minimal in the
sense that it does not contain places or transitions not corresponding to elements of
the EPC. The transformation rules by [13], [8] and [3] all contain rules which
explicitly introduce new pseudo places and transitions to meet the Petri net syntax.
The resulting Petri net may contain many elements which have no counterpart in the
application domain.

To transform an EPC into a WF net something more has to be done. A WF net has
exactly one start and one sink place. One problem when modeling with EPC is caused
by an unclear concept of start and end events. There is no rule that restricts the

164 Juliane Dehnert and Peter Rittgen

amount of start and end events. A start (end) event is defined as an event without an
incoming (outgoing) edge. Furthermore it is not clear whether the start (end) events
are mutually exclusive. So translating the EPC into a Petri net does not necessarily
lead to a Petri net with exactly one start and one sink place. In this case one further
transformation step is required to yield a WF net. We add a new start place and a new
sink place and connect them to Petri net-modules which initialize (clean up) the
places representing the start and end events of the EPC in the right manner. The
module introduced complements the first (last) connector on the paths from the start
(end) events. For further particulars we refer the reader to [13] where this rule (rule 3)
has been introduced and to the example below.

Applying the proposed rules 1 to 3, an EPC is transformed into a WF net. This
transformation is unique, in the sense that to each EPC belongs exactly one WF net.
An example for such a transformation is shown in Fig. 5. Here the EPC from Fig. 1
has been transformed into a WF net. For convenience we surrounded the Petri net-
modules which correspond to the routing constructs of the EPC with dotted
rectangles.

Transition t10_AND-Join and the sink place o have been added due to rule 3. Transition
t10_AND-Join corresponds to an AND connector which complements the last connector on
the paths from the end events E12 and E20, namely connector C12. Transition t10_AND-

Join bundles the different path and leads to the sink place o.

goods
arrived

XOR

complaint

check goods

i
not_ok

ok

>

AND-Split

XOR

XOR-Join

XOR-Join

OR-Join

OR-Join

OR-Join

o

>

>

revised

of goods
record receipt

>t1_

XOR-Splitt2_

t3_

AND-Split

t10_

t4_

t5_

t6_

t7_

t8_

t9_

AND-Join

store goods

stored

recorded
goods

data

XOR-Split

s1 s2

s6

s4

s3

s5

s7

Fig. 5. WF net “handling of incoming goods”

Let us have a closer look at the Petri net-module which replaces the OR join C7.
The Petri net-module makes the behaviour of this routing construct explicit.
Transition t5_OR-Join models the “straight away recording” and transition t6_OR-Join models
the waiting for the revision to be completed. The alternative t7_OR-Join has been
introduced as part of the corresponding Petri net-module, but has no expression in the
original EPC. This alternative can not be chosen in the EPC, because of the AND-
connector C6 before.

By transforming the OR connector we carry the ambiguity of the OR to the WF
net. The decision whether to execute transition t5_OR-Join, t6_OR-Join or transition t7_OR-Join can
not be resolved locally anymore.

Relaxed Soundness of Business Processes 165

WF nets are a class of Petri nets for which theoretical results and efficient analysis
techniques exist (cf. [1]). In the following section we will apply different criteria to
check the workflow net and therefore the corresponding EPC for correctness.

4 Soundness and Relaxed Soundness

In this section we will introduce the properties of soundness and relaxed soundness as
a means both to check the quality of the underlying EPC and to help with the revision
of the business process if necessary. We subsequently discuss their applicability.

4.1 Soundness

Van der Aalst [1] introduced soundness as a correctness criterion for workflow nets.
He argues that this criterion covers a minimal set of requirements a process definition
should satisfy. Soundness ensures that the process can always terminate with a single
token in place o and all the other places are empty. In addition, it requires that there is
no dead task, i.e. any task can be executed. The following definition of soundness is
taken from [1].

Definition (Soundness). A process modeled by a WF-net PN = (P,T,F) is sound if and
only if:
i. For every state M reachable from the initial state i (one token in place i) there

exists a firing sequence leading from state M to state o. Formally:

() ()oMMiM →⇒→∀ ∗∗:
ii. State o is the only state reachable from state i with at least one token in place o.

Formally: ())(: oMoMMiM =⇒≥∧→∀ ∗ (proper termination)

iii. There are no dead transitions in PN with initial marking i. Formally:

()MMiMMTt t ′→→′∃∈∀ ∗:,:
A WF net is sound if the process terminates properly in any case, i.e. termination is

guaranteed and there are no spare tokens and neither deadlock nor livelock. Spare
token signalize that some information was not used during execution, whereas dead-
and livelock indicate situations where the execution got stuck respectively no real
progress could be reached anymore.

We consider an EPC to be sound if its corresponding WF net is sound.
The WF net in Fig. 5 is not sound. There are firing sequences that do not terminate

properly, e.g. the sequence: t1_AND-Splt, check goods, t2_XOR-Split, complaint, t4_AND-Split,
t5_OR-Join, record receipt of goods, t8_XOR-Join, store goods, t10_AND-Join.

In order to make the process sound the model has to be changed in such a way that
the execution paths are restricted to sound firing sequences only where a sound firing
sequence is one that terminates properly. To achieve this we have to avoid spare
tokens as well as livelock and deadlock situations. These problems are, among others,
the result of the incorporation of the OR connector.

166 Juliane Dehnert and Peter Rittgen

Resolving the Ambiguity of the OR Connector
The ambiguous meaning of the OR connector has been discussed extensively in most
formalization approaches. There are almost as many solutions as approaches.

In [11] the ambiguity of the OR connector is handled through a syntax extension
on the side of the EPC. The connectors are extended by comment flags which
describe the desired behaviour explicitly (wait-for-all, first-come, every-time). Wait-
for-all means that the OR join waits for all paths that have been activated by the
complementing opening split which the modeller has to identify as such. In the first-
come (every-time) case the OR join triggers on the first path (on every path) that is
completed. The first-come ignores the termination of the remaining paths. Hence the
latter two do not require a complementing split. Note that this approach forces the
modeler to resolve the ambiguity which he might not want to do as we already
pointed out earlier.

[13] and [9] resolve the ambiguity adding places (communication channels) to the
Petri net. Their task is to keep the information about the choice made by the OR split.
This information is used to synchronize the corresponding OR join accordingly. [4]
and [8] introduce different tokens for the same reason. All approaches mentioned
impose the requirement to model in a well-structured way, i.e. every split has to be
complemented by a corresponding join. Modeling with well-structured EPCs restricts
the modeler considerably in his/her expressiveness and it also poses substantial
requirements on the modeling expertise. Modeling with well-structured EPCs is based
on a strict top-down design process which can hardly be enforced in practice.

Apart from this elements are introduced to synchronize parallel threads.
Synchronization always serializes the execution. Suppose the probability that the
system ends in an inconsistent state is very small. It may then be more efficient to
recover (seldom) than to wait (every time). The introduction of synchronization forces
the designer to think about efficiency aspects of the execution already during the
modeling. Moreover it is generally problematic to introduce additional elements to the
net because it thereby potentially diverges from the semantics of the original EPC.
Often this leads to models which are quite different from the primary specification
which in turn requires revision. This revision requires communication with the users
which is complicated by the fact that the changes are often motivated by technical
requirements only and have no counterpart in the application domain. Let us consider
again the example “Handling of incoming goods”.

We will change the WF net of Fig. 5 in such a way that a sound WF net is obtained
(see Fig. 6). Firstly, transition t7_OR-Join is removed. As discussed earlier it has no
meaning in the original EPC and can therefore be removed without any consequences
for the EPC. Then we introduce a place SI which takes care that transition t5_OR-Join
only executes if the credit check was ok. Through this construct the different threads
(recording and check) have been synchronized and therefore serialized. This
behaviour is not required in the original EPC. To change the EPC accordingly it has
to be decomposed and composed again in a well-structured way. This change is not
trivial and results in a completely different looking and behaving EPC.

Hence (strict) soundness demands that the modeler either restricts himself/herself
to well-structured EPCs right from the start or he/she has to hazard the consequences
of a substantial and costly revision. EPCs are a graphical modeling method which is
used in the early analysis phase of an IT project where the focus is on communication.
The goal of its use is reaching an agreement on how the process should look like

Relaxed Soundness of Business Processes 167

between participants with totally different background and “knowledge cultures”. The
resulting models are only the base for further investigation. The applied correctness
criteria should reflect the modeling knowledge and should therefore not be too strict.
It should allow the modeler to postpone the more precise specification as long as
possible i.e. to shift to later phases such as design and implementation.

goods
arrived

XOR

complaint

check goods

i

ok

>

AND-Split XOR-Join

XOR-Join

OR-Join

OR-Join

o

>

>

revised

of goods
record receipt

>not_ok

S_I

AND-Split

t1_

t4_

XOR-Split

XOR-Split

t2_

t3_

t5_

t6_

t8_

t9_

t10_
AND-Join

XOR

recorded
goods

stored

store goods

data

Fig. 6. Extended WF net

Hence we suggest to introduce a new relaxed soundness criterion replacing the
strict version.

4.2 Relaxed Soundness

We propose to relax the soundness criterion to the new criterion relaxed soundness
which has been introduced in [5]. Relaxed soundness is intended to represent a more
pragmatic view on correctness which is weaker (in a formal sense) but more easily
applicable to application-oriented modeling. It does not require to avoid situations
with spare tokens or livelocks/deadlocks. It is therefore suitable to check WF nets
which have been derived through the transformation of (not necessarily well-
structured) EPCs containing OR connectors.

The idea behind relaxed soundness is that for each transition there exists a sound
firing sequence, i.e. a sequence that takes the initial state i to the final state o. No
spare tokens should be left in the Petri net in this case.

Definition (Relaxed sound).
A process specified by a WF net PN = (P, T, F) is relaxed sound if and only if

every transition is in a firing sequence that starts in state i and ends in state o.

Formally: ()oMMiMMTt t →′→→′∃∈∀ ∗∗:,:
Intuitively relaxed soundness means that there exist enough executions which

terminate properly (i.e. without spare tokens). Enough means at least so many that
every transition is covered. We argue that this criterion is closer to the intuition of the
modeler. It does not force the modeler to think about all possible executions and then
to care for proper termination in all cases. In spite of that relaxed soundness is still
reasonable because it requires that at least all intended behaviour has been described
correctly. Note that (strict) soundness implies relaxed soundness.

168 Juliane Dehnert and Peter Rittgen

In terms of the EPC this means that every function can be executed reaching a
desired set of end events. If the WF net is not relaxed sound then we have transitions
that are not contained in any sound firing sequence. Hence the corresponding part in
the EPC needs improvement. Put in other words: as a general rule we have to consider
transitions that are not contained in some sound firing sequence when we are looking
for parts of the process that need revision.

Let us now check the net in Fig. 5 for relaxed soundness. For this purpose we have
to find a sound firing sequence for every transition. The check for relaxed soundness
has been automated. The criterion can be checked with the help of the Petri net tool
LoLA (Low Level Petri Net Analyzer) that has been implemented at the Humboldt
University of Berlin [7]. It includes features such as: analysis of reachability of a
given state and finding dead transitions. Recently LoLA has been extended to prove
for extended computation tree logic formulae (eCTL) [12]. Within eCTL it is possible
to quantify not only over states but also over state transitions. The combination of
Petri nets and eCTL allows to check for relaxed soundness: for each transition t the
reachability of the end state o is verified while it is required to include transition t in
the path from i to o.

So far relaxed soundness can be proven only by enumeration of enough sound
firing sequences. As far as the authors can judge there are no structural properties
such as lifeness and boundness for soundness from which the relaxed soundness
property can be derived.

The net in Fig. 5 is not relaxed sound because there is no sound firing sequence
containing transition t7_OR-Join. As we pointed out earlier transition t7_OR-Join can be left
out of the WF net without loss of semantics regarding the EPC. Then the net is
relaxed sound. The following two sound firing sequences contain all remaining
transitions:
− t1_AND-Split, check goods, t2_XOR-Split, complaint, t4_AND-Splt, t6_OR-Join, record receipt of

goods, t8_XOR-Join, store goods, t10_AND-Join
− t1_AND-Split, check goods, t5_OR-Join, t3_XOR-Split, t9_XOR-Join, record receipt of goods, store

goods, t10_AND-Join
From this we can conclude that the EPC represents reasonable behaviour and can

hence be used as a basis for software design.

5 Conclusion

We started with the assumption that business processes play a central role in
reorganizing a company and (re)designing its information system(s). In doing so we
typically describe the processes with the help of some semiformal, graphical language
such as the Event-driven Process Chains. Modeling with EPCs usually involves
ambiguities which, seen as “room for interpretation”, are necessary in the early stage
of analyzing a business. But for the later stages of software development we must
identify the useful interpretations. This notion is formalized in our paper in terms of
the relaxed soundness criterion. To make use of this criterion we first have to
transform the EPC into a workflow net. This is done applying a fixed set of rules. The
transformation does not resolve ambiguities but makes them explicit. The resulting
WF net is used as a basis to check properties the process should satisfy. Relaxed

Relaxed Soundness of Business Processes 169

soundness ensures that the modeled process meets some reasonable requirements. It
enable us to check EPCs which contain OR connectors which typically presents a
problem in other approaches.

Main aspects of future work include:
− finding a way to transform a relaxed sound net into a sound net (automatically) by

reducing the net to the well-behaved paths; if this can be done the resulting net can
be used directly as a basis for the design assuming that the EPC is of sufficient
quality or a revision to costly,

− defining relaxed soundness directly for EPCs without requiring the intermediate
step to Petri nets,

− integrating the approach into an analysis and design tool
− testing the approach in practical situations with large-scale models

In this paper we propose a new correctness criterion which is suitable to check the
process model in an early phase of software engineering. Our approach allows us to
draw conclusions on mistakes in the original EPC and to make suggestions for its
improvement thereby enhancing both the model’s quality and its suitability for
software engineering.

Bibliography

1. Aalst, W.M.P. van der: Verification of Workflow Nets. In: P. Azema and G. Balbo:
Application and Theory of Petri Nets 1997, Lecture Notes in Computer Science, vol. 1248,
Springer, Berlin, 1997, pp. 407-426

2. Aalst, W.M.P. van der: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8 (1) 1998, pp. 21-66

3. Aalst, W.M.P. van der: Formalization and Verification of Event-driven Process Chains.
Computing Science Reports 98/01, Eindhoven University of Technology, Eindhoven,
1998.

4. Chen, R., Scheer, A.-W.: Modellierung von Prozessketten mittels Petri-Netz-Theorie.
Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 107 (in German),
University of Saarland, Saarbrücken, 1994

5. Derks, W., Dehnert, J., Grefen, P. and Jonker, W.: Customized atomicity specification for
transactional workflow. In: Cooperative Database Systems for Advanced Applications
(CODAS'01), 2001, To appear

6. Keller, G. and Teufel, T.: SAP R/3 prozeßorientiert anwenden: iteratives Prozeß-
Prototyping zur Bildung von Wertschöpfungsketten. Addison-Wesley, Bonn, 1997.

7. Schmidt, K.: LoLA, a Low Level Petri Net Analyzer. Humboldt-Universität, Berlin.
http://www.informatik.hu-berlin.de/~kschmidt/lola.htm

8. Langner, P., Schneider, C, Wehler, J.: Ereignisgesteuerte Prozessketten und Petrinetze.
Report No. 196, Computer Science Department, University of Hamburg, FBI-HH-B-
196/97, March 1997.

9. Moldt, D., Rodenhagen, J.: Ereignisgesteuerte Prozessketten und Petrinetze zur
Modellierung von Workflows. In: Visuelle Verhaltensmodellierung verteilter und
nebenläufiger Software-Systeme, vol. 24/00-I, Münster, 2000, pp. 57-63.

10. Murata, T.: Petri Nets: Properties, Analysis, and Applications. Proc. of the IEEE, 77 (4)
1989, pp. 541-580

11. Rittgen, P.: EMC - A Modeling Method for Developing Web-based Applications.
International Conference of the International Resources Management Association (IRMA)
2000, Anchorage, Alaska, USA, May 21 - 24, 2000

170 Juliane Dehnert and Peter Rittgen

12. Roch, S.: Extended Computation Tree Logic. In: H.D. Burkhard, L. Czaja, A. Skowron
and P. Starke: Workshop Concurrency, Specification & Programming, Informatik-Bericht
140, Humboldt-Universität, Berlin, Oct. 2000, pp. 225-234.

13. Rodenhagen, J.: Darstellung ereignisgesteuerter Prozessketten (EPK) mit Hilfe von
Petrinetzen. Diplomarbeit, Universität Hamburg, Fachbereich Informatik, 1996.

14. Rump, F.: Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter Prozeßketten.
Formalisierung, Analyse und Ausführung von EPKs. Teubner, Stuttgart, 1999

15. Scheer, A.-W.: Business Process Engineering, Reference Models for Industrial
Enterprises. Springer, Berlin, 1994

	1 Motivation
	2 EPCs for Modeling Business Processes
	3 Transformation into Workflow Nets
	4 Soundness and Relaxed Soundness
	4.1 Soundness
	4.2 Relaxed Soundness

	5 Conclusion
	Bibliography

